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摘要 

隨著國際間恐怖攻擊事件頻傳，世界各國對於反恐意識提升，於近年來相繼於境內各大城市

或重要地點架設視訊安全監控系統。在視訊安全監控系統中，大範圍、高解析度的監控畫面

以及智慧化的監控系統是不可或缺的。構建此系統必需同時擁有高品質的輸入影像和顯示裝

置以及自動化偵測物體的功能。 

鑑於高品質的顯示裝置發展迅速，而高解析度監控攝影機發展緩慢，與顯示器相比並沒

有廣泛的被使用。在本文章的第一部分中，我們設計了一個創新的攝影機架構，包含固定式

廣角攝影機以及高解析度快速球型攝影機，來建構大範圍、多倍數和多重解析度的視訊監控

系統，其提供多重解析度的移動物體資訊。 

首先，我們發展一套新的攝影機校正方式，計算固定式廣角攝影機以及高解析度快速球

型攝影機之間的對應關係、快速球型攝影機自身旋轉校正以及快速球型攝影機多倍數校正。

快速球型攝影機多倍數校正，是基於不同放大倍數在不同角度上具有一致性的特性，來加速

校正的過程且不影響正確性; 此校正方式為一新穎的校正方式。完成雙攝影機的校正後，我

們使用快速球型攝影機合成一個大範圍高解析的背景影像。當前景物在固定式廣角攝影機中

被偵測到後，快速球型攝影機就會被驅使並對使用者選擇的物體進行連續追蹤。最後，我們

整合了預先建構好的大範圍高解析背景以及分別由固定式廣角及快速球型攝影機所取的低高

解析度前景影像，產生大範圍、多倍數以及高解析度監控畫面。 

對於智慧化視訊安全監控系統，自動偵測動物體是一個重要的議題，使用背景相減法來

偵測前景物，是研究多年卻仍然很重要的部分。一個好的背景相減演算法可以忍受環境的變

化，例如：動態背景和光照的突然變化。在本文章的第二部分中，我們設計了一個空間背景

模型(spatial background model, SBM)的新架構。包含兩個主要成分，背景模型(background 

model, BM)和背景梯度提取器(background gradient extractor, BGE)，來提取前景物體。對於每

一張影像，我們都透過傳遞鄰居的資訊來建構背景模型，用於處理動態背景和突然的光線變

化。背景梯度提取器與背景模型為同時建構和更新。為保持前景物形狀的完整性，我們利用

背景梯度資訊設計禁止傳遞的策略。該方法可以有效地擷取前景和消除背景噪音。 
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此外，在視訊安全監控的應用中，物體的影子偵測和移除是物體偵測不可或缺的部分。

在本文章的第三部分中，我們提出一個新的物體影子去除架構。整合兩個主要偵測器，移動

物體偵測器和影子偵測器。對於移動物體，我們利用空間背景模型來偵測移動物體。對於影

子去除，我們首先抽取出影子的特徵，包含色度、物理以及紋理性質。然後，使用隨機森林

演算法學習影子特徵並產生隨機森林影子偵測模組。接著，我們對時空背景模型產生的結果

使用隨機森林影子偵測模組進行影子去除。我們所提出的方法可以有效地檢測出移動物體並

移除陰影的影響。此外，透過與其他技術做比較來展示我們所提出的方法，物體偵測與影子

去除，的性能。 

採用上述方法，使用雙攝影機架構建構出大範圍、高解析度影像，並利用時空背景模型

有效的偵測出前景物資訊，進一步利用隨機森林演算法去除移動物體影子的影像，更精準的

擷取出移動物體範圍，有效提高智慧化視訊監控的正確性。 

 

關鍵詞：大範圍和高解析度視訊監控系統、雙攝影機系統、空間背景模型、物體偵測、影子

去除、支援向量機、隨機森林。 
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ABSTRACT 

Due to the terrorist attacks occur frequently, the anti-terrorism awareness of each country is 

raising. Therefore, the visual surveillance monitoring systems are setting up at important sites or in 

major cities in recent years. In visual surveillance monitoring system, the large-area high-resolution 

visual monitoring view and intelligence monitoring systems are indispensable in surveillance 

applications. To construct such systems, high-quality image capture, high-resolution display devices 

and automated detection of objects are required. 

Whereas high-quality displays have rapidly developed, the high-resolution surveillance cameras 

have progressed slowly and remain not widely used compared with displays. In the first part of this 

study, we designed an innovative framework, using a dual-camera system comprising a wide-angle 

fixed camera and a high-resolution pan-tilt-zoom (PTZ) camera to construct a large-area high-

resolution visual-monitoring system that features multiresolution monitoring of moving objects. First, 

we developed a novel calibration approach to estimate the relationship between the two cameras and 

calibrate the PTZ camera. The PTZ camera was calibrated based on the consistent property of distinct 

pan-tilt angle at various zooming factors, accelerating the calibration process without affecting 

accuracy; this calibration process has not been reported previously. After calibrating the dual-camera 

system, we used the PTZ camera and synthesized a large-area high-resolution background image. 

When foreground targets were detected in the images captured by the wide-angle camera, the PTZ 

camera was controlled to continuously track the user-selected target. Last, we integrated 

preconstructed high-resolution background and low-resolution foreground images captured using the 

wide-angle camera and the high-resolution foreground image captured using the PTZ camera to 
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generate a large-area high-resolution view of the scene. 

For intelligence visual surveillance monitoring system, the background subtraction is a crucial 

component, which has been studied over years. However, an efficient algorithm that can tolerate the 

environment changes such as dynamic backgrounds and sudden changes of illumination is still 

demanding. In the second part of this study, we design an innovative framework called the spatial 

background model (SBM) from a single-layer codebook model. Two main components, the 

background model (BM) and the background gradient extractor (BGE), are constructed to extract the 

foreground objects. The background model is built for each single frame with spatial information 

propagated from the neighbor locations, which is useful for handling dynamic background and sudden 

lighting changes. The background gradient extractor is also constructed and updated, and we design 

a propagation forbidden policy for background updating, so as to keep the completeness of foreground 

shape via the background gradient information. The proposed method can efficiently capture the 

foreground and eliminates the noise of background.  

Moreover, Cast shadows detection and removal is indispensable in the object detection to many 

surveillance applications. In the third part of this study, we present a novel framework for removing 

cast shadow of moving objects. Two main components, moving foreground detector and shadow 

detector, are integrated. For moving objects, we utilize the spatial background model (SBM) to detect 

the moving objects. For shadow removal, we first extract the shadow features which are chromaticity, 

physical property, and texture. Then, using the classifier, Random Forest, to learn the shadow model 

with shadow features. After that, removing the shadow from the result of SBM with the Random 

Forest shadow detector (RFSD). The proposed method can effectively detect the moving objects and 

remove the effect of shadow. Furthermore, we demonstrate the performance of our method compared 

with some techniques of object detection and shadow removal. 

Using these methodologies, constructing a large-area and high-resolution view using a dual-

camera system, detecting the moving objects with spatial background model, and using random forest 
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shadow detector to remove the shadow effect, to improve the accuracy of intelligence of monitoring 

surveillance.     

 

Keywords: large-area and high-resolution visual monitoring system; dual-camera system; spatial 

background model; object detection; shadow removal; support vector machine; random forest. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background and Motivation 

Traditionally, the visual surveillance system is as a passive system which is used for recording and 

for reviewing after the occurrence of events. Recently, due to the terrorist attacks, there have been 

much interest in visual surveillance for security that is developing toward intelligent. The research in 

visual surveillance spans for several disciplines, such as monitoring system and image analysis, and 

various visual surveillance systems have been employed for diverse purposes, for example monitoring 

traffic and ensuring the security of communities, businesses, schools, hospitals, homes, and the public. 

In various visual surveillance applications, a large-area high-resolution monitoring system is 

required. For example, when monitoring the parking area, a wide area must be monitored and details 

(license plate) must be concurrently captured. A more challenging class of constructing a large-area 

high-resolution monitoring system is the high-quality image capturing and display devices. The size 

and resolution of monitors have rapidly increased in the recently year, and monitor prices have 

decreased. Compared with the enhancement in the quality of displays, the image quality of 

surveillance cameras has improved slowly. A single camera, such as a wide-angle fixed camera, a 

PTZ camera, and a fish-eye camera, is used to capture images and can be used for different 

applications, such as detection [1] [2], tracking [3] [4], and recognition [5]. The field of view of a 

wide-angle fixed camera or a fish-eye camera is wide and that can be used to monitor the activities 

of targets over a large area. However, the limitation of these cameras is the low resolution input and 



2 

 

that cannot obtain the detail information for security, such as face and license plate. Although a PTZ 

camera can provide the high-quality image, the field of view is narrow and lots of information of the 

monitoring environment is lost. Following, the dual-camera system is used, various combination of 

dual-camera is proposed, such as two PTZ cameras, one PTZ camera with one static cameras, and 

one PTZ camera with one fish-eye camera. These systems provide the detail information from PTZ 

camera with zoom in function and obtain the global information from other cameras. However, the 

information of detail and that of global are not integrated. To achieve the large-area and high-

resolution qualities required, an alternative to high-end fixed camera is the pan-tilt zoom (PTZ) 

camera, which is an inexpensive and suitable compromise, although most of the monitored area is not 

covered when the PTZ camera is zoomed in. Another solution is constructing a camera network 

comprising multiple cameras to cover a large area; however, integrating multiple views is difficult. 

Therefore, in this thesis, we first integrate a PTZ and a wide-angle fixed cameras as a dual-camera 

monitoring system to construct a large-area high-resolution monitoring view. 

Although the large-area high-resolution monitoring system can monitor a wide area and details 

concurrently, the intelligent is lacked. An intelligent visual monitoring system must automatically 

detect and track the moving target in which the performance of the system is depend on the accuracy 

of object detection. The background subtraction is often one of the most crucial components for object 

detection. However, the problem becomes difficult when dynamic background and illumination 

changes occur. The dynamic-background problem is caused by periodic-like motion or vibration such 

as water rippling and waving trees. Illumination changes could be caused by human activity or by 

natural. For example, people could turn on/off the lights in an indoor environment, and sunlight could 

also be changed due to the occlusion of clouds in an outdoor environment. Many methods have been 

proposed for background subtraction. Among these methods, the most intuitive one is the temporal 

differencing mechanism [6] [7] that subtracts the current image with the previous one(s). The method 

is adaptive to different environments but easily extracts incomplete foreground objects. Stauffer et al. 
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[1] [8] proposed the Mixture-of-Gaussian (MoG) model which is probably the most popular 

parametric technique for background modeling. Several Gaussian distributions are used to generate 

the background candidates for each pixel, which attempts to solve the problem of dynamic 

background. However, a drawback of MoG is that its parameters are sensitive to the background. 

Kim et al. [2] [9] modeled each pixel as a codebook with one or more codewords depending upon the 

background variation. The model performs well under illumination changes and also shows some 

advantages in dealing with dynamic backgrounds. However, it needs a period of time to construct the 

background model and lacks of the mechanism of re-modeling. In this thesis, we propose a framework 

that addresses the limitations of these methods, which integrates the information of spatial to construct 

a spatial background model (SBM). Our method can effectively cope with the problems of dynamic 

background and sudden changes of illumination. 

Due to the ambient light, the cast shadow is induced by moving objects and also detected as the 

foreground. However, shadows make the object detection incorrect, some applications which are 

based on object detection become less reliable and reduce the performance of visual surveillance. 

Therefore, the effective method for removing cast shadows is needed. In this thesis, several useful 

shadow features, such as chromaticity, physical properties, and texture, are selected and that are used 

for training shadow classifier based on Random Forest algorithm. Besides, we integrate the spatial 

background model with Random Forest classifier to produce the effective foreground detector. The 

proposed method can effectively detect the moving objects and remove the shadow effect. 

Furthermore, we demonstrate the performance of the proposed method compared with some state-of-

the-art techniques of object detection and shadow removal. 

 

1.2 Outline of this Research 

In this dissertation, we investigate both object detection and monitoring problems in dual-camera 
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surveillance system. A large-area high-resolution visual monitoring system is proposed. The dual-

camera system architecture is adopted, and a wide area and details concurrently captured. Then, we 

apply the spatial background model into large-area high-resolution monitoring system to detect 

foreground which overcomes the problems of the dynamic background and the sudden changes of 

illumination. Finally, the shadow removal technique is adopted to remove the effect of shadow and 

enhance the accuracy of object detection 

1.2.1 Large-Area High-Resolution Visual Monitoring Using a Dual-Camera 

System 

Large-area high-resolution visual monitoring systems are indispensable in surveillance applications. 

To construct such systems, high-quality image capture and display devices are required. Whereas 

high-quality displays have rapidly developed, as exemplified by the announcement of the 85-inch 4K 

ultrahigh-definition TV by Samsung at the 2013 Consumer Electronics Show (CES), the high-

resolution surveillance cameras have progressed slowly and remain not widely used compared with 

displays. In this chapter, we designed an innovative framework, using a dual-camera system 

comprising a wide-angle fixed camera and a high-resolution pan-tilt-zoom (PTZ) camera to construct 

a large-area high-resolution visual-monitoring system that features multiresolution monitoring of 

moving objects. First, we developed a novel calibration approach to estimate the relationship between 

the two cameras and calibrate the PTZ camera. The PTZ camera was calibrated based on the 

consistent property of distinct pan-tilt angle at various zooming factors, accelerating the calibration 

process without affecting accuracy; this calibration process has not been reported previously. After 

calibrating the dual-camera system, we used the PTZ camera and synthesized a large-area high-

resolution background image. When foreground targets were detected in the images captured by the 

wide-angle camera, the PTZ camera was controlled to continuously track the user-selected target. 

Last, we integrated preconstructed high-resolution background and low-resolution foreground images 
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captured using the wide-angle camera and the high-resolution foreground image captured using the 

PTZ camera to generate a large-area high-resolution view of the scene. 

1.2.2 Spatial Background Modeling Using a Single-Layer Codebook Model 

Background subtraction is a crucial component in visual surveillance, which has been studied over 

years. However, an efficient algorithm that can tolerate the environment changes such as dynamic 

backgrounds and sudden changes of illumination is still demanding. In this chapter, we design an 

innovative framework called the spatial background model (SBM) from a single-layer codebook 

model. Two main components, the background model (BM) and the background gradient extractor 

(BGE), are constructed to extract the foreground objects. The background model is built for each 

single frame with spatial information propagated from the neighbor locations, which is useful for 

handling dynamic background and sudden lighting changes. The background gradient extractor is 

also constructed and updated, and we design a propagation forbidden policy for background updating, 

so as to keep the completeness of foreground shape via the background gradient information. The 

proposed method can efficiently capture the foreground and eliminates the noise of background. The 

performance of the proposed method is compared with MoG [1] [8], Codebook [2] [9] and ViBe [10] 

on the Wallflower [11] and Perception [12] datasets. 

1.2.3 Combining Spatial Background Modeling and Random Forest Classifier 

for Foreground Segmentation and Shadow Removal 

Cast shadows detection and removal is indispensable in the object detection to many surveillance 

applications. In this chapter, we present a novel framework for removing cast shadow. Two main 

components, moving foreground detector and shadow detector, are integrated. For moving objects, 

we utilize the spatial background model (SBM) to detect the moving objects which is comprised of 

the background mode (BM) and the background gradient extractor (BGE) as describe in Chapter 4. 
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SBM features the object detection in the dynamic background and the sudden lighting changes 

environments. For shadow removal, we first extract the shadow features which are chromaticity, 

physical property, and texture. Then, we use the classifier, Random Forest, to learn the shadow model 

with shadow features. After that, we remove the shadow from the result of SBM with the shadow 

classifier. The proposed method can effectively detect the moving objects and remove the effect of 

shadow. Furthermore, we demonstrate the performance of our method compared with some 

techniques of shadow removal. 

1.3 Organization of the Thesis 

The rest of this thesis is organized as follows. First, we describe work related to this study in Chapter 

2, after which we focus on the large-area high-resolution visual monitoring using a dual-camera 

system in Chapter 3. In Chapter 4, we present the spatial background model which is useful to 

overcome the dynamic background and the sudden changes of illumination and be used in Chapter 5. 

Next, we present an algorithm of shadow removal which can effectively remove the effect of shadow. 

We conclude this thesis and provide the directions for future work in Chapter 6. 
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CHAPTER 2 

RELATED WORK 

In this chapter, we provide context for this research in the backdrop of previous work. Similar to the 

classification in the previous chapter, we review the related works in the areas of visual monitoring 

system, background modeling for objects detection, and cast shadow removal and discuss the 

advantages and limitations that we address. 

2.1 Visual Monitoring System 

In the past 20 years, numerous frameworks have been proposed for visual surveillance system. Based 

on the types of cameras used, visual monitoring systems can be classified into single-camera, hybrid-

camera, and camera-network systems. The single-camera system, which is widely used in visual 

surveillance systems, a wide-angle fixed camera, a PTZ camera, or a fish-eye camera can be used as 

the input device. The wide-angle fixed cameras, which is also called a static or stationary camera, 

covers a wide angle of view and provides coarse information that is used for visual surveillance. Zhao 

and Nevatia [13] segmented images of single humans acquired using a wide-angle fixed camera by 

using the Markov chain Monte Carlo (MCMC) approach. Zhao and Nevatia [14] combined MCMC 

with the Bayesian maximum a posteriori probability to segment images of humans in crowds. These 

methods attained a satisfactory level of performance by using the coarse information obtained from 

the wide-angle fixed camera. However, these frameworks designed for surveillance system cannot 

provide minute image details. [15] [16] [17] used a PTZ camera in surveillance systems to 

automatically track humans and vehicles, employing the zoom feature of the PTZ camera to track 
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targets of interest and zoom in on them. Although detail was captured using the zoom function, global 

information was lacking. Single cameras have been used in numerous studies such as those of object 

detection [1] [2] [18], tracking [3] [4] [19] [20], and recognition [5] [21] [22]. For tracking and 

detecting objects, a single low-resolution camera is typically adequate, but the image is not of 

sufficiently high quality to extract features required for face recognition even when multiple cameras 

are used. A PTZ camera can provide image details at a high resolution, but background information 

is lacking. 

Sinha et al. [23] used a PTZ camera to stitch a panorama view for each scale by using a number 

of high-resolution images with different scales and the detailed information is obtained after aligning 

all panoramas together. Although their method provided a multilayered and high-resolution view, the 

moving objects did not be addressed and the panorama at each scale may contain moving objects that 

cause false foreground detection. Kang et al. [24] [25] used a PTZ camera to construct a panoramic, 

which is the multilayered high-resolution view, by using distinct zooming factors. During events, 

they controlled the PTZ camera to monitor the area and update the panorama. However, these 

methods are inefficient when the panoramic background model is built for each layer by using key 

frames and the background information cannot be instantly updated when several people are present 

in the monitored area. A single PTZ camera framework cannot provide multiresolution foreground 

information; when this framework is used to monitor a target at high-resolution, information 

regarding other moving objects cannot be captured. 

The hybrid-camera monitoring system features combinations such as a pair of PTZ cameras, a 

fisheye camera plus a PTZ camera, and a wide-angle camera plus a PTZ camera. Marchesotti et al. 

[26]; Zhou et al. [27]; Chen et al. [28] used a dual-camera system in which the operations of two PTZ 

cameras were coordinated to track and characterize biometric information. One PTZ captured the 

wide-angle view, whereas the other PTZ camera provided detail. Singh and Atrey [29] proposed a 

technique for camera cooperation using Model Predictive Control (MPC) and demonstrated the utility 
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by using two PTZ cameras. Zhang et al. [30]; Chen et al. [31] used fisheye and PTZ cameras to design 

a dual-camera system in which a wide field of view was captured for image analysis by the fisheye 

camera. Alahi et al. [32]; Micheloni et al. [33] proposed a dual-camera system comprising a wide-

angle fixed camera and a PTZ camera, which was used to detect, actively track and recognize people 

in wide outdoor environments. Reale et al. [34] proposed an eye gaze estimation method by using a 

dual camera comprising wide-angle fixed camera and PTZ cameras which were used to detect face 

and eyes, respectively. These dual-camera systems concurrently provide wide-angle view at low-

resolution and detailed information at high-resolution; however, high-quality background information 

was not available and in these works, the low- and high-resolution images were separately displayed. 

Such a display mode is not intuitive to users for monitoring events [35]. Dornaika et al. [36] designed 

a foveated panoramic sensor comprising a fisheye camera and a PTZ camera in which the panoramic 

view was captured by the fisheye camera and high resolution view is proposed by the PTZ camera to 

generate the multi-resolution view. Although this system integrated low- and high-resolution 

information in a single scene, the high-quality background information was also not available. The 

display mode of dual-camera systems can be classified into overview plus detail (O+D) [37] [38], 

focus plus context (F+C) [37] [39], and steerable high-resolution display (steerable F+C) [40] [41]. 

Chen et al. [35] demonstrated that the steerable high-resolution display mode exhibits superior 

performance levels compared with the other displays, providing integrated low- and high-resolution 

information in a single scene during visual surveillance. Chen et al. [35]; Chen et al. [42] also used a 

dual camera comprising static wide-angle and PTZ cameras, developing a multiresolution system that 

integrated the overview image captured at low resolution by the wide-angle fixed camera with the 

detailed information captured at high resolution by the PTZ camera and proposing the PTZ camera 

turning calibration method with difference zoom in factor. Therefore, by using this system, a large 

field of view could be monitored and the details of targets of interest could be concomitantly observed 

and zoom in function could be used; however, this system cannot capture the details of the entire 
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scene which means it does not have a high-resolution background image, the PTZ camera tuning 

calibration method needs a projector to be the auxiliary device and that cannot be used in outdoor 

environment and it is time-consuming when estimating the correspondence relationship between 

difference zoom in factor . 

Another type visual monitoring system is a camera network comprising numerous cameras. 

Micheloni et al. [33] used several wide-angle cameras and PTZ cameras in a camera network designed 

for surveillance. The wide-angle camera supplied information regarding object position that was 

transferred to the PTZ camera for object tracking. Singh et al. [43] developed a coopetitive framework 

for optimal multicamera placement. Natarajan et al. [44] proposed a decision-theoretic approach to 

control and coordinate multiple active cameras for observing and tracking multiple moving targets in 

a surveillance system. Cai et al. [45]; Micheloni et al. [46] designed camera networks composed 

entirely of PTZ cameras. Such systems can be used to observe the entire field of view and 

concurrently collect detailed information, concomitantly tracking multiple targets. However, high-

resolution background information is not captured, multiresolution information is not integrated, and 

all moving objects cannot be easily tracked with the same number of cameras. 

All types of camera systems present advantages and disadvantages. The fixed-camera system 

featuring single or multiple wide-angle cameras can monitor a wide field of view, but cannot collect 

detail information regarding areas of interest. The PTZ-camera monitoring system is more flexible 

than is the wide-angle system, but it cannot concurrently monitor distinct areas and can either monitor 

a large-area view or collect detailed information. Although, Kang et al. [24]; Kang et al. [25] 

constructed a high-resolution panoramic view, the system did not adapt to scene changes, particularly 

when various foreground targets were present. The hybrid-camera system offers the advantages of 

the fixed-camera and PTZ-camera systems, but currently available systems [35] [42] [26] [30] cannot 

yet monitor an entire view at high resolution. The camera network can be used to observe an entire 

field of view by using a wide-angle camera to track multiple targets concurrently, but the current 
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system [47] cannot monitor the entire view at high resolution and does not integrate the entire view 

with detailed information. 

In this study, we used the advantages of the three aforementioned systems to construct a large-

area high-resolution visual monitoring system, integrating the images of hybrid dual-cameras. In the 

proposed system, the details of the entire monitored field can be observed, enabling those monitoring 

the scene to accurately grasp the relevant information and allowing them react suitably to the events 

that transpire; all moving objects at low resolution to make the users aware of suspicious targets, and 

the target of interest is tracked at high resolution to examine details by using the automatic PTZ-

camera control. 

2.2 Background Modeling 

The background subtraction technique is aim to detect the foreground region form comparing an 

observed image with an estimated image which is referred to as the background model. In recent year, 

numerous of background subtraction have been proposed. 

Among these methods, the most intuitive one is the temporal differencing mechanism [6] [7] 

[48] that subtracts the current image with the previous one(s). The method is adaptive to different 

environments but easily extracts incomplete foreground objects. Pixel-based background modeling 

methods have been widely used in visual surveillance. [49] [50] [51] [52] used a statistical model of 

background that modeling of each pixel with a Gaussian which store as a color mean and covariance 

matrix. Those researchers assumed that each pixel in background is independent and that can be 

described as a uni-modal of Gaussian. However, a single Gaussian cannot deal with non-stationary 

background, because of multi-modal backgrounds which contains more than one peak is needed. To 

overcome the problem of non-stationary background, Stauffer and Grimson [1] [8] proposed Mixture-

of-Gaussian (MoG) model which is probably the most popular parametric technique for background 

modeling. Several Gaussian distributions are used to generate the background candidates for each 
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pixel. Harville et al. [53] adopted YUV color plus depth information instead of using RGB color. 

However, the drawbacks of MoG are that its parameters are sensitive to the background, needs the 

scene with empty of foreground objects at the beginning of the sequence for a learning phase and the 

capability of adapting sudden changes, such as the re-positioning of a static object or the turning on 

of a light is weak. 

Instead of Mixture of Gaussian, Kim et al. [2] [9] modeled each pixel as a codebook with one 

or more codewords depending upon the background variation. They observed that the pixel values 

change over time under lighting variation and that are mostly distributed along the axis going toward 

the origin point (0, 0, 0) in the RGB space. Based on the observation, they developed a cylinder color 

model to describe the change of the pixel values over time. Guo et al. [54] [55] proposed a hierarchical 

scheme with block-based and pixel-based codebooks for foreground detection. The model performs 

well under illumination changes and also shows some advantages in dealing with dynamic 

backgrounds. However, they need a period of time to construct the background model and lacks of 

the mechanism of re-modeling. 

In the recent year, Barnich and Van Droogenbroeck [10] [56] used a random technique to 

estimate the background. They modeled each background pixel with a set of samples which is 

randomly choose from the neighbors. To classify an incoming pixel, calculating the distances between 

and the set of samples and comparing with a thresholded Euclidean distance. When an incoming pixel 

has been classified as the background, the random propagation process determines whether this value 

is used to update the corresponding pixel model and to update the models of neighboring pixels. 

The algorithms that are closer in spirit to ours are Kim et al. [2] [9] and Barnich and Van 

Droogenbroeck [10] [56]. We integrate the characteristics of modeling background with the random 

propagation process for updating background model from Barnich and Van Droogenbroeck [56] [10] 

and cylinder color model from Kim et al. [2] [9] to generate the spatial background model (SBM). 

Besides, we proposed the two-way propagation policy to cope with the problems of non-stationary 
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background and ghost effect, and the forbidden propagation policy to keep the completeness of the 

detected foreground. 

 

2.3 Cast Shadow Removal 

Cast shadow is considered as part of moving objects and that affect the results of objects detection. 

Numerous frameworks have been proposed for cast shadow removal, Cucchiara et al. [57] [58] using 

background subtraction methodology for extracting moving objects which include four components: 

moving object, moving object shadow, ghost and ghost shadow, as shown in Figure 2.1. The ghost 

and ghost shadow are removed using optical flow methodology, because the momentum is lacking. 

For removing cast shadow, the illumination and chromaticity features are considered that is based on 

the assumption of when the chromaticity of background is similar to that of shadow, the illumination 

of shadow is darker than background. The main drawback of shadow removal used in this method is 

sensitive threshold. 

Huang and Chen [59] assumed that the shadow distribution (SD) is between direct light (DL) 

and ambient light (AL) as shown in Figure 2.2. The direct light is white like sun light and ambient 

light is bluer than direct light. There are four steps for removing shadow. First, the moving objects 

are extracted by using GMM background model. Then, the weak shadow detector which is based on 

 
Figure 2.1: moving object, moving object shadow, ghost and ghost shadow [57]. 
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the RGB color model is used to find the potential shadow as shown in Figure 2.3. The potential 

shadow falls into the gray area and that can be used to remove the impossible background and 

foreground. Next, the global shadow model and local shadow model are generated by using the 

physical-based and gradient features, respectively. Finally the posterior probabilities are evaluated by 

using the global shadow model and local shadow model which are used to identify foreground, 

background and shadow.   

Sanin et al. [60] integrated two features, chromaticity and texture, for removing shadow effect. 

First, the candidate shadow regions are selected using chromaticity feature proposed by Cucchiara et 

al. [57] [58]. Then, the pixels which have the significant gradient magnitudes in the candidate shadow 

regions are selected. Finally, the shadow is removed according to the gradient direction which is the 

correlation between the shadow and the background. 

Although, these methods can remove shadow using chromaticity or texture features, the capable 

 
Figure 2.3: The weak shadow detector [59]. 

 

 
Figure 2.2: The contribution of all direct light sources and ambient illuminance [59]. 
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of adapting to different environments is lost, because they all need to tune the parameters and 

thresholds. For example, the parameters and thresholds are tuned for indoor environments that are 

not suitable for outdoors, because of the illumination of the ambient light and the sun are changed. 

However, it is difficult to find the best parameters for various environments. Therefore, the learning-

based methods for shadow removal are proposed. 

Different from the aforementioned methods, Wang et al. [61] firstly used Local-Patch Gaussian 

Mixture Model (LPGMM) which is extend from the Gaussian Mixture Model to detect the moving 

objects. Each pixel in LPGMM is modeled as a vector which is formed from its observed local 

neighborhood. Then, several features are used in the SVM shadow classifier to discriminate the 

foreground and shadow. The background model for detecting moving objects and the shadow 

classifier for removing shadow are integrated and that is suitable for various environment without 

tuning parameters or thresholds, because of the features for different scenes are used. 

It is important to choose the useful features for shadow removal according to characteristics of 

features. In our study, the features used for shadow removal is classified into four categories, 

chromaticity, physical properties, geometric and texture, according to the survey paper [60] [62]. The 

chromaticity is one of the spectral features. [57] [58] [63] proposed to use HSV color space to be the 

chromaticity features. The HSV color space is converted from RBG color space that has three 

components: hue, saturation, and value. Hue is the property of color, such as yellow and blue. 

Saturation is the purity of color, the high value of saturation makes the color becomes bright. Value 

is the brightness. For instance, light red and dark red may have the same value of hue, but have 

different value of brightness. Chromaticity proposed that the hue and saturation are similar at the 

same region of shadow. Due to the illuminant is blocked, the brightness of shadow is darker than 

background. The region is classified as shadow, if its color is similar with background and the 

brightness is darker than background. Moreover, the region with different color or extreme light 

change is classified as the foreground. The advantages of chromaticity are simple to implement and 
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low computational cost. However, the foreground is classified as background, because of the color 

space is used and the color of foreground is similar to background. 

[59] [64] considered two major illumination sources, ambient light (blue light) and the sun (white 

light), in outdoor environment to be the physical properties. The shadow is generated by moving 

object. Although the moving objects block the illumination source of sun, the ambient light is always 

irradiating on the region. The illumination of sun is blocked and the ratio of ambient light is increasing 

that makes the color of shadow trend to be blue color. The physical property is the ratio of blue and 

brightness value, its accuracy is higher than other color features in outdoors and has common 

performance in indoors, because of the difference light source in indoors. However, when the 

foreground has the similar color with shadow, the physical property still misclassify, because of the 

color information is adopted. 

Hsieh et al. [65] proposed the geometry features for specific objects, such as vehicles and 

standing people using its orientation, size and shape. First, the gravity of the foreground is used to 

calculate the angle between foreground and shadow. Then the cut point is found by using the gradient 

of object’s contour. According to the above results, the foreground and shadow can be separated. The 

geometry can overcomes the problem of when the colors between foreground and background are 

similar, because it is not color based. However, it has some limitations, for example, it can only use 

to detect some specific objects, the object and shadow must have different orientation and only 

accepts single light source. 

Sanin et al. [66] proposed the texture feature for shadow removal. Although the region of shadow 

is darker than background, the texture of this region still exists. There are two steps: (1) rough 

foreground detection select the candidate region of shadow include foreground and shadow and (2) 

to classify the candidate region into foreground or shadow by using texture feature. Two texture 

features are calculated, the different of gradient and that of angle between pixel and its neighborhood. 

The texture features of shadow are smaller than foreground. The performance of texture feature is 
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well, because it does not rely on color information and does not have the limitations as described in 

geometry feature. However, when texture feature are similar between foreground and background, it 

is misclassified, for example, the smooth object on the floor. 

However, each feature is suitable for different scene. For example, physical property has the best 

performance in outdoors, because of it has significant difference between shadow and background 

compared to other features. When the scene has simple foreground (i.e. only working people in the 

hall), the feature of geometry substitute physical property and become the most suitable feature in 

this scene. Therefore, we combine more features without weighted and learn the properties of 

different scene to raise the performance of shadow removal. 
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CHAPTER 3 

LARGE-AREA HIGH-RESOLUTION VISUAL 

MONITORING USING A DUAL-CAMERA SYSTEM 

3.1 Introduction 

Since the 911 terrorist attacks in New York and the subway bombings in London in 2005, security 

has been a critical research topic in both academia and industry. In recent years, various visual 

surveillance systems have been employed for diverse purposes, for example monitoring traffic and 

ensuring the security of communities, businesses, schools, hospitals, homes, and the public. A large-

area high-resolution visual monitoring system is required in numerous practical surveillance 

situations in which a wide area must be monitored and details must be concurrently captured. For 

instance, when a traffic accident occurs, the scene of the accident must be observed and detailed 

information must be captured such as the license plate numbers of the vehicles involved and the 

specific injuries caused to the people involved in the accident. 

To construct a large-area high-resolution visual monitoring system, both high-quality image 

capturing and display devices are required. Recently, the size and resolution of monitors have rapidly 

increased, and monitor prices have decreased. For example, the Hon Hai Precision Industry Company 

Ltd sold a 60-inch LED monitor featuring 2K resolution for US$999 in 2012 and Samsung 

Corporation announced a huge, 85-inch display featuring 4K resolution at the 2013 exhibition of the 

international Consumer Electronics Show (CES). Compared with the enhancement in the quality of 

displays, the image quality of surveillance cameras has improved slowly. Our market research 
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indicates that, the highest resolution surveillance camera currently on the market is a 10-megapixel 

camera with a resolution of 3648×2752 pixels that captures images at only 7 fps (frames per second), 

sold by Arecont Vision for more than US$1100. At the 2013 CES, Bosch announced an ultrahigh-

definition 4K surveillance camera featuring 3840×2160 pixels (8.3 megapixels) that captures images 

at 30 fps or captures images at a full 12-megapixel resolution at 20fps. Although this camera is not 

yet commercially available and its price has not been announced, we expect the camera to be 

substantially more expensive compared with current high-resolution surveillance cameras. To 

achieve the large-area and high-resolution qualities required, an alternative to high-end fixed camera 

is the pan-tilt zoom (PTZ) camera, which is an inexpensive and suitable compromise, although most 

of the monitored area is not covered when the PTZ camera is zoomed in. Another solution is 

constructing a camera network comprising multiple cameras to cover a large area; however, 

integrating multiple views is difficult. 

In this study, we take advantage of the aforementioned cameras to develop a hybrid dual-camera 

 
Figure 3.1: An overview of our system. 
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system that includes a PTZ camera and a wide-angle fixed camera. Notice that, only two standard 

cameras are used in our system, costing US$2590. Furthermore, we proposed a framework to 

integrate both the zoomed-in and wide-angle views to construct a large-area high-resolution view that 

concurrently provides the large-area and high-resolution coverage required for visual monitoring. An 

overview of our system is presented in Figure 3.1. The wide-angle fixed camera can cover a fixed but 

wide area, and the PTZ camera can be controlled to focus on a specific target and then zoom in and 

out to capture videos of various scales. All images obtained from the PTZ camera were integrated to 

construct a large-area high-resolution background image with a resolution of 4320×2880 pixels (12.4 

megapixels) as shown in the left side of Figure 3.1, achieving a maximal resolution of 11520×8160 

pixels (94 megapixels), which is considerably higher than 12-megapixel resolution yielded by the 

Bosch. After moving objects are detected by a wide-angle fixed camera, the user can select a target 

of interest and use the PTZ camera to continuously and automatically track that target. Finally, the 

interesting target is integrated into the background and a large-area and high-resolution view is 

generated. Employing the proposed system, a user can observe both a target of interest at a high 

resolution and all activities in the synthesized monitoring area at a comparatively lower resolution 

(Figure 3.1, right) as part of a process called multiresolution foreground image monitoring.  

This chapter is organized as follows. First, we focus on the calibration of the camera, namely, 

the calibration between the wide-angle fixed camera and the PTZ camera, the PTZ camera turning 

calibration, and the multilayer calibration of the PTZ camera. Next, we demonstrate the construction 

of a large-area high-resolution visual monitoring system by using the results of the camera calibration. 

Last, we present the experimental results, and conclusion. 

To enhance readability, in this chapter, the image captured using the wide-angle fixed camera is 

referred to as the “overview image“, and the image captured using the PTZ camera is the “detail 

image“. The detail image captured using a pan/tilt angle ],[ 000 tp  and the zooming factor 1 that 
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make the detail image similar to the overview image is termed as the “reference image“. The PTZ 

camera captured at various zooming factors or distinct magnifications are called “layers“. 

3.2 System Architecture 

The proposed system was designed to cover a wide monitoring area at high-resolution and provide 

focused on targets. We installed a dual-camera system in a building (Figure 3.2) at a height of 

approximately 10 m. The wide-angle camera used was ACM-1311N (resolution 680 × 480 pixels), 

and the PTZ camera was CAM-6510N (resolution 720 × 480 pixels). In the installation, the cameras 

can be considered concentric because of the long distance between the cameras and the monitored 

area; in Section 3.3, we explain how this concentric property facilitates calibrating the cameras. 

To effectively integrate a wide-angle fixed camera and PTZ camera, multiple key tasks must be 

considered. As shown in Figure 3.3, the proposed system includes three primary technical 

components: offline camera calibration, online construction of large-area high-resolution background 

images, and online multiresolution foreground-image stitching. First, we determined the relationship 

between the two cameras. When a target of interest is selected from the overview image, its 

 
Figure 3.2: The hardware system. 
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corresponding coordinates must be obtained in the reference image and the PTZ camera is 

subsequently turned to the corresponding pan/tilt to acquire a detail image of the target. Thus, we 

designed calibration schemes to estimate the relationship that transforms the image coordinates from 

the overview image to the reference image, and to calculate the turning calibration of the PTZ camera 

that transforms the image coordinates of the reference image to the corresponding detail image at the 

pan/tilt. After calibrating the cameras, we used the calibration results to generate a large-area high-

resolution background by stitching the detail image captured at each pan/tilt. This process includes 

the technical components of determining the step of the biaxis over layers, histogram adjustment, and 

blending. When the system initiates, moving objects are detected in the overview image and low 

resolution foreground images are generated. We can select one of the objects of interest as a target, 

and the proposed system controls the PTZ camera to continuously track the target, capturing high-

resolution foreground images. Finally, we integrate the low- and high-resolution foreground images 

into the preconstructed large-area high-resolution background image, generating the multiresolution 

foreground monitoring image.  

 
Figure 3.3: The work flow of our system. 
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3.3 Camera Calibration 

Using the proposed system requires turning the PTZ camera and zooming it toward any point selected 

on the overview image. Therefore, the image coordinates should be transformed from the overview 

image to the reference image, and then the corresponding pan/tilt should be calculated, enabling the 

capture of the detail image focused on the selected point in the overview image. Thus camera 

calibration involved two steps when implementing the proposed system. The first step was estimating 

the transformation between the coordinates of the overview and reference images. The second step 

was estimating the relationships between the coordinates of the reference image and the 

corresponding pan/tilt. 

3.3.1 Calibration between Wide-Angle and PTZ Cameras 

The proposed system requires estimating the transformation of coordinates between the overview and 

reference images (i.e., we must calculate the corresponding image coordinates from the overview 

image to the reference image). When using two concentric cameras, the image coordinates of two 

cameras can be transformed using homography or a 3 × 3 perspective-transform matrix [67] [68]. 

Numerous surveillance applications have adopted using concentric cameras; for example, Elder et al. 

[69] used such cameras to generate fused imagery, Prince et al. [70]; Wheeler et al. [71] used it to 

 
Figure 3.4: The concentric structure. 
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detect and recognize faces, and Elder et al. [72] used it to detect people. In the proposed installation, 

the two cameras were nonconcentric, but could be considered to be concentric because the centers of 

their lenses were close to each other and the monitored area was adequately far from the camera 

(Figure 3.1). This installation is commonly accepted in implemented surveillance applications [15] 

[30] [47] [73]. A view captured using the wide-angle fixed camera and the PTZ camera in the 

proposed installation is shown in Figure 3.4.   

To estimate homography, the Scale Invariant Feature Transform (SIFT) algorithm [67] [74] was 

used to estimate the corresponding feature points between the overview image and the reference 

image because of the robustness and distinctiveness of this algorithm (Figure 3.5). Next, we 

calculated the homography 
OI

RIH  between the overview and reference images by using at least four 

corresponding points from the two images, yielding the following:  

   TooOI

RI

Trr yxHyxs 11  ,      (3.1) 

where s  is a scale factor, and (
oo yx , ) and (

rr yx , ) are the coordinates of the corresponding feature 

points in the overview and reference images, respectively. 

3.3.2 PTZ Camera Calibration 

After translating the image coordinates from the overview image to the reference image, we 

determined the corresponding pan/tilt of the PTZ camera required to turn the PTZ camera toward the 

 

 

Figure 3.5: The corresponding SIFT features points. 
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position chosen from the overview image. In this subsection, we explain two calibration methods, in-

factory and on-site calibrations, both of which can be performed without human control.  

In-Factory Calibration 

In-factory calibration is performed to generate the look-up table required to turn the PTZ camera; this 

method was used in our previous studies [35] [42]. The in-factory calibration method involves using 

an auxiliary fixed projector to project gray-code patterns [75] (Figure 3.6) in front of a wall and 

subsequently capture the projected pattern images by using the PTZ camera at each pan/tilt angle and 

at the pan/tilt angle ],[ 000 tp , serving as the detail images and reference image, respectively. Next, 

the corresponding feature points between each detail image and the reference image are estimated 

and used to calculate the homographies for each detail image and the reference image, after which 

we can compute the corresponding coordinates of the image center of each pan/tilt in the reference 

image based on these homographies. By using interpolation, the corresponding pan/tilt can be 

computed when a user selects an arbitrary point on the reference image. Additional details of this 

process are available in [35] [42] .  

On-Site Calibration 

Although the in-factory calibration method is satisfactory, in various applications the dual cameras 

are installed at elevated sites, making dismantling the devices and using the in-factory calibration 

method challenging. Therefore, we propose using a novel camera calibration method, called on-site 

 
Figure 3.6: Gray-Code patterns. 
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calibration in the proposed system; this method is more convenient and robust compared with in-

factory calibration. On-site calibration features two automatic procedures. The first procedure is used 

to automatically determine the calibration boundary, and the second is used to calibrate between 

Layer 1 (zooming factor equal to one) and the reference image, a step called PTZ-camera turning 

calibration.   

In the proposed system, the maximal pan and tilt angles of the PTZ camera are 360˚ and 190 ˚, 

respectively. Before calibrating the turning of the PTZ camera, we determined the rotation range in 

which the PTZ camera was to be calibrated, enabling the detail and overview images to be 

superimposed. Thus, first procedure is determining the calibration boundary, which includes (1) 

determining the accepted pan/tilt map; and (2) deciding the calibration boundary. 

In Step 1, we generated an accept pan/tilt map that indicated the rough pan/tilt of the detail 

images that can cover the overview image. The symbols are defined as follows: the detail image 

captured by the PTZ camera at pan/tilt angle ],[ iii tp  with the use of Layer 1 is expressed as 

DII ; the pan/tile angle ],[ iii tp  with Layer 1 is termed as 
1,Zi  for each 

iDII , and OVI  is the 

overview image. In this step, the pan and tilt angles of the PTZ camera used for each interval rotation 

can be changed by the user; in the proposed implementation, we sampled these using angles of 11 ˚ 

and 9 ˚, respectively. For each 
iDII , and OVI  , we use a feature-based method, SIFT [74], to 

determine the corresponding feature points between the two images. If the number of corresponding 

feature points is higher than a threshold T , we accept the pan/tile angle ],[ iii tp  and set the 

 
Figure 3.7: Accepted pan/tilt map. 
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value as 1 in the accepted pan/tilt map; if the number is lower than the threshold, we reject the pan/tile 

angle ],[ iii tp  and set the value as 0 in the accepted pan/tilt map. If the pan/tile angle 

],[ iii tp  is accepted, then the homography DI

OIH  between OVI  and DII  can be calculated. An 

example of accepted pan/tilt map is shown in Figure 3.7, wherein the white and yellow points indicate 

the accepted pan/tilt angles, and the black points indicate the rejected pan/tilt angles. 

In Step 2, we determined the largest connected component in the accepted pan/tilt map, shown 

as the yellow area in Figure 3.7, this was considered the possible range of the field of view of the 

wide-angle fixed camera. Next, we used homography, DI

OIH  to translate the coordinate of the center 

of each detail image at 
1,Zi  within the area of the largest connected component estimated into the 

overview image coordinate, which is called 
iDIC . We bilinearly interpolated 

iDIC  to generate DIC  

which is the center coordinate of detail image at all valid pan/tilt angle in the overview image. We 

determined the center coordinate of reference image RIC  in the overview image by using the 

following:  

normOIDI
C

RI CCC
DI

 minarg ,      (3.2) 

where OIC  represents the center coordinate of the overview image. Furthermore, we chose the 

minimal and maximal valid DIC  values and set the corresponding pan/tilt angles as the minimal and 

maximal pan/tilt angles of the calibration boundary and denoted them as minp , mint , maxp , and maxt . 

After determining the calibration boundary and reference image, the second procedure is 

calibrating the turning of the PTZ camera. We estimated the relationship between the coordinates of 

the reference image and turning angle of the PTZ camera, allowing the PTZ camera to be turned to a 

corresponding pan/tilt angle and then focused on the position selected in the reference image. To 

accelerate the calibration process, we calibrate only for every interval of the pan and tilt angles 
stepp  
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and 
stept , respectively, using interpolation to calculate the results of the other angles. To determine 

the calibration interval of the pan and the tilt angles, we first calculate the number of intervals N  by 

using the following equation: 

MAXzDI

OI

Area

Area
N




,

,        (3.3) 

where OIArea  is the area of the overview image, and 
MAXzDIArea ,

 is the area of the corresponding 

field of view of the PTZ camera in the overview image obtained using the maximal zooming factor, 

which was 15 in the experiments. Ideally, distinct zooming factors should exhibit distinct numbers of 

the intervals N , but for simplicity, we choose the maximal number, ensuring that the overview image 

can be covered by merging all the detail images used for the calibration. 

After calculating the number of calibration intervals N , we used the following equations to 

calculate the rotation interval 
stepp  and stept : 

1

minmax






N

pp
pstep ,        (3.4) 

1

minmax






N

tt
t step          (3.5) 

Figure 3.8 shows the coordinates in the reference image that corresponded to all calibration 

positions with the calibration intervals 
stepp  and stept in the experiment. The red rectangle indicates 

the range of the wide-angle fixed-camera view, the green rectangle is the range of the PTZ-camera 

view, and the blue rectangle is the range of the PTZ-camera view with maximum zooming factor 

which is 15 in our experiment. The 
stepp  and stept  angles were approximately to 1˚ in the proposed 

implementation.  

After determining the sampled calibration positions, the PTZ-turning calibration involves 
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obtaining the homography 1

Re
ZDI

fH , which is the relationship between the coordinates of the reference 

and detail images at each pan/tilt angle with the use of Layer 1. Here, we added the auxiliary views 

to avoid inadequate corresponding feature points between the reference and detail images at pan/tilt 

angle 
1,Zi . First, we obtained the reference image and collected 9 auxiliary images from the 

predefined positions, which are shown as red dots in Figure 3.9 (a). We use a method similar to that 

described in Section 3.3.1 and determined the homographies based on distinct auxiliary views j  to 

the reference image jaux

fH Re
where j =1 to 9. Second, we divided the image into 9 regions, and each 

detail image exhibiting the pan/tilt angle 
1,Zi  was mapped to the predefined auxiliary view. The 

regions and their corresponding auxiliary view are shown in Figure 3.9. For example, the 
1,Zi  

angles that fall into the Green Region 1 map to the auxiliary view of Red Point 1. Next, we determined 

the homographies for all views 
1,Zi  angles that were appropriate for the auxiliary view j , 1, zi

j

DI

auxH


. 

Finally, we determined the relationship between the reference and detail images at pan/tilt angles 

1,Zi  according to the following equation (Figure 3.9 (b)(c)):  

1,1,

Re
zi

j

jzi

j

DI

aux

aux

f

DI

aux HHH


 .       (3.6) 

Multilayer PTZ-Camera Calibration 

 
Figure 3.8: The coordinates map for background update. 
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Although the aforementioned calibration procedure is satisfactory, PTZ-turning calibration is 

ineffective given distinct zooming factors because the focal length changes as Layer k  changes; thus, 

the principal point of the PTZ camera in the image is offset from the exact center of the image even 

at the same pan/tilt angle. Therefore, we calibrated PTZ camera by using distinct zooming factors, 

using multilayer PTZ-camera calibration.  

The proposed multilayer PTZ-camera calibration is based on the consistent property of distinct 

pan/tilt angles at various zooming factors (i.e., the relationship between the detail images obtained 

using distinct zooming factors is independent of the pan/tilt angle). The consistent property does not 

change when the pan/tilt angles are changed; thus, this method does not rely on the accuracy of pan/tilt 

operation. By contrast, the PTZ camera calibration described in Section 3.3.2 relies on the 

repeatability of the pan/tilt operation performed using modern PTZ cameras. The relationships 

between the detail images that exhibit various zooming factors can be transformed using the 

homography of 1kz

kz
H



 , which represents the transformation between the Layers k  and 1k  at 

the pan/tilt angle  . The homographies between distinct layers are independent of the pan/tilt angle 

  (i.e., ',

,

',

,

zk

zk

zi

zi
HH







  , for all pan/tilt angle i  and k ). We apply this feature of multilayer PTZ-

   
(a) The position of the 

auxiliary views 

(b) The relationship between the 

auxiliary views and the reference 

image 

(c) The relationship between the 

auxiliary views and detail images 

Figure 3.9: The transformation between Layer 1 and the reference image. 
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camera calibration to both in-factory and on-site calibration.  

In on-site calibration, we detected the feature points in the reference image by using the SIFT 

[74] method. To overcome the noise problem caused by moving objects, we used a series of images 

captured by the PTZ camera as the reference view at the pan/tilt angle ],[ 000 tp , and then 

determined the corresponding points based on this image series to identify the feature points that are 

fixed in all images. After identifying the stable feature points, we determined the optimal regions in 

the reference image in which the maximal numbers of feature points were covered, calibrating the 

coordinate transformation between Layers i  and 1i  by using Algorithm 1. 

The calibration regions between various layers can be distinct. Because of the consistency of 

distinct pan/tilt angles at various zooming factors, we can determine the corresponding feature points 

between various layers by using distinct views. Figure 3.10 shows the feature points in the reference 

image and the colored rectangles indicate the optimal regions that were used for multilayer calibration 

in each layer.  

3.4 Large-Area High-Resolution Visual Monitoring 

After calibrating the camera, we obtain the transformation relationship between the wide-angle fixed 

ALGORITHM 1: The algorithm developed for multilayer PTZ camera calibration  
Input:  The SIFT feature points determined from the reference image 

Output: The homographies between distinct layers 

for number of layers do 

      for number of feature points do 

            To calculate the number of feature points, N, which can be viewed using Layer i  

            based on this feature point. 

            if N is the most then 

                  To set the position of this feature point to be the calibration position (p, t) for  

                  this Layer i 

            end 

      end 

      To capture images for the Layers i and i+1 based on the position (p, t) and determine  

      the feature points on these images. To calculate the homography between these two  

      layers according to these feature points 

end 
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camera and the PTZ camera, the relationship of the PTZ camera turning, and the relationship between 

the multiple layers of the PTZ camera. On the basis of these calibration results, we can construct a 

large-area high-resolution background image combined with the multiresolution foreground image.  

3.4.1 Construction of High-Resolution Background Images 

Constructing the large-area high-resolution background image involves determining the step of the 

biaxis over layers, histogram adjustment, and blending. 

Determining the Step of the Biaxis Over Layer 

A large-area high-resolution background image was constructed by integrating the detail images 

captured using the PTZ camera at each pan/tilt angle ],[ iii tp . The quality of the integrating 

image depends on the percentage of overlap region between the images. When the overlap percentage 

is small, the blended region is small; thus the quality of the integrated image is high. Therefore, the 

first step is determining the step of the biaxial over layers to minimize the overlap region.   

The expected result of this step is similar to the map of coordinates (Figure 3.8) produced in the 

  

(a) (b) 

Figure 3.10: The feature points in the reference image and the correspondence between different 

layers. 
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calibration-boundary determining procedure (Section 3.3.2). However, the map of coordinates cannot 

be applied because distinct layers must exhibit distinct steps for each axis, called 𝑝𝑠𝑡𝑒𝑝𝑖 and 𝑡𝑠𝑡𝑒𝑝𝑖, 

to minimize the overlap regions. Therefore, we developed Algorithm 2 to determine the step of the 

biaxis over each layer by using  𝑝𝑚𝑖𝑛 、 𝑡𝑚𝑖𝑛、𝑝𝑚𝑎𝑥 and 𝑡𝑚𝑎𝑥, which were estimated as described 

in Section 3.3.2.  

The input parameters in the algorithm are 𝑧𝑖 and 𝒯𝑛𝑜𝑛−𝑜𝑣𝑒𝑟𝑙𝑎𝑝, where 𝑧𝑖 is the zooming factor 

and 𝒯non−overlap is the percentage of the nonoverlapping region area determined by the user. In the 

proposed implementation, we set the value of 𝒯non−overlap  as 0.9. The parameters 𝑝𝑚𝑎𝑥_𝑠𝑡𝑒𝑝 , 

𝑝𝑚𝑖𝑛_𝑠𝑡𝑒𝑝, and 𝑝𝑎𝑣𝑔_𝑠𝑡𝑒𝑝 were the temporary variables used to determine the exact value of 𝑝𝑠𝑡𝑒𝑝𝑖 

ALGORITHM 2: The step-determination algorithm of the biaxis over each layer 

Input: 𝑧𝑖 , 𝒯𝑜𝑣𝑒𝑟𝑙𝑎𝑝 

Output: 𝑝𝑠𝑡𝑒𝑝𝑖 and 𝑡𝑠𝑡𝑒𝑝𝑖 for distinct layers, i 

Initial: 𝑝𝑚𝑎𝑥_𝑠𝑡𝑒𝑝 =𝑝𝑚𝑎𝑥 − 𝑝𝑚𝑖𝑛 and 𝑝𝑚𝑖𝑛_𝑠𝑡𝑒𝑝 = 1 

while (𝑝𝑚𝑎𝑥_𝑠𝑡𝑒𝑝 ≠ 𝑝𝑚𝑖𝑛_𝑠𝑡𝑒𝑝) 

      𝑝𝑎𝑣𝑔_𝑠𝑡𝑒𝑝 = ⌈
𝑝𝑚𝑎𝑥_𝑠𝑡𝑒𝑝+𝑝𝑚𝑖𝑛_𝑠𝑡𝑒𝑝

2
⌉ 

      Initial: 𝑡max_𝑠𝑡𝑒𝑝 = 𝑡𝑚𝑎𝑥 − 𝑡𝑚𝑖𝑛 and 𝑡𝑚𝑖𝑛_𝑠𝑡𝑒𝑝 = 1 

      while (𝑡𝑚𝑎𝑥_𝑠𝑡𝑒𝑝 ≠  𝑡𝑚𝑖𝑛_𝑠𝑡𝑒𝑝) 

            𝑡𝑎𝑣𝑔_𝑠𝑡𝑒𝑝 = ⌈
𝑡𝑚𝑎𝑥_𝑠𝑡𝑒𝑝+𝑡𝑚𝑖𝑛_𝑠𝑡𝑒𝑝

2
⌉ 

            𝑇𝑖𝑙𝑡𝑛𝑜𝑛−𝑜𝑣𝑒𝑟𝑙𝑎𝑝 =
𝐴𝑟𝑒𝑎𝐻𝑅𝐵

∑ 𝑅𝑒𝑔𝑖𝑜𝑛𝑘𝑘
   𝑘: the region number 

            if 𝑇𝑖𝑙𝑡𝑛𝑜𝑛−𝑜𝑣𝑒𝑟𝑙𝑎𝑝 ≤ 𝒯𝑛𝑜𝑛−𝑜𝑣𝑒𝑟𝑙𝑎𝑝 && all pixel are fixed in then 

                  𝑡𝑚𝑖𝑛_𝑠𝑡𝑒𝑝 = 𝑡𝑎𝑣𝑔_𝑠𝑡𝑒𝑝 

            else 

                  𝑡𝑚𝑎𝑥_𝑠𝑡𝑒𝑝 = 𝑡𝑎𝑣𝑔_𝑠𝑡𝑒𝑝 − 1 

            end if 

      end 

      𝑡𝑚𝑎𝑥_𝑠𝑡𝑒𝑝 = 𝑡𝑚𝑖𝑛_𝑠𝑡𝑒𝑝 

      𝑡𝑠𝑡𝑒𝑝𝑖 = 𝑡𝑚𝑎𝑥_𝑠𝑡𝑒𝑝 

      𝑃𝑎𝑛𝑛𝑜𝑛−𝑜𝑣𝑒𝑟𝑙𝑎𝑝 =
𝐴𝑟𝑒𝑎𝐻𝑅𝐵

∑ 𝑅𝑒𝑔𝑖𝑜𝑛𝑘𝑘
   𝑘: the region number 

      If 𝑃𝑎𝑛𝑛𝑜𝑛−𝑜𝑣𝑒𝑟𝑙𝑎𝑝 ≤ 𝒯𝑛𝑜𝑛−𝑜𝑣𝑒𝑟𝑙𝑎𝑝 && all pixel are fixed in then 

            𝑝𝑚𝑖𝑛_𝑠𝑡𝑒𝑝 = 𝑝𝑎𝑣𝑔_𝑠𝑡𝑒𝑝 

      else 

            𝑝𝑚𝑎𝑥_𝑠𝑡𝑒𝑝 = 𝑝𝑎𝑣𝑔_𝑠𝑡𝑒𝑝 − 1 

      end if 

end 

𝑝𝑠𝑡𝑒𝑝𝑖 = 𝑝𝑚𝑎𝑥_𝑠𝑡𝑒𝑝 =𝑝𝑚𝑖𝑛_𝑠𝑡𝑒𝑝 
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for Layer i  and represent the maximal, minimal, and average pan steps in Algorithm 2. Similarly, 

the parameters, 𝑡𝑚𝑎𝑥_𝑠𝑡𝑒𝑝, 𝑡𝑚𝑖𝑛_𝑠𝑡𝑒𝑝 and 𝑡𝑎𝑣𝑔_𝑠𝑡𝑒𝑝, were used to determine 𝑡𝑠𝑡𝑒𝑝𝑖. 𝑇𝑖𝑙𝑡𝑛𝑜𝑛−𝑜𝑣𝑒𝑟𝑙𝑎𝑝 

is the ratio of 𝐴𝑟𝑒𝑎𝐻𝑅𝐵 to ∑ 𝑅𝑒𝑔𝑖𝑜𝑛𝑘𝑘  and it is used to determine the step of the tilt. 𝐴𝑟𝑒𝑎𝐻𝑅𝐵 is 

the area of the high-resolution background image and ∑ 𝑅𝑒𝑔𝑖𝑜𝑛𝑘𝑘  is the sum of the stitched areas 

of the detail image at each pan/tilt angle. 𝑃𝑎𝑛𝑛𝑜𝑛−𝑜𝑣𝑒𝑟𝑙𝑎𝑝 has a similar meaning as 𝑇𝑖𝑙𝑡𝑛𝑜𝑛−𝑜𝑣𝑒𝑟𝑙𝑎𝑝 

and it determines the step of the pan. We used Algorithm 2 to determine the step of 𝑝𝑠𝑡𝑒𝑝𝑖 and 𝑡𝑠𝑡𝑒𝑝𝑖 

for each Layer i  in the proposed system.   

As the Algorithm 2 shows, the results of 𝑡𝑠𝑡𝑒𝑝𝑖  and 𝑝𝑠𝑡𝑒𝑝𝑖  are influence each other. For 

example, the optimal 𝑡𝑠𝑡𝑒𝑝𝑖 can be identified that generates the smallest overlapping region in they-

axis, but this may worsen 𝑝𝑠𝑡𝑒𝑝𝑖and cause a large overlapping region in the x-axis. To avoid this bias, 

we use the following equation: 

𝑇𝑖𝑙𝑡𝑛𝑜𝑛−𝑜𝑣𝑒𝑟𝑙𝑎𝑝

𝑃𝑎𝑛𝑛𝑜𝑛−𝑜𝑣𝑒𝑟𝑙𝑎𝑝
≥ 0.8,        (3.7) 

which balances the estimates 𝑝𝑠𝑡𝑒𝑝𝑖  and 𝑡𝑠𝑡𝑒𝑝𝑖 . When the ratio of 𝑇𝑖𝑙𝑡𝑛𝑜𝑛−𝑜𝑣𝑒𝑟𝑙𝑎𝑝  to 

𝑃𝑎𝑛𝑛𝑜𝑛−𝑜𝑣𝑒𝑟𝑙𝑎𝑝, is closer to 1, the overlap region of the biaxis is similar.. 

Histogram Adjustment 

After stitching the images of the PTZ camera by using distinct pan/tilt angles, the image can appear 

a mosaic (Figure 3.11). The mosaic phenomenon is caused by the variation in the illumination of 

distinct regions captured by the PTZ camera at various pan/tilt angles or by the function of the 

camera’s automatic-gain and white-balancing circuits; for example, the regions in the red and blue 

boxes in Figure 3.11 are illuminated dissimilarly. To solve this problem, two image-processing 

methods are used: “histogram adjustment“ and “blending.“   

Histogram adjustment applies a histogram-matching step, converting the target source image to 

the specified-histogram image. The proposed system features two choices of the specified-histogram 

image: the overview image or the reference image. In the proposed implementation, we selected the 
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overview image as the specified histogram image during the histogram-adjustment process because 

the image captured using the wide-angle fixed camera was constantly updated and effectively 

represented the changes in the monitored environment.  

The histogram adjustment is region based in the proposed system. We warped the overview 

image into the detail images and matched the histograms of the detail images with the coordinating 

regions of the warped overview image. This is similar to splitting the overview image into small 

regions and matching them to the corresponding detail images. Figure 3.12 shows an example of 

histogram adjustment, where Figure 3.12 (a)(c) present the overview and detail images at pan/tilt 

angle i . The warped overview image may include some black areas, as shown in Figure 3.12 (b). 

We use the black area as a mask to make the detail image keep consistent with the warped overview 

image, as shown in Figure 3.12 (d). Region-based adjustment is more effective compared with using 

entire- image adjustment for two reasons. First, the illumination of the detail image is similar to that 

of the corresponding region in the overview image. An example is presented in Figure 3.12 (f), in 

which the red and green curves indicate the distribution of luminance of the warped overview image 

and the detail image, respectively. The distribution shapes of the images are similar. The second 

 
Figure 3.11: The mosaic phenomenon. 
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reason is that illumination is highly dissimilar in the entire overview image and the corresponding 

overview image region as shown in Figure 3.12 (e), in which the blue curve represents the entire 

overview image. This example shows that the luminance distribution of the entire overview image 

cannot accurately represent the illumination condition of each region of the overview image.    

Figure 3.12 (g) shows the image obtained after histogram adjustment and Figure 3.12 (h) 

presents the distributions of the luminance of the images in Figure 3.12 (b), (d), and (g). The yellow 

curve represents the result of histogram adjustment of the image in Figure 3.12 (g).    

Blending in Large-Area High-Resolution Background Images 

After histogram adjustment, we compensated for the disparities in the illuminations of distinct 

regions; however, the mosaic phenomenon can still appear at image boundaries, as shown in Figure 

    

(a) The overview Image (b) The warped 

overview image 

(c) The detail image at 

pan/tilt angle 𝜃𝑖 

(d) The detail image at 

pan/tilt angle 𝜃𝑖 with 

mask 

  

(e) The distribution of Luminance of Fig (a) and 

Fig (b) 

(f) The distribution of Luminance of Fig (c) and 

Fig (d) 

 
 

(g) The Image of Adjustment Result (h) The Histogram of Adjustment Result 

Figure 3.12: An Example of Histogram Adjustment. 
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3.13. Therefore, we developed a blending algorithm, Algorithm 3. Over the past two decades, 

numerous algorithms have been developed to blend images, such as the algorithm of [76] in which 

the Poisson equation was used, and that of [77] in which watersheds and graph cuts were used; by 

using both of these algorithms, images have been effectively blended. However, such methods require 

substantial amounts of processing time. Thus, in this study, we adopted the alpha blending (feathering) 

method, which is faster compared with the aforementioned methods and more suitable for use in 

visual- surveillance systems.     

In the blending process, we design a weighted map, 𝒲, as shown in Figure 3.14. The weighted 

 
Figure 3.13: The result after histogram adjustment. 

 

ALGORITHM 3: The blending algorithm 

Input: Each region that is viewed at the pan/tilt angle 𝜃𝑖 = [𝑝𝑖 , 𝑡𝑖] 
Output: Large-area and high-resolution image blending of 𝐼𝐻𝑅𝐵𝐺𝑧𝑘

 

To calculate the weighted image 𝒲 

for each region that  is viewed at  𝜃𝑖 do 

      To calculate the warped weighed image 𝒲𝑤𝑖,𝑧𝑘
 

end 

for each region that  is viewed at 𝜃𝑖 do 

      To calculate the alpha map 𝑀𝛼𝑖,𝑧𝑘
 

end 

for each region that  is viewed at 𝜃𝑖 do 

      To calculate the final image 𝐼𝐻𝑅𝐵𝐺𝑧𝑘
 

end 
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map 𝒲 is calculated according to the following equation, which is used to assign larger blending 

weights to the points close to the center compared with the points far from the center:   

𝒲(𝑥, 𝑦) = 𝑚𝑖𝑛(1 − |2𝑥−𝑤𝑖𝑑𝑡ℎ|

𝑤𝑖𝑑𝑡ℎ
, 1 − |2𝑦−ℎ𝑒𝑖𝑔ℎ𝑡|

ℎ𝑒𝑖𝑔ℎ𝑡
)      (3.8) 

where width and height are the width and the height of the weighted map, respectively. Thus, the 

warped weighted map 𝒲𝑤𝑖,𝑧𝑘
is calculated for the wide-angle view at each pan/tilt angle ],[ iii tp  

by using the following equation, 

𝒲𝑤𝑖,𝑧𝑘
(𝑥, 𝑦) = 𝒲((𝐻𝑂𝐼

𝑅𝑒𝑓
∙ 𝐻

𝑅𝑒𝑓

𝐷𝐼𝜃𝑖,𝑧1 ∙ 𝐻𝐷𝐼𝜃𝑖,𝑧1

𝐷𝐼𝜃𝑖,𝑧𝑘)
−1

[
𝑥
𝑦
1
])     (3.9) 

where the parameters 𝐻𝑂𝐼
𝑅𝑒𝑓

, 𝐻
𝑅𝑒𝑓

𝐷𝐼𝜃𝑖,𝑧1 , and 𝐻𝐷𝐼𝜃𝑖,𝑧1

𝐷𝐼𝜃𝑖,𝑧𝑘  are the homographies between the overview 

image and the reference image, the reference and detail images at pan/tilt angle ],[ iii tp  captured 

at Layer 1, and between distinct layers. Figure 3.15 (a) presents an example of the translation of one 

of the weighted map, 𝒲, at pan/tilt angle ],[ iii tp  to the overview image. The sum of the 

warped weighted map ∑ 𝒲𝑤𝑖,𝑧𝑘
𝑖 is shown in Figure 3.15 (b).   

Next, the alpha map 𝑀𝛼𝑖,𝑧𝑘
,, which is at the pan/tilt angle ],[ iii tp  with the use of 

Layer i can be calculated using the following: 

     𝑀𝛼𝑖,𝑧𝑘
(𝑥, 𝑦) =

𝒲𝑤𝑖,𝑧𝑘
∑ 𝒲𝑤𝑖,𝑧𝑘
𝑖

(𝑥,𝑦)          (3.10) 

 
Figure 3.14: The Weighted Map. 
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An example of the estimated alpha map is shown in Figure 3.16 (a). Figure 3.16 (b) presents an 

example of the sum of the alpha map, comprising 30 pan-tilt positions determined using the following 

equation (the widths and heights of the subimages in Figure 3.16 (b) are the same as those of the 

detail image):    

𝑀𝛼𝑖,𝑧𝑘
(𝑥, 𝑦) =

𝒲𝑤𝑖,𝑧𝑘
(𝑥,𝑦)

∑ 𝒲𝑤𝑖,𝑧𝑘
𝑖

((𝐻𝑂𝐼
𝑅𝑒𝑓

∙ 𝐻
𝑅𝑒𝑓

𝐷𝐼𝜃𝑖,𝑧1 ∙ 𝐻𝐷𝐼𝜃𝑖,𝑧1

𝐷𝐼𝜃𝑖,𝑧𝑘) [
𝑥
𝑦
1
])      (3.11) 

Finally, the detail image at each pan/tilt angle ],[ iii tp  was transformed to the 

overview image and multiplied by the alpha map, yielding the high-resolution 

background image 𝐼𝐻𝑅𝐵𝐺,𝑧𝑘 by using the following equation:   

  

(a) The warped weighted map (b) The sum of the warped weighted map 

Figure 3.15: An example of the warped weighted image. 

 

  

(a) The alpha map (b) The sum of the alpha map 

Figure 3.16: An example of the alpha map. 
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𝐼𝐻𝑅𝐵𝐺,𝑧𝑘 = ∑ (𝑀𝛼,𝑖,𝑧𝑘 ∙ 𝐷𝐼𝜃𝑖,𝑧𝑘
)𝑖 ([𝐻𝑂𝐼

𝑅𝑒𝑓
∙ 𝐻

𝑅𝑒𝑓

𝐷𝐼𝜃𝑖,𝑧1 ∙ 𝐻𝐷𝐼𝜃𝑖,𝑧1

𝐷𝐼𝜃𝑖,𝑧𝑘 ]
−1

[
𝑥
𝑦
1
])     (3.12) 

Figure 3.17 shows the obtained large-area high-resolution background image; Figure 3.17 (a) 

presents the results of blending after applying histogram-adjustment step, showing that the mosaic 

phenomenon evident in Figure 3.11 has been eliminated.  

Figure 3.17 (b) shows the results of using the blending algorithm without first applying the 

histogram adjustment. The various regions captured using the PTZ camera are almost all brighter 

compared with the regions in the overview image, suggesting that the image in Figure 3.17 (b) is of 

higher quality compared with that in Figure 3.17 (a). Comparing with Figure 3.17 (a) shows that 

although the boundaries of the adjacent images are smooth, the same mosaic phenomena exist because 

the illuminations of distinct regions are clearly dissimilar. Figure 3.17 shows that the histogram must 

be adjusted before the blending step to synthesize a high-quality high-resolution background image. 

3.4.2 Multiresolution Foreground Images 

A key feature of the proposed system is the multiresolution display of the foreground. To produce 

multiresolution foreground images, the proposed system uses two technical components: low-

  

(a) The result of the blending after the histogram 

adjustment 

(b) The result of the blending without first 

applying the histogram adjustment 

Figure 3.17: The result of the large-area high-resolution background image. 



42 

 

resolution foreground detection and high-resolution foreground tracking.  

Low-Resolution Foreground Detection 

During the low-resolution foreground-detection step, we detected foreground objects in the 

overview images. The moving objects were detected using the mixture of Gaussian (MoG) approach 

[8], which is a classic background-subtraction method, in which each pixel is labeled as a background 

or foreground pixel comprising k Gaussian distributions. Using the MoG approach, moving objects 

are detected in the overview image. An example of foreground detection is shown in Figure 3.18, in 

which Figure 3.18 (a) presents the overview image, and Figure 3.18 (b) shows the foreground-

detection result obtained using that image. 

Subsequently, we attached all the foreground objects at a low resolution; these were scaled 

according to the zooming factor of the PTZ camera, to the large-area high-resolution background 

image according to the positions using the object-detection procedure (Figure 3.19). 

High-Resolution Foreground Tracking 

The relationship between the overview and detail images was calculated as described in Section 

3.3. After selecting a target of interest in the large-area high-resolution background image containing 

low-resolution foreground objects, we controlled the PTZ camera to continuously track that target 

  

(a) The overview image (b) The result of foreground image 

Figure 3.18: The result of object detection. 
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according to the transformation of the coordinates.  

Given arbitrary pan/tilt coordinates, the corresponding homographies can be estimated by using 

the interpolation method. The region in which the target of interest is continuously tracked by 

capturing detail images is called the “fovea region“ in the proposed system. The automatic tracking 

is based on the results of foreground detection results and the velocity of the moving target [8]. Last, 

we obtained the high-resolution texture of the foreground object of interest from the detail image and 

pasted it onto the large-area high-resolution background image.  

3.5 Experiments 

In this section, we first describe the experiments that were used to analyze the accuracy of PTZ-

camera calibration by comparing the in-factory and on-site calibration methods (described in Section 

3.3.2) in both indoor and outdoor environments. After the analysis, we present the results obtained 

using the proposed large-area high-resolution visual-monitoring system.  

3.5.1 Experimental Analysis of PTZ-Camera Calibration 

First, we compared the two PTZ-camera calibration methods described in Section 3.3.2: in-factory 

and on-site calibration. In the experiments, both indoor and outdoor environments were used. In the 

 
Figure 3.19: The large-area high-resolution background image with low-resolution foreground 

objects. 
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indoor environment, the patterns used for camera calibration were displayed on an LED screen 

(Figure 3.20). Figure 3.20 (a) shows the setting of the indoor experimental environment; the distance 

between the LED screen and the PTZ camera was approximately 1 m. The upper image in Figure 

3.20 (b) shows the pattern used for on-site calibration, and the lower image shows the gray-code 

patterns used for in-factory calibration. In the outdoor experimental environment, we installed the 

PTZ camera on the third floor of a building as shown in Figure 3.1, and the image in Figure 3.4(right) 

shows the view captured using on-site calibration.  

The in-factory calibration method can only be used in indoor environments because the 

calibration patterns are manually produced and a screen or a projector is required. The on-site 

calibration process can be used both indoors and outdoors. Therefore, we evaluated three calibration 

cases: in-factory calibration applied in the indoor environment (indoor in-factory calibration), on-site 

calibration applied in the indoor environment (indoor on-site calibration), and on-site calibration 

applied in the outdoor environment (outdoor on-site calibration).  

We evaluated each calibration case in the indoor and outdoor environments by generating 

measuring points to calculate the calibration error. To uniformly generate the measuring points, we 

 

 

 

(a) The setting of indoor environment (b) The patterns 

Figure 3.20: The indoor experimental environment. 
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split the reference image into a 4×8 grid (Figure 3.21) and manually specified the measuring point in 

each grid, shown as the colored points, allowing users can readily recognize the measuring points in 

the reference image. Using the calibration results, the PTZ camera was controlled to focus on the 

selected point, as shown in Figure 3.22; the hollow circle is the ground truth that is defined by the 

user and the solid circle is the center of the detail image. The distance between these points represents 

calibration error.    

Table 3.1 presents the error-analysis results of in-factory calibration. Table 3.1 (a) lists the results 

of the outdoor test environment and Table 3.1 (b) lists the results of the indoor environment. The 

errors in Table 3.1 (b) are smaller than those in Table 3.1 (a) are because the calibration environment 

and the test environment were not the same and the turning of the PTZ camera was not exactly 

concentric. Table 3.1 (c) and Table 3.1 (d) contain no results because in-factory calibration cannot be 

Table 3.1: The error analysis of the in-factory calibration. 

The indoor in-factory calibration The outdoor in-factory calibration 

Outdoor error 

analysis 
Indoor error analysis 

Outdoor error 

analysis 
Indoor error analysis 

Zoom 
Error 

(pixel) 

Std. 

(pixel) 

1x 6.1 2.2 

5x 32.2 12.4 

10x 55.2 24.6 
 

Zoom 
Error 

(pixel) 

Std. 

(pixel) 

1x 1.9 1.0 

5x 8.4 4.7 

10x 14.1 6.9 
 

× ×  

(a) (b) (c) (d) 

Table 3.2: The error analysis of the on-site calibration. 

The indoor on-site calibration The outdoor on-site calibration 

Outdoor error 

analysis 
Indoor error analysis 

Outdoor error 

analysis 
Indoor error analysis 

Zoom 
Error 

(pixel) 

Std. 

(pixel) 

1x 7.4 2.5 

5x 29.3 12.3 

10x 54.2 25.0 
 

Zoom 
Error 

(pixel) 

Std. 

(pixel) 

1x 2.0 0.9 

5x 9.5 4.4 

10x 15.5 9.1 
 

Zoom 
Error 

(pixel) 

Std. 

(pixel) 

1x 1.8 0.8 

5x 8.0 4.1 

10x 14.0 8.3 
 

Zoom 
Error 

(pixel) 

Std. 

(pixel) 

1x 5.3 2.1 

5x 22.6 8.6 

10x 41.3 16.6 
 

(a) (b) (c) (d) 
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used in the outdoor environment. The results in Table 3.1 show that as the magnification factor 

increased, the error increased. However, the accuracy was adequate for surveillance applications 

because the target of interest could be monitored even at a 10x zooming factor. Table 3.2 presents the 

error-analysis results of on-site calibration. The calibration and test environments used to obtain the 

results shown in Table 3.2 (c) were outdoors and those shown in Table 3.2 (b) were indoors. The 

results in Table 3.2 (b) and (c) show that if the calibration and test environments are the same, the 

error of the testing in both indoor and outdoor environments is smaller and more similar than it is 

when the calibration and test environments are distinct. Based on these experiments, we can conclude 

that because the PTZ camera is not exactly concentric when the calibration and the test environments 

are the same, the high levels of accuracy of calibration results are achieved. The proposed on-site 

 
Figure 3.21: The grid of the reference image. 

 

 
Figure 3.22: An Example of the accuracy analysis. 
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calibration method exhibits high levels of accuracy in both indoor and outdoor environments; thus, it 

is considered more effective for calibrating the proposed camera system compared with the in-factory 

calibration method [35] [42].  

3.5.2 System Demonstration 

We installed a large-area high-resolution visual-monitoring system on the third floor of a building to 

monitor a courtyard (Figure 3.1). The targets of interest can include pedestrians or vehicles crossing 

the courtyard or other user-chosen targets.  

Large-Area High-Resolution Background Images 

In the proposed monitoring system, a large-area high-resolution background containing distinct 

layers can be generated using the methods described in Section 3.4.1. Images containing moving 

objects can be generated by collecting the areas of detail images that display moving objects and 

stitching these to the low-resolution images captured using the wide-angle camera. After initialization, 

the system updates the background even when users do not control the PTZ camera or when no 

moving objects are present in the monitored area. 

The synthesized large-area high-resolution background images were created using the 4x and 

15x zooming factors of the PTZ camera, and the resolutions were approximately 4320 × 2880 and 

11520 × 8160, respectively. In the images captured using the proposed system, users can see details 

of the monitored scene such as the license plates of parked cars.  

Large-Area High-Resolution Background and Multiresolution Foreground Images 

After a user selects a target of interest, the PTZ camera ceases updating the background and 

begins tracking the target. Figure 3.23 shows an example image captured using the proposed system 

after a user selected an object to be tracked. We did not blend the online high-resolution image with 

the preconstructed background image because a user can easily distinguish the offline high-resolution 

background from the online high-resolution region. After generating the large-area high-resolution 
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background, the system begins to update the background or track the target by capturing high-

resolution images; the proposed system is effective because only one patch of the monitoring view is 

required to update.  

As Figure 3.23 shows, in addition to the high-resolution region, moving objects are pasted at 

low resolution in the image that allowing users to follow. Additional details of this imaging method 

can be seen in this demonstration video: http://youtu.be/HbQZ6f1qxfk. In the video, the stitching 

results obtained without using histogram adjustment and blending are first shown, and both histogram 

adjustment and blending are subsequently applied. Finally, the entire system is displayed. After 

generating the large-area high-resolution background, we tracked the target of interest within the 

fovea region through distinct layers. 

3.6 Summary 

In this chapter, we designed a framework by using a dual-camera to construct a large-area high-

resolution visual-monitoring system. We proposed two PTZ camera calibration methods: in-factory 

calibration and on-site calibration. The in-factory calibration method is useful when stable features 

are extremely difficult to obtain. The on-site calibration method is more flexible than in-factory 

calibration method is because it can be applied both indoors and outdoors. To perform multilayered 

 
Figure 3.23: The result of the object tracking with the fovea region. 

 

http://youtu.be/HbQZ6f1qxfk
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PTZ-camera calibration, the consistent property of distinct pan-tilt angles at various zooming factors 

is used, allowing the calibration between each layer to be reduced to only calibrating a pair of images 

in distinct layers at an arbitrary pan/tilt angle. This consistency substantially improves the proposed 

calibration method, and a literature review indicates that no scholars have previously used this 

property to calibrate PTZ cameras. 

Comparing the PTZ camera calibration with our previous work [35] [42], the pros of the 

proposed PTZ camera turning calibration are automatic processing, without time-consuming, could 

be calibrated on site, be re-calibrated on site without manual and without decay the accuracy of 

calibration results. To compare the multilayered PTZ-camera calibration method, the proposed 

method is faster than our previous work [35] [42].  

We also propose a framework that using the calibration results of two cameras to construct the 

proposed visual-monitoring system, combining the preconstructed large-area high-resolution 

background image with online multiresolution foreground images. We demonstrated the robustness 

of this camera-calibration method by using quantitative experiments and the practical use of this 

system by installing it in an outdoor environment.  
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CHAPTER 4 

SPATIAL BACKGROUND MODEL USING A SINGLE-

LAYER CODEBOOK MODEL 

4.1 Introduction 

The number of cameras in cities is getting increased in recent years, and thus there is a growing need 

of constructing intelligent visual surveillance system based on cameras. There are numerous research 

topics in association with visual surveillance, for example vehicle classification, objects stolen, 

objects left, and objects classification. In which, segmenting moving objects from the scene is a 

relevant issue in those research areas. Moving objects can be effectively extracted by comparing with 

the background model. 

Background subtraction can be defined as a separation of significant differences (foreground) 

inside of the video frame from the non-significant components (background). The problem is 

relatively simple when there is a significant difference between the colors (or gray levels) of 

foreground and background, and is also easier to handle when the background is kept static. 

According to the environment situation, the background can be classified as the stationary 

background also called the static background and the non-stationary background also called the 

dynamic background. 

For static background, it is appropriate for the constrained indoor environment, because of the 

camera jittering and signal noise caused from the outdoor environment may still cause non-stationary 
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problems in most practical situations. The non-stationary backgrounds, such as waving leaves, ripple 

water, fluorescent light, monitor flicker, are one of the difficulty problems in background modeling 

in practice. 

Moreover, the initialization is the other important issue in background modeling. Most of the 

algorithms need a period of the clean frames at the beginning of the sequence to build the background 

model; however, this requirement is difficult to be satisfied in practice, because of moving objects. 

When a static object start to move in the scene at the beginning of video, the ghost effect likes a hole 

is the background may appears and the detected object is broken as hole inside of the detected region. 

In this chapter, we present a background subtraction algorithm, spatial background model (SBM), 

for detecting moving objects from a non-stationary background and that is able to cope with the effect 

caused by initiating of background modeling. The rest of this chapter is organized as follows. First, 

we focus on the spatial background model that includes the background model and the background 

gradient extractor. Then, we show the experiment results and conclusions. 

4.2 Spatial Background Model (SBM) 

The spatial background model (SBM) includes two fundamental components: the background model 

(BM) and the background gradient extractor (BGE) for foreground detection strategy is proposed, in 

which the structure of the codebook is involved in the component of BM. The proposed codebook in 

BM is similar to the former codebook [2] [9], but a single layer of codebook is adopted. To our 

observation, the updating strategy of background model in the former codebook is high efficiency; 

however, it still involves many redundancies. To ease this problem, the random technique of ViBe 

[10] [56] is adopted in SBM for preserving the advantage of codebook, and then further promotes the 

accuracy of the classification of foreground and background. 

Although the performance of estimating the noise in the background in BM is well, the 

foreground become incomplete. The gradient information of the foreground is adopted in BGE to 



53 

 

promote the completeness of the foreground. 

4.2.1 Background Model (BM) 

The background model (BM) is constructed as a single-layer codebook model refer to [2] [9]. 

Differing from [2] [9] that constructs a background model from a period of video sequence, we only 

need a single frame to construct BM and take the information from the neighbors as the features for 

each pixel in BM.   

Features Used in Background Model 

Traditionally, the background model constructed with codebook extracts the features for each 

pixel in background model utilizes the continuous property in time axis which is time consuming [2] 

[9] [54] [55] and that cannot effectively estimate the problem of the non-stationary background. In 

 

  

(b) (c) 

  

(a) (d) (e) 

 

  

(f) 

 

(g) (h) (i) 

Figure 4.1: The chart of connected neighborhoods around the current pixel X. (a) the current 

pixel is inside the image. (b)-(e) the current pixel X is at the corner of the image.(f)-(i) the current 

pixel X is at the border of the image. 
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order to reduce the time of training for constructing background and solve the problem of non-

stationary background model. In this study, we adopt a single frame to construct the background 

model which efficiently solve the problem of time-consuming. 

Although, using a single frame to construct the background model can save the time of training, 

the information for each pixel in background model is not sufficient. Thus, we adopt the RGB color 

information extract from the eight-connected neighbors to be the features for each pixel in 

background model as shown in Figure 4.1. In Figure 4.1, the current pixel in background model is 

referred to as X. The number of neighbors around X is dependent on its location. In Figure 4.1 (a), as 

the current pixel X is inside the image and the neighborhoods A-H are adopted. Figure 4.1 (b)-(e) and 

(f)-(i) illustrate the other cases of positions of the current pixel X when it is located at the corners or 

the border of an image. The blue, green, red, and illumination are took as the features used in 

background model. In addition, the features obtained from the neighbors can effectively solve the 

problem of non-stationary background. 

Construction of Background Model 

We use the structure of codebook to store the information of background model, slightly 

modified from the version presented by Kim et al. [2] [9] to perform background subtraction in the 

color domain. The BM algorithm is designed for color imagery and each pixel px  in background 

model is modeled as a single-layer codebook 𝒞𝑥𝑝 = {𝒸𝑖|1 ≤ 𝑖 ≤ 𝑛} consisting of n  codewords, 

in which p  is the position of that pixel and t  is the number of frame. Each codeword ic  is 

composed of two elements, a RGB vector 𝑣𝑖 = (�̅�𝑖, �̅�𝑖, 𝐵�̅�)  and a six-tuple 𝑎𝑢𝑥𝑖 =

〈𝐼𝑖, 𝐼𝑖, 𝑓𝑖 , 𝜆𝑖, 𝑝𝑖, 𝑞𝑖〉. Where  𝐼𝑖 and 𝐼𝑖 are the minimum and maximum brightness of each codeword 

𝒸𝑖, respectively, 𝑓𝑖 is the occurred frequency, 𝜆𝑖 is the longest time interval that the codeword 𝒸𝑖 

is NOT recurred, and 𝑝𝑖 and 𝑞𝑖 are the first and last access times, that the codeword has occurred, 

respectively. The algorithm of constructing background model is shown in Algorithm 4. 
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In BM, the first frame of the image sequence is used to construct the background model and 

each codebook 𝒞𝑥𝑝 is constructed base on a set of neighbors. As shown in Figure 4.1, the number 

of codewords in each codebook 𝒞𝑥𝑝 in the initialization is depending on its location. For example, 

In Figure 4.1 (a), current pixel X is inside the image and the neighborhoods A-H are adopted. Figure 

4.1 (b)-(e) and (f)-(i) illustrate the other cases of positions of the current pixel X when it is located at 

the corners or the border of an image. We extract the features from the neighbors for each codebook 

according to the following equations, 

222
1111   t

i
t
i

t
i

t
i xxxx

BGRI  

),,( 111  t
i

t
i

t
i xxxi BGRv          (4.1) 

𝑎𝑢𝑥𝑖 = (𝐼𝑖 = 𝐼𝑥𝑖
𝑡=1 , 𝐼𝑖 = 𝐼𝑥𝑖

𝑡=1 , 𝑓𝑖 = 1, 𝜆𝑖 = 1, 𝑝𝑖 = 1, 𝑞𝑖 = 1) 

where 𝑥𝑖
𝑡=1 is the pixel at i  position on first frame of the image sequence, R, G, B are the red, 

green, and blue color information, and I  is the illumination of that pixel. 

According to the algorithm 4, the background model is built, and the number of each codebook 

is between 4 and 8. The BM algorithm is different from [2] [9]. The construction is faster because 

only a single frame is used. The neighborhoods contribute spatial information, which is reflected in 

Algorithm 4. The Contraction of Background Model 
1. Input: The first frame of image sequence 

2. Output: The background model 

3. 𝒞 ← ∅ (empty set) 

4. for each pixel in background model  do 

5.      To construct the codebook 𝒞𝑥𝑝 = {𝒸𝑖|1 ≤ 𝑖 ≤ n} 

6.      according to the adjacent neighborhoods and each 

7.      codeword 𝒸𝑖 is composed of 𝑣𝑖 and 𝑎𝑢𝑥𝑖 
8.      for neighbor i = 1 to k do 
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11.          𝑎𝑢𝑥𝑖 = (𝐼𝑖 = 𝐼𝑥𝑖
𝑡=1 , 𝐼𝑖 = 𝐼𝑥𝑖

𝑡=1 , 𝑓𝑖 = 1, 𝜆𝑖 = 1, 𝑝𝑖 = 1, 𝑞𝑖 = 1) 

12.     end 

13.end 
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the simplified single-layer codebook model and useful to overcome the non-stationary background 

problem. Notice that, because a single frame is used in this procedure, the minimum and maximum 

brightness of each codeword 𝒸𝑖, 𝐼𝑖 and 𝐼𝑖, are set to be the same.   

Pixel classification Policy 

When background model is built, there are two procedures for incoming pixel 
tx : pixel 

classification and update policies. 

In pixel classification stage, the cylinder color model is adopted, as shown in Figure 4.2 and two 

measurements: the color distortion and the range of brightness, are used provided by [2] [9]. 

In color distortion, the matched codeword 𝑐𝑚 with RGB vector 𝑣𝑚 is found from its codebook 

𝒞 according to the following color distortion measure: 

𝑝2 = ‖𝑥𝑡‖2 𝑐𝑜𝑠2 𝜃 =
〈𝑥𝑡,𝑣𝑖〉

2

‖𝑣𝑖‖
=

(�̅�𝑖𝑅+�̅�𝑖𝐺+�̅�𝑖𝐵)
2

‖�̅�𝑖+�̅�𝑖+�̅�𝑖‖
,and 

𝑐𝑜𝑙𝑜𝑟𝑑𝑖𝑠(𝑥𝑡, 𝑣𝑖) = 𝛿 = √‖𝑥𝑡‖2 − 𝑝2 ≤ 휀,       (4.2) 

where 𝑥𝑡 = (𝑅, 𝐺, 𝐵) is the incoming pixel at time t  with a RGB vector and   is the threshold 

for color distortion. 

To handle the changes of illumination, the brightness of the incoming pixel is considered: 

𝑏𝑟𝑖𝑔ℎ𝑡𝑛𝑒𝑠𝑠(𝐼𝑥𝑡 , 〈𝐼, 𝐼〉) =
𝑡𝑟𝑢𝑒𝑖𝑓𝐼𝑙𝑜𝑤 ≤ 𝐼𝑥𝑡 ≤ 𝐼ℎ𝑖
𝑓𝑎𝑙𝑠𝑒𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

    (4.3) 

 

Figure 4.2: The cylinder color model proposed by [9] 
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where 𝐼𝑙𝑜𝑤 = 𝛼𝐼and 𝐼ℎ𝑖 = 𝑚𝑖𝑛 {𝛽𝐼,
𝐼

𝛼
} are the lower and upper bounds of illumination, and 𝐼𝑥𝑡   is 

the illumination of incoming pixel 𝑥𝑡. The parameters, 𝛼 and 𝛽, are set as that in [2] [9] which are 

used to allow large brightness bound 𝐼ℎ𝑖  and limiting 𝐼𝑙𝑜𝑤 , respectively. If the incoming pixel 

simultaneously satisfies the above two criteria about color distortion and brightness, it is classified as 

background.  

The Update Policies of Background Model 

When the incoming pixel is classified as background, it is updated into background model 

according to the update policies of BM. To our observation, two characteristics have been considered 

during update processing: the temporal and spatial characteristics. The temporal characteristic is to 

consider the relationship of a pixel at various timing and the spatial characteristic strengthen the 

relationship between a pixel and its neighbors. For example, Figure 4.3 (a)-(d) are the image 

sequences of waving trees. The blue and red points show in Figure 4.3 (a)-(d) are the pixels of the 

stationary and non-stationary background pixels. The temporal characteristic of the stationary 

background pixels at various timing in RGB color space is shown in Figure 4.3 (e). From Figure 4.3 

(e), the stationary background is slowly changed with time, and their distribution is concentrated. The 

spatial characteristic of the non-stationary background pixels at various timing in RGB color space is 

  

  

(a) (c) 

  

(b) (d) (e) (f) 

Figure 4.3: The temporal and spatial information. (a) WaveTree #36 (b) WaveTree #38 (c) 

WaveTree #40 (d) WaveTree #42 (e) the temporal distribution of the red pots in RGB color space 

(f) the spatial distribution of the blue pots in RGB color space. 
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shown in Figure 4.3 (f). From Figure 4.3 (f), the distribution of non-stationary background is broader 

than stationary background. Therefore, we propose two updating polices, regular update and two-way 

propagation, for aiming to incorporate the consistency of temporal and spatial characteristics. The 

algorithm of the update policies of BM is shown in Algorithm 5.  

In regular update policy, the temporal characteristic is considered which is inspire of [2] [9], the 

similar pixel is found in time axis and that is added into background model, the detail steps are 

described in the below. When the incoming pixel is classified as the background, the matched 

codeword 𝑐𝑚 is updated according to the following equations: 

𝑣𝑚 = (
𝑓𝑚�̅�𝑚+𝑅

𝑓𝑚+1
,
𝑓𝑚�̅�𝑚+𝐺

𝑓𝑚+1
,
𝑓𝑚�̅�𝑚+𝐵

𝑓𝑚+1
), and 

𝑎𝑢𝑥𝑚 = {
𝑚𝑖𝑛{𝐼𝑥𝑡 , 𝐼𝑚},𝑚𝑎𝑥{𝐼𝑥𝑡 , 𝐼𝑚}, 𝑓𝑚 = 𝑓𝑚 + 1,

𝑚𝑎𝑥{𝜆𝑚 = 𝑡 − 𝑞𝑚}, 𝑝𝑚, 𝑞𝑚 = 𝑡
}.     (4.4) 

The RGB vector 𝑣𝑚 is calculated by averaging the value of red, green, and blue colors with 

the incoming pixel 𝑥𝑡 and the parameters in 𝑎𝑢𝑥𝑚 are all updated. 

In addition, for non-stationary background pixel, only consider temporal characteristic is not 

enough as shown in Figure 4.3 (f). Here, the two-way propagation policy is developed to integrate 

the spatial characteristic to solve the problem of non-stationary background. The main idea of two-

way propagation is that when at time t , we want to obtain the information at time 1t  or further 

Algorithm 5. The update policies of BM 

1. Input: The incoming pixel 𝑥𝑡, the position of current  

2.      pixel X, and the positions of randomly chosen  

3.      neighbors C and H. 

4. Output: The updated background model 

5. Regular update policy: 

6.      if  𝑥𝑡 is classified into background then 

7.            The matched codeword 𝑐𝑚 is updated. 

8.      end if 

9. Two-way propagation policy: 

10.    First-propagation direction: 

11.          To propagate the color information from the 

12.          current pixel X to a randomly chosen neighbor C. 

13.    Second-propagation direction: 

14.          To propagate the color information from a  

15.          randomly chosen neighbor H to current pixel X. 

16.end 
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to a pixel. As shown in Figure 4.3 (f), the information can be contributed from the neighbors at time 

t , we use the two-way propagation technique to achieve this function, the current pixel propagates 

the color information to a neighbor and a neighbor propagates the color information to the current 

pixel, details are described as below.  

In the first direction of the two-way propagation, we randomly choose a neighbor from 8 

connected neighborhoods around the current pixel and propagate the color information to the chosen 

neighbor. To find the matched codeword from that neighbor according to two criteria: the color 

distortion and the range of brightness, as described in Section 4.2.1. If the matched codeword is found, 

we update the color information into the matched codeword according to the equation 4.4. Otherwise, 

we create a new codeword 𝒸𝐿 for the chosen neighbor and propagate the color information of the 

incoming pixel 𝑥𝑡 which is classified as background to the codeword 𝒸𝐿 by the following setting: 

𝑣𝐿 = (𝑅𝑥𝑡 , 𝐺𝑥𝑡 , 𝐵𝑥𝑡) 

𝑎𝑢𝑥𝐿 = {𝐼𝐿 = 𝐼𝑥𝑡 , 𝐼𝐿 = 𝐼𝑥𝑡 , 𝑓𝐿 = 1, 𝜆𝐿 = 1, 𝑝𝐿 = 1, 𝑞𝐿 = 1}    (4.5) 

On the other direction, we randomly choose a codeword from the 8 connected neighborhoods 

around the current pixel and propagate the color information to the current pixel. If there is a matched 

codeword in the current pixel, we updated the matched codeword according to equation 4.4. 

Otherwise, we create a new codeword 𝒸𝐿 for the current pixel and assign the value according to the 

equation 4.5. An example of two-way propagation is shown in Figure 4.4. Figure 4.4 (a) shows the 

  

(a) (b) 

Figure 4.4: The two-way propagation policy. (a) the first-propagation direction. (b) the second-

propagation direction. 
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first direction which propagates the color information from the current pixel X to a randomly chosen 

neighbor C, as indicated by the blue line. . Figure 4.4 (b) shows the second direction of the two-way 

propagation. 

The proposed update polies combine the temporal and spatial characteristics for efficiently 

tackling the problems of stationary and non-stationary backgrounds, respectively and capture the 

foreground accurately. 

The filter and reconstruction policies of BM 

Endless increase the codewords, makes the size of codebook became huge and that increased 

the time of matching. Therefore, we rejected the unsatisfied codewords which have the longest 

interval 𝜆 according to the following equation: 

𝜆 > 𝑇𝜆          (4.6) 

where 𝑇𝜆 is the number of frames which is set to be 500 in our implementation. 

The filter policy would make the codebook became empty if the threshold 𝑇𝜆 is too small or 

the codeword is not recurred for a longest interval. Therefore, we proposed the reconstruction policy, 

if the codebook became empty, the reconstruction policy is triggered according to the construction of 

BE, as descripted in Section 4.2.1. 

4.2.2 Background Gradient Extractor (BGE) 

BM is useful to cope with the stationary, non-stationary background and sudden changes of 

illumination. However, the propagation policy passes the background information to a neighbor and 

that would blur and decrease the foreground intensities. Hence, we introduce the forbidden 

propagation policy that maintains the completeness of foreground. The forbidden propagation policy 

is based on the BGE introduced below. 

Construction and update of BGE 

In BM, we use RGB color to describe the background and foreground information. Here, the 
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additional information, the gradient information, is used to assist to the segmentation result of 

foreground. The gradient information can clearly describe the boundary of objects. Therefore, we use 

gradient to construct background gradient model by using accumulation, and then obtain the 

foreground gradient information. 

In BGE, we calculate the gradient of each frame, and accumulate the least N  frames to 

construct the background gradient image for each frame. The current foreground gradient is extracted 

by comparing the current gradient frame with the gradient background model. 

In the beginning of BGE, we used AND operator to background gradient model because of the 

least N  frames is required, the equation is shown as below: 

iBGBG III
ii


1

,         (4.7) 

where 
iBGI  is the background gradient image of the 

thi  frame, iI  are the gradient results the 

thi  frame and 
11

IIBG  . 

After the first N  frames, the background gradient image of the 
thi  frame is calculated by 

accumulating the least N  frames according to the following equation: 
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where ),( yxI
iBG  is the background gradient value of the 

thi  frame at position ),( yx , and BGT  is 

the threshold. In our experiment, the value of BGT  is equal or larger than 0.6 which has sufficient 

amount of reliable samples and that shows the higher performance of forbidden propagation. 

Forbidden propagation policy 

The forbidden propagation policy is used to ensure the completeness of the foreground that is 

based on BGE. 
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There are two phases in the forbidden propagation policy. In phase 1, the background-gradient 

Image 
iBGI  is used to find the foreground gradient of the current frame by using the following 

equation:   

ii BGiFG III          (4.9) 

where 
iFGI  is the foreground-gradient image. In phase 2, the color information of the incoming 

pixel is forbidden to propagate if the foreground-gradient value of itself or a randomly choice 

neighbor is 255. 

Figure 4.5 shows the gradient results of current, background and foreground images. By BGE, 

the foreground gradient can be extracted currently. The performance of the forbidden propagation is 

demonstrated by using the data of water surface on the Perception dataset [12]. Figure 4.6 (a) is the 

original scenery of water surface. Figure 4.6 (b) and (c) are the results of Codebook and ViBe that 

have a lot of false positive because of tree and wave of the sea and has a huge broken on the human 

    

(a) (b) (c) (d) 

Figure 4.5: The results of background gradient extractor. (a) the original image of water 

surface; (b) the gradient of the current frame; (c) the gradient of background model; (d) the 

gradient of foreground. 

 

     

(a) (b) (c) (d) (e) 

Figure 4.6: The comparison of forbidden propagation. (a) the original image of water surface; (b) 

the result of codebook; (c) the result of ViBe; (d) Proposed method without forbidden propagation; 

(e) Proposed method with forbidden propagation. 
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body. Figure 4.6 (d) is the result of our proposed method without forbidden propagation which is 

considerably improves the performance of Figure 4.6 (b) and (c). 

The result of forbidden propagation policy is shown in Figure 4.6 (e). The body is become more 

completeness and the false positive is not rising compared to the Figure 4.6 (c) and (d). 

The foreground gradient is a criterion that effectively keeps the completeness of foreground. The 

completeness performance of the forbidden propagation policy is shown in the experiment.  

4.3 Detection results and comparison 

In this section, we analyze the accuracy of SBM by comparing with MoG, Codebook, and ViBe. It 

should be noted that, the parameters used in these methods are all optimized. 

Seven videos are selected from two popular surveillance video datasets, Wallflower [11] and 

Perception [12], which are used to evaluate the accuracy of SBM with MoG, Codebook and ViBe. 

The surveillance scenes of the selected test videos include indoor and outdoor. Some scenes of these 

videos are crowded with people, some with dynamic background caused by trees and water, others 

are the sudden changes of illumination caused by human and nature. The detailed list of the 

 

Compared 

methods 

Mixture of Gaussian (MoG) 

Codebook 

Vibe 

Test Videos Dataset 

1#: LightSwitch 

Wallflower [11] 2#: TimeOfDay 

3#: WavingTrees 

4#: Campus 

Perception [12] 
5#: Curtain 

6#: Escalator 

7#: WaterSurface 

Table 4.1: List of experiment items. 

 



64 

 

experiment is shown in Table 4.1. 

Three indicative items: false positive (FP), false negative (FN) and total error (TE), are used to 

evaluate the performance of these methods and the hand-segments are used to be the ground truth. 

The false positive refers to the number of pixels which is the background pixel but marked as 

foreground. The false negative is contrary to the false positive which is the foreground pixel and be 

marked as background. The sum of the false positive and false negative is expressed as the total error.   

The TEs of each video for each algorithm are shown in Table 4.2. Some results of MoG have 

the least TEs; however, the proposed method (SBM) has the least average error which is more suitable 

for different environments. Table 4.3 shows the results with images. In Table 4.3, the performance of 

MoG, Codebook and ViBe in the sudden changes of illumination are not well, as shown in video 1#. 

Because MoG and Codebook are all need a period of time to update the background model, ViBe did 

not has a policy of detecting the sudden change of illumination and reconstructing the background 

model. SBM performs well in the situation of the dynamic background, such as video 3#, 4# and 7#, 

and sudden changes of illumination, such as video 1# and 2#. In all of the tested video, SBM has the 

least false negative and has the most completeness foreground. 

Figure 4.7 shows the performance in term of FP, FN for each algorithm. The blue bar and the 

Total Error(TE) 

Video MoG Codebook ViBe SBM 

1# 15828 11887 15053 4221 

2# 1044 1081 1143 854 

3# 1807 1011 1172 378 

4# 1168 1535 605 317 

5# 511 1471 1768 993 

6# 362 1205 746 557 

7# 376 1091 1172 478 

Average 3013 2754 3047 1114 

Table 4.2: Experiment results. 
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red bar in Figure 4.7 are the value of FP and FN, respectively. We especially illustrate the results of 

dynamic background and sudden changes of illumination in Figure 4.7 (a) to (c). The total error with 

seven videos is shown in Figure 4.7 (d) and the total error without the sudden change of illumination 

is shown in Figure 4.7 (e). Although the TE of MoG is the least in Figure 4.7 (c), the performance of 

all videos of MoG is worst, as shown in Figure 4.7 (d) and (e). To compare with Codebook, because 

of SBM consists the spatial information, the difference of FP between SBM and Codebook is obvious 

and the total error of proposed method is the least. Comparing with ViBe, the total error of SBM is 

the least, even in the case of sudden change of illumination.      

Video Test image Ground Truth 
MoG 

Stauffer et al. [1] 

Codebook 

Kim et al. [2] 

ViBe 

Barnich et al. [10] 

Proposed method 

(SBM) 

1# 

      

2# 

      

3# 

      

4# 

      

5# 

      

6# 

      

7# 

      

Table 4.3: Results on the dataset. 
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4.5 Summary 

In this chapter, we design a new framework, the spatial background model (SBM), for addressing the 

dynamic background and the sudden changes of illumination in background subtraction. Two main 

components are proposed: the background model (BM) and the background gradient extractor (BGE). 

The BM is proposed to capture foreground and eliminate the noise in background. To model the BE, 

only a single frame is used which is based on a single-layer codebook model and the spatial 

information is propagated from the adjacent neighbors. The BM can efficiently eliminate the dynamic 

background and the sudden changes of illumination. However the propagation makes the foreground 

incompleteness. Therefore, the propagation is forbidden according to the BGE that keeps the 

completeness of foreground. The BGE is synchronously constructed with BM. To construct the BGE, 

the stable background gradient is used which is used to find foreground gradient of the current frame.   

Experimental results on a set of background extractor databases, Perception and Wallflower. We 

analyze the accuracy of the proposed method (SBM) to compare with MoG, Codebook, and ViBe. 

The total error of the proposed method is the least, and the capabilities of handling the dynamic 

   

(a) (b) (c) 

  

(d) (e) 

Figure 4.7: The chart of the performance of each algorithm. (MoG: Mixture of Gaussian, CB: Codebook, 

ViBe, SBM: Proposed method). (a) LightSwitch. (b) WavingTrees. (c) WaterSurface. (d) Total Error. 

(e) Total Error without LightSwitch. 
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background and the sudden changes of illumination are greater than others. 
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CHAPTER 5 

COMBINING SPATIAL BACKGROUND MODELING 

AND RANDOM FOREST CLASSIFIER FOR 

FOREGROUND SEGMENTATION AND SHADOW 

REMOVAL 

5.1 Introduction 

Recently, due to the terrorist attacks, such as 911 in New York, London bombing in 2005 and some 

local violent events occur in different countries, the security issue has been regarded. In the past, we 

consume lots of people and money to solve the problems of security. However, the resource of 

surveillance can be saved because of the developing of the technology. The visual surveillance spans 

several applications, such as human detection, people counting, object left, and object stolen, in which 

the object detection is the most important part. The useful information, such as the location, the shape, 

and the size of the object can be obtained from object detection and be applied to different applications. 

A challenging class of object detection is the cast shadow. Cast shadows generated by moving 

objects and that are detected as the foregrounds. However, incorrect object detections caused by 

shadows make the applications of visual surveillance become unreliable. Therefore, shadow removal 

is an important issue in visual surveillance. 
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There have been numerous works dedicated to solve the problem of shadow removal. In the 

method [78], the shadow removal is classified into two categories: parameter-based and model-based. 

The parameter-based method used the feature of shadow, such as RGB, HSV, and texture, to classify 

the foreground and shadow. The drawbacks of these methods are sensitive to the parameter and the 

threshold for each feature. The model-based method used the classifier which is modeled using 

features to discriminate the shadow from moving objects. Although, the model-based method needed 

the prior knowledge, such as the ground truth and object’s class, it is suitable for different scene. 

In this chapter, we propose two primary technical components: shadow detector and foreground 

detector. First, we use a learning technique that employs random forest algorithm to learn the 

chromaticity, physical property, and texture characteristics to construct the shadow detector which is 

model-based. After that, we propose a process that combining a spatial background model which 

constructs the background model with a single frame and is useful to overcome the dynamic 

background and the suddenly changes of illumination with the shadow detector to discriminate 

shadow from moving objects. Figure 5.1 gives the flowchart of the proposed method. 

 

Figure 5.1: The work flow of Shadow Removal. 
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5.2 System Architecture 

The proposed system includes two primary technical components: shadow detector and moving 

foreground detector as shown in Figure 5.1. In the offline processing, we extract the features from 

training data and label each pixel as foreground or shadow according to the ground truth. Then, we 

associate the training data with the classification methodology, Random Forest, to generate the 

shadow detector. In the online processing, moving foreground detector, the candidate region of 

moving objects are detected using the spatial background model (SBM) which has two components: 

the background model (BM) and the background gradient exactor (BGE). The BM is used to detect 

the moving objects with the less noise, and the BGE is used to keep the completeness of detected 

moving objects. After SBM, the candidate region of moving objects is obtained and that is 

recalculated with shadow detector to obtain the moving foreground without shadow. 

The spatial background model has been presented in chapter 4. In the following, we first 

introduce the properties of each feature and the reasons that we chose these features. After extracting 

the features, the algorithm of Random Forest is used to train the classifiers for shadow removal. 

5.3 Random Forest Shadow Detector 

In this section, we proposed the Random Forest shadow detector to discriminate shadow from the 

moving objects. We first explain the algorithm for extracting features. Then, we describe the classifier 

that is used in our algorithm. 

5.3.1 Feature Extraction 

In this subsection, we adopted three features, chromaticity, physical property, and texture 

characteristics, which are analyzed in [60] for the Random Forest classifier. The details of these 

features are described in the following. 

A. Chromaticity 
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To choose the color space for separating the intensity and chromaticity is an important issue. 

Several color spaces, such as HSV [58], c1c2c3 [79] and YUcUv [80] have great performance for 

shadow removal. We chose the method proposed by Cucchiara et al. [58] to obtain the chromatic 

features, because of the value of chromaticity and that of intensity are divided in this color space and 

it is widely used in shadow removal. Although, the value of hue and saturation on the region of 

shadow are similar to that of background, the intensity in the shadow is lower than in the background. 

The features of chromaticity are calculated according to the following equations: 
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where 
H

pF , 
S

pF  and 
V

pF  represent the value of hue, saturation and intensity at pixel p  of current 

frame. The 
H

pB , 
S

pB  and 
V

pB  represent the value of hue , saturation and intensity at pixel p  of 

background. We use equation 5.1 and equation 5.2 to calculate the difference between the current 

frame and background and use equation 5.3 to calculate the proportion of intensity. 

B. Physical Properties 

The characteristics of the ambient light which is blue and the sun which is white are considered 

in the physical properties. Because of the region of shadow remain the source of sun light, it is bluer 

than the background which is not be blocked. We used the physical properties which are discussed in 

[60] based on RGB color space. The physical properties are calculated according to the following 

equations: 
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where 
R

pF , 
G

pF  and 
B

pF  represent the components of red, green and blue of the current frame at 

the pixel p . The 
pF  and 

pB represent the value of combining the RGB component of current frame 

and that of background at the pixel p , respectively. 

p
P  is the most important feature in the physical properties that presents the angle between blue 

and color at pixel p . 
p

P  is the angle between green and red of current frame at pixel p  to 

confirm the color is similar to the background. 
p

P  is the illumination attenuation of the current 

frame and background. 

C. Texture 

Various formulations are proposed to extract the texture features from image. However, none is 

perfect for various scenery. Therefore, we chose the widely used method proposed by [60] [66] which 

is classic and easily implement without time consuming. The texture features are calculated as shown 

in the following equations: 
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where x  and 
y are the horizontal and vertical gradient of image, respectively. 

P
T

 is the 

difference between current frame and background image. 
p

T  and 
p

T  are the gradient and 
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orientation of each pixel p , respectively. 

Notice that, we do not choose the geometry feature in this work, because of the proposed method 

is pixel-based, and the geometry feature is region-based. 

5.3.2 Random Forest Classifier 

In this study, the Random Forest learning mechanism is adopted, because of the properties of feature 

that have different performance in each scene is similar to the concept of Random Forest. 

Each feature described in Section 5.3.1 has three dimensions. However, it is difficult to choose 

a feature for a scene. Therefore, in this work, we merge three features to be one instance with nine 

dimensions, as shown in Figure 5.2. An instance can be expressed as a vector 

ppPpppppp
TTTPPPCCCf VSHi  ,,,,,,,,  , in which if  is a combined instance for training data 

at pixel p . The classifier is obtained according to the Random Forest algorithm as shown in Figure 

5.3. For each tree of Random Forest, it randomly choose a subsample from f  to be the training data. 

For each node of tree, Random Forest chose the most suitable part of features according to the 

distribution of the selected training data, and train the best threshold for that node. The number of 

node of each tree is growing, until the training data is small enough. 

5.4 Experiments 

In this section, we first compare the result of Random Forest shadow classifier with other methods 

and then demonstrate the performance of the proposed method, SBE + Random Forest classifier. 

 
Figure 5.2: A 9-dimensional vector of three features. 
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5.4.1 Experimental Results of Shadow Removal 

In this subsection, we analyze the performance of shadow removal. First, we shown the results of 

each and combined features which is classified by SVM or Random Forest. Then, we demonstrate 

the performance of the proposed method with other methods which is described in [60]. Two metrics 

are used, the shadow detection rate ( ) and the shadow discrimination (  ), to evaluate the 

performance of shadow removal which are proposed by Prati et al. [81], as shown below: 

ss
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 ,         (5.10) 
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f

FNTP
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 .         (5.11) 

Four indicative items are used: sTP , 
fTP , sFN  and 

fFN . sTP  refers to the number of 

pixels which are the shadow pixel then marked as shadow. 
fTP  refers to the number of pixels which 

are the foreground pixel then marked as foreground. sFN  refers to the number of pixel which are 

the foreground pixel then marked as shadow. 
fFN  represents to the number of pixel which are the 

shadow pixel then marked as foreground. 

 

Figure 5.3: The Random Forest Shadow Detector. 
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The value of   and   show the performance of each method. However, if a method has poor 

performance that marked all testing data as foreground, for example, the method may has one hundred 

percent accuracy of   and zero accuracy of  . Therefore, we use the average of   and   to 

represent the accuracy of performance. 

Sanin et al. [60] releases the programs for geometry method, chromacity method, physical 

method, small-region texture method, and large-region texture method. Figure 5.4 shows the average 

shadow detection and discrimination rates on various sequences. Figure 5.4 (a) and (b) are the results 

from the paper of [60] and that of the released programs which has optimal parameters, respectively. 

From Figure 5.4, there are some of difference between Figure 5.4 (a) and (b), because the performance 

of those programs are all depend on the parameters tuning. In the following, the programs are used 

in the different experiments and the parameters are all optimal. 

5.4.2 Comparison of SVM and Random Forest Classifiers 

Various features have different performance in different environments. Here, we first demonstrate 

the performance of SVM classifier with individual features and the combined feature. Then, we 

compared the performance of SVM with Random Forest. 

  

(a) (b) 

Figure 5.4: Comparison of shadow detection results on various sequences. (a) the results from 

[60]/ (b) the results of the program released from [60]. 
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Figure 5.5 (a) is the results using SVM classifier with individual features and the combined 

feature in different environments. From Figure 5.5 (a), the combined feature has the best performance 

in SVM classifier. As the same as Figure 5.5 (a), the combined feature has the best performance in 

Random Forest classifier as shown in Figure 5.5 (b).  

From Figure 5.5, the combined feature has the best performance in different environments. The 

performance of Random Forest classifier with combined feature is better than SVM classifier. 

5.4.3 Experimental Results of Different methods 

In this subsection, the results of SVM, Random Forest and each method which is described in [56] 

are shown in Figure 5.6. 

  

(a) (b) 

Figure 5.5: Experimental results of different classifiers. (a) SVM. (b) Random Forest. 

 

Figure 5.6: Experimental results of Different methods. 
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In Figure 5.6, each method has the worst performance in the dataset of Highway3, in which the 

chromacity method has the best performance, and SVM and Random Forest also performed well. 

Although, the large-region texture method has the best performance in some datasets, SVM and 

Random Forest have the best performance in average. To compare SVM with Random Forest, 

Random Forest has the best performance in the most datasets and has the best performance in average. 

The performance of each method described in [60] is depend on the parameter tuning, the proposed 

method, Random Forest shadow classifier, is suitable for various scenes.  

Table 5.1 shows the proposed method, Random Forest shadow classifier. The first column is the 

Dataset Current Frame Ground Truth RFSD 

Campus 

   

Hallway 

   

Highway1 

   

Highway3 

   

Lab 

   

Room 

   

Table 5.1: Experimental results of Random Forest shadow detector. 
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current frame, the second column is the ground truth in which the foreground pixels are indicated as 

white and the shadow pixels are marked in gray, and the third column is results of Random Forest 

classifier in which the shadow pixels which is classified as shadow are marked in green, the shadow 

pixels which are classified as foreground are marked in red, the foreground pixels which are classified 

as foreground marked as blue, and the foreground pixel which are classified as shadow are marked in 

yellow.   

5.4.4 Experimental Results of the Proposed Method 

We combine the SBM and Random Forest shadow detector to detect moving objects. The classifier 

Current Frame Ground Truth SBM SBM + RFSD 

    

    

    

    

    

    

Table 5.2: Experimental results of the proposed method. 
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is trained according to the ground truth of training data, and the shadow is removed from the results 

of SBM, the results are shown in Table 5.2. In Table 5.2, some results of SBM have great performance 

of removing shadows. We can see the results of Hallway, Lab and Room have the clear shadow 

without using shadow removal. Thus, the performance of shadow removal is not obvious. In the cases 

of Campus and Highway1, SBE did not perform well in cast shadow. After using the Random Forest 

classifier, the shadow is removed and the results of moving objects detection become accurately. 

We also proposed a new dataset which includes four sequences: oceanwaves, NTU conference 

room, NTU hallway and NTU outdoor, for testing, as shown in Figure 5.7. The oceanwaves has the 

dynamic background, the NTU conference room has the reflective floor, the NTU hallway has the 

    

(a) (b) (c) (d) 

Figure 5.7: The experimental environments of the proposed dataset. (a) Oceanwaves. (b) NTU 

conference room. (c) NTU hallway. (d) NTU outdoor.  

 

  

(a) Oceanwaves (b) NTU conference room 

  

(c) NTU hallway (d) NTU outdoor 

Figure 5.8: Experimental results of the proposed method with the proposed dataset. 
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strong light comes from the window, and the NTU outdoor has the strong light on the sidewalk and 

on the traffic lane. Figure 5.8 (a)-(d) show the results of shadow removal using the proposed dataset. 

From Figure 5.8, the proposed classifier, Random Forest classifier, has the best performance in all of 

the proposed dataset. Table 5.3 shows the results of proposed method, SBM + Random Forest shadow 

classifier, SBM is useful for dynamic background and Random Forest shadow classifier can 

effectively remove the shadow effect, as shown in Table 5.3.  

5.6 Summary 

We propose a comprehensive method that combines the object detection and shadow removal. First, 

we design a novel framework, the spatial background model (SBM) for modeling background that 

integrate the temporal and spatial information. Two main components are proposed: the background 

model (BM) and the background gradient extractor (BGE). 

Then, to overcome the problem of shadow, we used the algorithm of Random Forest to be the 

classifier which is suitable for the properties of shadow features and combined different features, 

#frame Current Frame Ground Truth RFSD SBM SBM+RFSD 

00505 

     

00378 

     

00532 

     

00893 

     

Table 5.3: Experimental results of the proposed method with the proposed dataset. 
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chromaticity, physical properties and texture, for shadow removal. 

In the experimental results, we first show the results of shadow removal, the performance of 

combined feature are greater than individual features in both SVM and Random Forest classifiers. To 

compare the Random Forest classifier with other methods, the Random Forest classifier performs 

well and that is suitable for various environments. 

Finally, we demonstrate the proposed method, SBE + Random Forest classifier, in both classic 

and new datasets.  



83 

 

 

 

CHAPTER 6 

CONCLUSION AND FUTURE WORK 

6.1 Summary of the Thesis 

We have studied three common topics for visual surveillance: constructing the large- area high-

resolution for visual monitoring system, design the spatial background model (SBM) for objects 

detection, and cast shadow removal using Random Forest classifier. 

For constructing large-area high-resolution visual monitoring system, we proposed two PTZ 

camera calibration methods: in-factory calibration and on-site calibration and a framework that using 

the calibration results of two cameras to construct the proposed visual-monitoring system. The in-

factory calibration method is useful when stable features are extremely difficult to obtain. The on-

site calibration method is more flexible than in-factory calibration method is because it can be applied 

both indoors and outdoors. To achieve the multilayered PTZ-camera calibration, the consistent 

property of distinct pan-tilt angles at various zooming factors is used. To construct the large-are high-

resolution visual monitoring system, the calibration results are used. The large-area high-resolution 

background image is constructed and that is combined with online multiresolution foreground image. 

For detecting moving objects, an integrated methodology, the spatial background model, for 

addressing the dynamic background and the sudden changes of illumination in background 

subtraction is proposed. Two components are proposed: background model (BM) and background 

gradient extractor (BGE). In BM, the background model is constructed using a single frame that is 

based on a single-layer codebook model and that integrates the spatial information is propagated from 
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the adjacent neighbors that can effectively eliminate the dynamic background and the sudden changes 

of illumination in the background. However the propagation makes the foreground incompleteness. 

Therefore, the propagation is forbidden according to the BGE that keeps the completeness of 

foreground. The BGE is synchronously constructed with BM. To construct the BGE, the stable 

background gradient is used which is used to find foreground gradient of the current frame. 

For cast shadow removal, we constructed the shadow classifier utilizing the characteristic of 

features of shadow, such as chromaticity, Physical Property, and texture based on Random Forest 

algorithm. To compare the results of Random Forest shadow classifier with other state-of-the-art 

techniques in both classic and new datasets, the Random Forest shadow classifier performs well in 

most parts of testing data and that has the best average result. Random Forest shadow classifier is 

suitable for various environments without tuning parameters. We also demonstrated the combination 

of the spatial background model and Random Forest shadow classifier, the moving objects are 

completely detected and the shadow effects are removal. 

6.2 Future Directions 

We have investigated the visual surveillance techniques for monitoring and detecting moving objects. 

In this section, we introduce some research directions which include some extension of current works 

and the approaches for integrating the components. 

For constructing large-area high-resolution visual monitoring system, we plan to integrate 

learning based super-resolution approaches to increase the overall resolution and enable users to 

monitor the details of multiple targets in a scene. Moreover, the proposed system was designed for 

use by only a single user, and only one PTZ camera was integrated because a single user can focus 

on only one region at a time. To customize the system for multiple users, several PTZ cameras can 

be added; the proposed system framework can be readily expanded to attain this functionality. Finally, 

in the current system, a standard background-subtraction mechanism was used [8], which cannot 
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effectively address occlusion, but processes images in real time. In the future, we plan to adopt 

alternative background subtraction solutions to eliminate partial occlusion, such as the approaches 

developed by [10] and [82], to enhance the quality of the foreground image. 

For moving objects detection, although the forbidden propagation can keep the completeness of 

the objects, some post-processing still needed which used to improve the accuracy of the spatial 

background model, such as the color segmentation. 

For shadow removal, the features of shadow traditionally extract from a single image, we will 

attempt to consider the relationship between frame and frame in the future, and some features can be 

considered to apply into the Random Forest classifier, such as the wavelet feature and scattering 

transform.  
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