Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48010
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor于靖
dc.contributor.authorShih-Yu Chenen
dc.contributor.author陳昰宇zh_TW
dc.date.accessioned2021-06-15T06:44:23Z-
dc.date.available2011-07-07
dc.date.copyright2011-07-07
dc.date.issued2011
dc.date.submitted2011-06-30
dc.identifier.citationN. C. Ankeny, E. Artin and S. Chowla, The class number of real quadratic number fields, Ann. of Math. 56 , 1952.
E. Artin and H. Hasse,
Die beiden Erganzungssatze zum Reziprozitdtsgesetz der l^n-ten
Potenzrest im Korper der l^n-ten Einheitswurzeln, Abh. Math. Sem. Univ. Hamburg. 6 (1928), 146-162;
reprinted in Hasse's Mathematische Abhandlungen, Band 1, de Gruyter, Berlin, 1975, pp. 326-342.
Z. Borevich and I. Shafarevich, Number Theory, Academic Press, London, 1966.
A. Frohlich, Formal groups, Lecture Notes in Math. 74, Springer-Verlag, Berlin and Nwe York, 1968.
I. B. Fesenko, Explicit constructions in local class field theory. Thesis, Leningrad. Univ., Leningrad, 1987.
I. B. Fesenko and S .V. Vostokov, The Hilbert symbol for Lubin-Tate formal groups. II, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. 132, 1983; English transl. in J. Soviet Math. 30, 1985.
I. B. Fesenko and S .V. Vostokov, Local Fields and Their Extensions, 2nd, AMS, 1993.
H. Hasse,
Bericht uber neuere Untersuchungen und Probleme aus der Theorie der algebraischen Zahlkorper. Teil II: Reziprozitatsgesetz,
Jber. der DMV 6 , 1930.
H. Hasse,
Die Gruppe der pn-primaren Zahlen fur einen Primteiler P von p.,
J. Reine Angew. Math. 176(1936), 174-183.
K. Ireland and M. Rosen, A Classical Introduction to Modern Number Theory, 2nd, Springer-Verlag, New York, 1990.
K. Iwasawa, On explicit formulas for the norm residue symbol, J. Math. Soc. Japan 20 (1968), 151-165.
K. Iwasawa, Local Class Field Theory, Oxford mathematical monographs, 1986.
E. Kummer, A Uber die allgemeinen ReziprozitAatsgesetze der Potenzreste. J.
Reine Angew. Math. 56 (1858), 270-279.
J. Lubin and J. Tate, Formal complex multiplication in local fields, Ann. of Math. 81, 1965.
S. Lang, Cyclotomic fields I-II, Springer-Verlag, Berlin and New York, 1990.
J. Neukirch, Class Field Theory, Springer-Verlag, Berlin and New York, 1986.
I. R. Shafarevich, A general reciprocity law, Mat. Sb. 26, 1950; English transl. in Amer. Math. Soc. Transl. 4, 1956.
S. V. Vostokov, Explicit form of the law of reciprocity, Izv. Akad. Nauk SSSR Ser. Mat. 42, 1978; English transl. in Math. USSR-Izv. 13, 1979.
S. V. Vostokov, A norm pairing in formal modules, Izv. Akad. Nauk SSSR Ser. Mat. 43, 1979; English transl. in Math. USSR-Izv. 15, 1980.
S. V. Vostokov, Symbols on formal groups, Izv. Akad. Nauk SSSR Ser. Mat. 45, 1981; English transl. in Math. USSR-Izv. 19, 1982.
S. V. Vostokov, The Hilbert symbol for Lubin-Tate formal groups. I, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. 114, 1982; English transl. in J. Soviet Math. 27, 1984.
S. V. Vostokov, Artin-Hasse exponentials and Bernoulli numbers, Trudy Sankt-Peterb. Mat. Obschestva 3, 1995; English transl. in Amer. Math. Soc. Transl. Ser. 2, 1995.
S. V. Vostokov and V. A. Letsko, A canonical decomposition in the group of points of a Lubin-Tate formal group, J. Sov. Math 24, 1984.
A. J. van der Poorten, H. J. J. Te Riele and H. C. Williams, Computer Verification of the Ankeny-Artin-Chowla Conjecture for All Primes Less Than 100 000 000 000, Mathematics of Computation, Vol. 70, No. 235 (Jul., 2001), pp. 1311-1328.
A. Wiles, Higher explicit reciprocity laws, Ann. of Math. (2) 107 (1978), 235-254.
L. Washington, Introduction to Cyclotomic Fields, Springer-Verlag, New York, 1982.
J. Yu and J.K. Yu, A note on a geometric analogue of Ankeny-Artin-Chowla's conjecture, Contemporary Mathematics, Volume 210, 1998.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48010-
dc.description.abstract這篇論文的第一部分是整理 I.B.Fesenko, S.V.Vostokov 以及 A.Wiles 在形式群上的希爾伯特符號之公式的工作。論文的第二部分是 Kummer 公式的幾個應用,其中包括了 Von Staudt congruence, Kummer's lemma, 以及 Ankeny-Artin-Chowla congruence。zh_TW
dc.description.abstractThis paper is a survey on explicit formulas for the Hilbert symbol on Lubin-Tate formal groups due to I.B.Fesenko, S.V.Vostokov and A.Wiles. I also give applications of Kummer's formula to Von Staudt congruence, Kummer's lemma, and Ankeny-Artin-Chowla congruence.en
dc.description.provenanceMade available in DSpace on 2021-06-15T06:44:23Z (GMT). No. of bitstreams: 1
ntu-100-R98221018-1.pdf: 707450 bytes, checksum: 5b182255ff6f0e9985d74f3348e6728d (MD5)
Previous issue date: 2011
en
dc.description.tableofcontentsAbstract (in Chinese) i
Abstract (in English) ii
Introduction 2
1 Hilbert Symbol on Lubin-Tate Formal Groups 5
1.1 The Classical Hilber Symbol . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Lubin-Tate Formal Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 The Hilbert Symbol on Lubin-Tate Formal Groups . . . . . . . . . . . . . . 8
2 The First Branch of the Explicit Formulas 11
2.1 The Ring of Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 Generalized Artin-Hasse-Shafarevich Maps . . . . . . . . . . . . . . . . . . . 14
2.3 Series Associated to Roots . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.4 Primary Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.5 Decomposition of Elements in the Group of Points . . . . . . . . . . . . . . 21
2.6 The Pairing < П,. >п. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.7 The Pairing < .,. >п. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.8 Explicit Formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3 The Second Branch of the Explicit Formulas 43
3.1 The Mapδ
n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.2 The Pairing < .,. >F, m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.3 A Key Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.4 Explicit Formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.5 Application to the Artin-Hasse Formulas . . . . . . . . . . . . . . . . . . . . 59
4 Applications of Kummer's Formula 61
4.1 Kummer's Formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.2 A Classical Formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.3 Kummer's Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.4 The Ankeny-Artin-Chowla Congruence. . . . . . . . . . . . . . . . . . . . . 74
Bibliography 80
dc.language.isozh-TW
dc.title形式群上的希爾伯特符號之公式及其應用zh_TW
dc.titleExplicit Formulas for the Hilbert Symbol on Lubin-Tate Formal Groups and its Applicationsen
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree碩士
dc.contributor.oralexamcommittee李華介,謝銘倫
dc.subject.keyword希爾伯特符號,形式群,zh_TW
dc.subject.keywordHilbert symbol,Lubin-Tate formal groups,en
dc.relation.page82
dc.rights.note有償授權
dc.date.accepted2011-06-30
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept數學研究所zh_TW
顯示於系所單位:數學系

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  目前未授權公開取用
690.87 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved