請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47414完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 羅翊禎(Yi-Chen Lo) | |
| dc.contributor.author | Hsin-Yi Chiang | en |
| dc.contributor.author | 姜欣怡 | zh_TW |
| dc.date.accessioned | 2021-06-15T05:58:46Z | - |
| dc.date.available | 2012-08-18 | |
| dc.date.copyright | 2010-08-18 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-08-17 | |
| dc.identifier.citation | 陳姿虹。微奈米綠茶之理化特性與抗氧化活性研究;國立台灣大學
食品科技研究所碩士論文:台北市,2009。(1-50) Aylon, Y.; Kupiec, M., DSB repair: the yeast paradigm. DNA Repair 2004, 3, (8-9), 797-815. Bermingham-McDonogh, O.; Gralla, E. B.; Valentine, J. S., The copper, zinc-superoxide dismutase gene of Saccharomyces cerevisiae: cloning, sequencing, and biological activity. Proc Natl Acad Sci U S A 1988, 85, (13), 4789-93. Biziukin, A. V.; Korkina, L. G.; Velichkovskii, B. T., [Comparative use of 2,7-dichlorofluorescein diacetate, dihydrorhodamine 123, and hydroethidine for studying oxidative metabolism of phagocytosing cells]. Biull Eksp Biol Med 1995, 119, (4), 361-5. Bode, A. M.; Dong, Z., Epigallocatechin 3-gallate and green tea catechins: United they work, divided they fail. Cancer Prev Res (Phila Pa) 2009, 2, (6), 514-7. Burhans, W. C.; Weinberger, M., DNA replication stress, genome instability and aging. Nucleic Acids Research 2007, 35, (22), 7545-7556. Cabrera, C.; Artacho, R.; Gimenez, R., Beneficial effects of green tea - A review. Journal of the American College of Nutrition 2006, 25, (2), 79-99. Chae, H. Z.; Kim, I. H.; Kim, K.; Rhee, S. G., Cloning, sequencing, and mutation of thiol-specific antioxidant gene of Saccharomyces cerevisiae. J Biol Chem 1993, 268, (22), 16815-21. Charames, G. S.; Bapat, B., Genomic instability and cancer. Current Molecular Medicine 2003, 3, (7), 589-596. Cortez, D., Caffeine inhibits checkpoint responses without inhibiting the ataxia-telangiectasia-mutated (ATM) and ATM- and Rad3-related (ATR) protein kinases. J Biol Chem 2003, 278, (39), 37139-45. D'Autreaux, B.; Toledano, M. B., ROS as signaling molecules: mechanisms that generate specificity in ROS homeostasis. Nat Rev Mol Cell Biol 2007, 8, (10), 813-24. de Laat, W. L.; Jaspers, N. G. J.; Hoeijmakers, J. H. J., Molecular mechanism of nucleotide excision repair. Genes & Development 1999, 13, (7), 768-785. Fridovich-Keil, J. L., Yeast as a Model for Human Diseases. Encyclopedia of Life Sciences 2005, 1-4. Hall-Jackson, C. A.; Cross, D. A.; Morrice, N.; Smythe, C., ATR is a caffeine-sensitive, DNA-activated protein kinase with a substrate specificity distinct from DNA-PK. Oncogene 1999, 18, (48), 6707-13. Heffernan, T. P.; Kawasumi, M.; Blasina, A.; Anderes, K.; Conney, A. H.; Nghiem, P., ATR-Chk1 Pathway Inhibition Promotes Apoptosis after UV Treatment in Primary Human Keratinocytes: Potential Basis for the UV Protective Effects of Caffeine. Journal of Investigative Dermatology 2009, 129, (7), 1805-1815. Herrero, E.; Ros, J.; Belli, G.; Cabiscol, E., Redox control and oxidative stress in yeast cells. Biochim Biophys Acta 2008, 1780, (11), 1217-35. Higashi-Okai, K.; Otani, S.; Okai, Y., Potent suppressive activity of pheophytin a and b from the non-polyphenolic fraction of green tea (Camellia sinensis) against tumor promotion in mouse skin. Cancer Lett 1998, 129, (2), 223-8. Higashi-Okai, K.; Yamazaki, M.; Nagamori, H.; Okai, Y., Identification and antioxidant activity of several pigments from the residual green tea (Camellia sinensis) after hot water extraction. J UOEH 2001, 23, (4), 335-44. Iraqui, I.; Kienda, G.; Soeur, J.; Faye, G.; Baldacci, G.; Kolodner, R. D.; Huang, M. E., Peroxiredoxin Tsa1 is the key peroxidase suppressing genome instability and protecting against cell death in Saccharomyces cerevisiae. PLoS Genet 2009, 5, (6), e1000524. Izawa, S.; Maeda, K.; Sugiyama, K.; Mano, J.; Inoue, Y.; Kimura, A., Thioredoxin deficiency causes the constitutive activation of Yap1, an AP-1-like transcription factor in Saccharomyces cerevisiae. J Biol Chem 1999, 274, (40), 28459-65. Jackson, S. P.; Bartek, J., The DNA-damage response in human biology and disease. Nature 2009, 461, (7267), 1071- 8. Jamieson, D. J., Oxidative stress responses of the yeast Saccharomyces cerevisiae. Yeast 1998, 14, (16), 1511-27. Jang, H. H.; Lee, K. O.; Chi, Y. H.; Jung, B. G.; Park, S. K.; Park, J. H.; Lee, J. R.; Lee, S. S.; Moon, J. C.; Yun, J. W.; Choi, Y. O.; Kim, W. Y.; Kang, J. S.; Cheong, G. W.; Yun, D. J.; Rhee, S. G.; Cho, M. J.; Lee, S. Y., Two enzymes in one; two yeast peroxiredoxins display oxidative stress-dependent switching from a peroxidase to a molecular chaperone function. Cell 2004, 117, (5), 625-35. Kadyk, L. C.; Hartwell, L. H., Sister chromatids are preferred over homologs as substrates for recombinational repair in Saccharomyces cerevisiae. Genetics 1992, 132, (2), 387-402. Katiyar, S.; Elmets, C. A.; Katiyar, S. K., Green tea and skin cancer: photoimmunology, angiogenesis and DNA repair. Journal of Nutritional Biochemistry 2007, 18, (5), 287-296. Khan, N.; Afaq, F.; Saleem, M.; Ahmad, N.; Mukhtar, H., Targeting multiple signaling pathways by green tea polyphenol (-)-epigallocatechin-3-gallate. Cancer Research 2006, 66, (5), 2500-2505. Lea, D. E.; Coulson, C. A., The distribution of the numbers of mutants in bacterial populations. J. Genet. 1949, 49, (3), 264-285. Lee, J.; Godon, C.; Lagniel, G.; Spector, D.; Garin, J.; Labarre, J.; Toledano, M. B., Yap1 and Skn7 control two specialized oxidative stress response regulons in yeast. J Biol Chem 1999, 274, (23), 16040-6. Lettier, G.; Feng, Q.; de Mayolo, A. A.; Erdeniz, N.; Reid, R. J.; Lisby, M.; Mortensen, U. H.; Rothstein, R., The role of DNA double-strand breaks in spontaneous homologous recombination in S. cerevisiae. PLoS Genet 2006, 2, (11), e194. Li, Y. M.; Chan, H. Y. E.; Huang, Y.; Chen, Z. Y., Green tea catechins upregulate superoxide dismutase and catalase in fruit flies. Molecular Nutrition & Food Research 2007, 51, (5), 546-554. Maeta, K.; Nomura, W.; Takatsume, Y.; Izawa, S.; Inoue, Y., Green tea polyphenols function as prooxidants to activate oxidative-stress-responsive transcription factors in yeasts. Appl Environ Microbiol 2007, 73, (2), 572-80. Marden, A.; Walmsley, R. M.; Schweizer, L. M.; Schweizer, M., Yeast-based assay for the measurement of positive and negative influences on microsatellite stability. FEMS Yeast Res 2006, 6, (5), 716-25. Maynard, S.; Schurman, S. H.; Harboe, C.; de Souza-Pinto, N. C.; Bohr, V. A., Base excision repair of oxidative DNA damage and association with cancer and aging. Carcinogenesis 2009, 30, (1), 2-10. Mazzanti, G.; Menniti-Ippolito, F.; Moro, P. A.; Cassetti, F.; Raschetti, R.; Santuccio, C.; Mastrangelo, S., Hepatotoxicity from green tea: a review of the literature and two unpublished cases. European Journal of Clinical Pharmacology 2009, 65, (4), 331-341. Meeran, S. M.; Akhtar, S.; Katiyar, S. K., Inhibition of UVB-induced skin tumor development by drinking green tea polyphenols is mediated through DNA repair and subsequent inhibition of inflammation. J Invest Dermatol 2009, 129, (5), 1258-70. Meeran, S. M.; Katiyar, S. K., Cell cycle control as a basis for cancer chemoprevention through dietary agents. Front Biosci 2008, 13, 2191-202. Menacho-Marquez, M.; Murguia, J. R., Yeast on drugs: Saccharomyces cerevisiae as a tool for anticancer drug research. Clin Transl Oncol 2007, 9, (4), 221-8. Mitscher, L. A.; Jung, M.; Shankel, D.; Dou, J. H.; Steele, L.; Pillai, S. P., Chemoprotection: A review of the potential therapeutic antioxidant properties of green tea (Camellia sinensis) and certain of its constituents. Medicinal Research Reviews 1997, 17, (4), 327-365. Mnich, C. D.; Hoek, K. S.; Virkki, L. V.; Farkas, A.; Dudli, C.; Laine, E.; Urosevic, M.; Dummer, R., Green tea extract reduces induction of p53 and apoptosis in UVB- irradiated human skin independent of transcriptional controls. Experimental Dermatology 2009, 18, (1), 69-77. Motegi, A.; Myung, K., Measuring the rate of gross chromosomal rearrangements in Saccharomyces cerevisiae: A practical approach to study genomic rearrangements observed in cancer. Methods 2007, 41, (2), 168-76. Nakagawa, K.; Miyazawa, T., Absorption and distribution of tea catechin, (-)-epigallocatechin-3-gallate, in the rat. J Nutr Sci Vitaminol (Tokyo) 1997, 43, (6), 679-84. Nakagawa, K.; Miyazawa, T., Chemiluminescence-high- performance liquid chromatographic determination of tea catechin, (-)-epigallocatechin 3-gallate, at picomole levels in rat and human plasma. Anal Biochem 1997, 248, (1), 41-9. Okai, Y.; Higashi-Okai, K., Potent suppressing activity of the non-polyphenolic fraction of green tea (Camellia sinensis) against genotoxin-induced umu C gene expression in Salmonella typhimurium (TA 1535/pSK 1002)--association with pheophytins a and b. Cancer Lett 1997, 120, (1), 117- 23. Prakash, S.; Prakash, L., Nucleotide excision repair in yeast. Mutation Research-Fundamental and Molecular Mechanisms of Mutagenesis 2000, 451, (1-2), 13-24. Ross, S. J.; Findlay, V. J.; Malakasi, P.; Morgan, B. A., Thioredoxin peroxidase is required for the transcriptional response to oxidative stress in budding yeast. Mol Biol Cell 2000, 11, (8), 2631-42. Rowe, L. A.; Degtyareva, N.; Doetsch, P. W., DNA damage- induced reactive oxygen species (ROS) stress response in Saccharomyces cerevisiae. Free Radic Biol Med 2008, 45, (8), 1167-77. San Filippo, J.; Sung, P.; Klein, H., Mechanism of eukaryotic homologous recombination. Annu Rev Biochem 2008, 77, 229-57. Schild, D.; Wiese, C., Overexpression of RAD51 suppresses recombination defects: a possible mechanism to reverse genomic instability. Nucleic Acids Res 2009, 38, (4), 1061- 70. Schwarz, A.; Maeda, A.; Gan, D.; Mammone, T.; Matsui, M. S.; Schwarz, T., Green tea phenol extracts reduce UVB- induced DNA damage in human cells via interleukin-12. Photochem Photobiol 2008, 84, (2), 350-5. Shim, J. S.; Kang, M. H.; Kim, Y. H.; Roh, J. K.; Roberts, C.; Lee, I. P., Chemopreventive effect of green tea (Camellia sinensis) among cigarette smokers. Cancer Epidemiol Biomarkers Prev 1995, 4, (4), 387-91. Smith, S.; Hwang, J. Y.; Banerjee, S.; Majeed, A.; Gupta, A.; Myung, K., Mutator genes for suppression of gross chromosomal rearrangements identified by a genome-wide screening in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 2004, 101, (24), 9039-44. Tachibana, T.; Okazaki, S.; Murayama, A.; Naganuma, A.; Nomoto, A.; Kuge, S., A major peroxiredoxin-induced activation of Yap1 transcription factor is mediated by reduction-sensitive disulfide bonds and reveals a low level of transcriptional activation. J Biol Chem 2009, 284, (7), 4464-72. van Gent, D. C.; Hoeijmakers, J. H. J.; Kanaar, R., Chromosomal stability and the DNA double-stranded break connection. Nature Reviews Genetics 2001, 2, (3), 196-206. Van Laethem, A.; Garmyn, M.; Agostinis, P., Starting and propagating apoptotic signals in UVB irradiated keratinocytes. Photochem Photobiol Sci 2009, 8, (3), 299- 308. Wong, J. M. S.; Ingles, C. J., A compromised yeast RNA polymerase II enhances UV sensitivity in the absence of global genome nucleotide excision repair. Molecular and General Genetics 2001, 264, (6), 842-851. Yang, M. M.; Jarrett, S. G.; Craven, R.; Kaetzel, D. M., YNK1, the yeast homolog of human metastasis suppressor NM23, is required for repair of UV radiation- and etoposide-induced DNA damage. Mutation Research- Fundamental and Molecular Mechanisms of Mutagenesis 2009, 660, (1-2), 74-78. Zhou, B. B.; Chaturvedi, P.; Spring, K.; Scott, S. P.; Johanson, R. A.; Mishra, R.; Mattern, M. R.; Winkler, J. D.; Khanna, K. K., Caffeine abolishes the mammalian G(2)/M DNA damage checkpoint by inhibiting ataxia-telangiectasia- mutated kinase activity. J Biol Chem 2000, 275, (14), 10342-8. Zhou, R.; Zhou, Y.; Chen, D.; Li, S.; Haug, A., Effects of soaking temperature and soaking time during preparation of water extract of tea on anticlastogenicity against environmental tobacco smoke in the sister-chromatid exchange assay. Toxicol Lett 2000, 115, (1), 23-32. Zhu, Q. Y.; Zhang, A. Q.; Tsang, D.; Huang, Y.; Chen, Z. Y., Stability of green tea catechins. Journal of Agricultural and Food Chemistry 1997, 45, (12), 4624-4628. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47414 | - |
| dc.description.abstract | 綠茶已知含豐富多酚化合物,並被視為具抗癌與抗致突變性之物質。本篇研究探討綠茶萃出物對紫外線照射所誘發的酵母菌基因不穩定性之影響。將綠茶萃出物添加於培養液中進行酵母菌培養,之後再對酵母菌施予紫外光照射,以觀察其細胞存活率、細胞突變率、細胞週期、活性氧自由基群與修復相關基因之表現。結果顯示,綠茶組在紫外線照射後,其活性氧自由基群含量隨時間而下降;但控制組或EGCG及咖啡因處理組別則呈現上升之趨勢。然而,綠茶添加與否並無影響因紫外線照射所引起之細胞週期停滯現象。在抗氧化相關酵素基因表現的研究上則發現,綠茶可調節硫氧還原蛋白過氧化脢、超氧岐化脢與過氧化氫催化脢之基因表現。且DNA修復蛋白,RAD14和RAD51也在綠茶添加組有較強之基因表現。因此,綠茶添加組別顯現較控制組與其他對照組更高的細胞存活率,且其紫外線誘導基因突變比率,也是所有組別中最低的。綜合上述結論得知,綠茶萃出物可藉由降低活性氧自由基群,與活化氧化還原和DNA修復系統來達到穩定酵母菌基因體之正面效應。而本研究結果也證明,酵母菌可應用於探討生物活性成分之功能。 | zh_TW |
| dc.description.abstract | Green tea is renowned for containing rich polyphenols that are considered the anti-carcinogenic and anti-mutagenic agents. In this study, we investigated how green tea extract (GTE) affects yeast genome instability induced by UVB irradiation. Yeast was cultured in mediums with or without GTE. After UVB irradiation, the cells were collected for assays of survival, gene mutation, reactive oxygen species (ROS), cell cycle, and expressions of redox and repair genes. The reactive oxygen species (ROS) levels in cells were declined gradually after UVB exposure in GTE-treated group; nevertheless, an increasing trend was observed in control or EGCG or caffeine-treated group. However, the G1/S phase cell cycle arrest induced by UVB damage was unaffected by the addition of GTE. Furthermore, the gene expressions of antioxidative enzymes, TSA1, SOD1 and CTT1 were modulated by GTE. DNA-repair genes, RAD14 and RAD51, responsible for nucleotide excision repair and homologous recombination repair pathways respectively, were activated with GTE treatment. As a result, the cell survival rates were elevated while the gene mutation rates were decreased with the administration of GTE. In conclusion, we found that GTE had positive effects on the maintenance of genome stability in yeast through effectively lowering ROS levels, and activating redox and DNA repair systems. These results also demonstrate that yeast can be a powerful tool for distinguishing the biological functions of bioactive compounds. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T05:58:46Z (GMT). No. of bitstreams: 1 ntu-99-R97641031-1.pdf: 1962749 bytes, checksum: fed89a7ff62abe658dde1cb85bc1edd8 (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | Abstract………………………………………………… I
Abstract (Chinese version )………………………… III Contents………………………………………………… IV Figures ………………………………………………… VI Tables …………………………………………………… VIII Chapter 1. Literature Reviews…………………………………………………………………1 1. Introduction of green tea polyphenols 1.1 The constituents of green tea polyphenols …………… 1 1.2 Chemoprevention of green tea polyphenols ………………3 2. DNA damage and repair 2.1 Brief introduction of DNA damage and repair……………6 2.2 DNA damage response……………………………………………8 2.3 UV irradiation induced nucleotide-excision repair……9 2.4 Double-strand breaks induced homologous recombination repair…………………………………………………………… 11 3. The aspects in genome stability 3.1 Carcinogenesis related with genome instability……… 13 3.2 The associations between green tea polyphenols and genome stability……………………………………………… 14 3.3 The impacts of caffeine on genome stability .........15 4. Introduction of Saccharomyces cerevisiae 4.1 The advantages of yeast as a model organism ………… 16 4.2 DNA repair proteins in S. cerevisiae conserved in human………………………………………………………………17 4.3 Redox regulation in S. cerevisiae…………………………20 4.4 The principle of gross chromosomal rearrangement assay in S. cerevisiae……………………………………………… 22 5. Objectives…………………………………………………………23 6. Experimental Design ………………………………………… 24 Chapter 2. Materials and Methods……………………………… 25 Chapter 3. Results ……………………………………………… 39 Chapter 4. Discussion …………………………………………… 62 Chapter 5. Conclusion …………………………………………… 65 References ………………………………………………………… 66 Appendix 1 ...............................................71 Appendix 2................................................72 Appendix 3 ...............................................73 Appendix 4 ...............................................74 Appendix 5 ...............................................75 Appendix 6 ...............................................76 Appendix 7 ...............................................77 Appendix 8 ...............................................78 | |
| dc.language.iso | en | |
| dc.subject | 活性氧自由基群 | zh_TW |
| dc.subject | 綠茶萃出物 | zh_TW |
| dc.subject | 紫外線照射 | zh_TW |
| dc.subject | 基因穩定性 | zh_TW |
| dc.subject | DNA修復 | zh_TW |
| dc.subject | green tea extract | en |
| dc.subject | ROS | en |
| dc.subject | DNA repair | en |
| dc.subject | genome stability | en |
| dc.subject | UVB irradiation | en |
| dc.title | 綠茶萃出物對維持酵母菌基因穩定性之影響 | zh_TW |
| dc.title | Effect of green tea extract on the maintenance of genome stability in yeast | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 許順堯(Shun-Yao Hsu) | |
| dc.contributor.oralexamcommittee | 何其儻(Chi-Tang Ho),潘敏雄(Min-Hsiung Pan),謝淑貞(Shu-Chen Shieh),高承福(Cheng-Fu Kao) | |
| dc.subject.keyword | 綠茶萃出物,紫外線照射,基因穩定性,DNA修復,活性氧自由基群, | zh_TW |
| dc.subject.keyword | green tea extract,UVB irradiation,genome stability,DNA repair,ROS, | en |
| dc.relation.page | 93 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2010-08-17 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 食品科技研究所 | zh_TW |
| 顯示於系所單位: | 食品科技研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf 未授權公開取用 | 1.92 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
