Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 食品科技研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47414
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor羅翊禎(Yi-Chen Lo)
dc.contributor.authorHsin-Yi Chiangen
dc.contributor.author姜欣怡zh_TW
dc.date.accessioned2021-06-15T05:58:46Z-
dc.date.available2012-08-18
dc.date.copyright2010-08-18
dc.date.issued2010
dc.date.submitted2010-08-17
dc.identifier.citation陳姿虹。微奈米綠茶之理化特性與抗氧化活性研究;國立台灣大學
食品科技研究所碩士論文:台北市,2009。(1-50)
Aylon, Y.; Kupiec, M., DSB repair: the yeast paradigm. DNA
Repair 2004, 3, (8-9), 797-815.
Bermingham-McDonogh, O.; Gralla, E. B.; Valentine, J. S.,
The copper, zinc-superoxide dismutase gene of
Saccharomyces cerevisiae: cloning, sequencing, and
biological activity. Proc Natl Acad Sci U S A 1988, 85,
(13), 4789-93.
Biziukin, A. V.; Korkina, L. G.; Velichkovskii, B. T.,
[Comparative use of 2,7-dichlorofluorescein diacetate,
dihydrorhodamine 123, and hydroethidine for studying
oxidative metabolism of phagocytosing cells]. Biull Eksp
Biol Med 1995, 119, (4), 361-5.
Bode, A. M.; Dong, Z., Epigallocatechin 3-gallate and green
tea catechins: United they work, divided they fail. Cancer
Prev Res (Phila Pa) 2009, 2, (6), 514-7.
Burhans, W. C.; Weinberger, M., DNA replication stress,
genome instability and aging. Nucleic Acids Research 2007,
35, (22), 7545-7556.
Cabrera, C.; Artacho, R.; Gimenez, R., Beneficial effects
of green tea - A review. Journal of the American College
of Nutrition 2006, 25, (2), 79-99.
Chae, H. Z.; Kim, I. H.; Kim, K.; Rhee, S. G., Cloning,
sequencing, and mutation of thiol-specific antioxidant
gene of Saccharomyces cerevisiae. J Biol Chem 1993, 268,
(22), 16815-21.
Charames, G. S.; Bapat, B., Genomic instability and cancer.
Current Molecular Medicine 2003, 3, (7), 589-596.
Cortez, D., Caffeine inhibits checkpoint responses without
inhibiting the ataxia-telangiectasia-mutated (ATM) and ATM- and Rad3-related (ATR) protein kinases. J Biol Chem 2003,
278, (39), 37139-45.
D'Autreaux, B.; Toledano, M. B., ROS as signaling
molecules: mechanisms that generate specificity in ROS
homeostasis. Nat Rev Mol Cell Biol 2007, 8, (10), 813-24.
de Laat, W. L.; Jaspers, N. G. J.; Hoeijmakers, J. H. J.,
Molecular mechanism of nucleotide excision repair. Genes &
Development 1999, 13, (7), 768-785.
Fridovich-Keil, J. L., Yeast as a Model for Human Diseases.
Encyclopedia of Life Sciences 2005, 1-4.
Hall-Jackson, C. A.; Cross, D. A.; Morrice, N.; Smythe, C.,
ATR is a caffeine-sensitive, DNA-activated protein kinase
with a substrate specificity distinct from DNA-PK.
Oncogene 1999, 18, (48), 6707-13.
Heffernan, T. P.; Kawasumi, M.; Blasina, A.; Anderes, K.;
Conney, A. H.; Nghiem, P., ATR-Chk1 Pathway Inhibition
Promotes Apoptosis after UV Treatment in Primary Human
Keratinocytes: Potential Basis for the UV Protective
Effects of Caffeine. Journal of Investigative Dermatology
2009, 129, (7), 1805-1815.
Herrero, E.; Ros, J.; Belli, G.; Cabiscol, E., Redox
control and oxidative stress in yeast cells. Biochim
Biophys Acta 2008, 1780, (11), 1217-35.
Higashi-Okai, K.; Otani, S.; Okai, Y., Potent suppressive
activity of pheophytin a and b from the non-polyphenolic
fraction of green tea (Camellia sinensis) against tumor
promotion in mouse skin. Cancer Lett 1998, 129, (2), 223-8.
Higashi-Okai, K.; Yamazaki, M.; Nagamori, H.; Okai, Y.,
Identification and antioxidant activity of several
pigments from the residual green tea (Camellia sinensis)
after hot water extraction. J UOEH 2001, 23, (4), 335-44.
Iraqui, I.; Kienda, G.; Soeur, J.; Faye, G.; Baldacci, G.;
Kolodner, R. D.; Huang, M. E., Peroxiredoxin Tsa1 is the
key peroxidase suppressing genome instability and
protecting against cell death in Saccharomyces cerevisiae.
PLoS Genet 2009, 5, (6), e1000524.
Izawa, S.; Maeda, K.; Sugiyama, K.; Mano, J.; Inoue, Y.;
Kimura, A., Thioredoxin deficiency causes the constitutive
activation of Yap1, an AP-1-like transcription factor in
Saccharomyces cerevisiae. J Biol Chem 1999, 274, (40),
28459-65.
Jackson, S. P.; Bartek, J., The DNA-damage response in
human biology and disease. Nature 2009, 461, (7267), 1071-
8.
Jamieson, D. J., Oxidative stress responses of the yeast
Saccharomyces cerevisiae. Yeast 1998, 14, (16), 1511-27.
Jang, H. H.; Lee, K. O.; Chi, Y. H.; Jung, B. G.; Park, S.
K.; Park, J. H.; Lee, J. R.; Lee, S. S.; Moon, J. C.; Yun, J. W.; Choi, Y. O.; Kim, W. Y.; Kang, J. S.; Cheong, G. W.;
Yun, D. J.; Rhee, S. G.; Cho, M. J.; Lee, S. Y., Two
enzymes in one; two yeast peroxiredoxins display oxidative
stress-dependent switching from a peroxidase to a
molecular chaperone function. Cell 2004, 117, (5), 625-35.
Kadyk, L. C.; Hartwell, L. H., Sister chromatids are
preferred over homologs as substrates for recombinational
repair in Saccharomyces cerevisiae. Genetics 1992, 132,
(2), 387-402.
Katiyar, S.; Elmets, C. A.; Katiyar, S. K., Green tea and
skin cancer: photoimmunology, angiogenesis and DNA repair.
Journal of Nutritional Biochemistry 2007, 18, (5), 287-296.
Khan, N.; Afaq, F.; Saleem, M.; Ahmad, N.; Mukhtar, H.,
Targeting multiple signaling pathways by green tea
polyphenol (-)-epigallocatechin-3-gallate. Cancer Research
2006, 66, (5), 2500-2505.
Lea, D. E.; Coulson, C. A., The distribution of the numbers
of mutants in bacterial populations. J. Genet. 1949, 49,
(3), 264-285.
Lee, J.; Godon, C.; Lagniel, G.; Spector, D.; Garin, J.;
Labarre, J.; Toledano, M. B., Yap1 and Skn7 control two
specialized oxidative stress response regulons in yeast. J
Biol Chem 1999, 274, (23), 16040-6.
Lettier, G.; Feng, Q.; de Mayolo, A. A.; Erdeniz, N.; Reid,
R. J.; Lisby, M.; Mortensen, U. H.; Rothstein, R., The
role of DNA double-strand breaks in spontaneous homologous
recombination in S. cerevisiae. PLoS Genet 2006, 2, (11),
e194.
Li, Y. M.; Chan, H. Y. E.; Huang, Y.; Chen, Z. Y., Green
tea catechins upregulate superoxide dismutase and catalase
in fruit flies. Molecular Nutrition & Food Research 2007,
51, (5), 546-554.
Maeta, K.; Nomura, W.; Takatsume, Y.; Izawa, S.; Inoue, Y.,
Green tea polyphenols function as prooxidants to activate
oxidative-stress-responsive transcription factors in
yeasts. Appl Environ Microbiol 2007, 73, (2), 572-80.
Marden, A.; Walmsley, R. M.; Schweizer, L. M.; Schweizer,
M., Yeast-based assay for the measurement of positive and
negative influences on microsatellite stability. FEMS
Yeast Res 2006, 6, (5), 716-25.
Maynard, S.; Schurman, S. H.; Harboe, C.; de Souza-Pinto,
N. C.; Bohr, V. A., Base excision repair of oxidative DNA
damage and association with cancer and aging.
Carcinogenesis 2009, 30, (1), 2-10.
Mazzanti, G.; Menniti-Ippolito, F.; Moro, P. A.; Cassetti,
F.; Raschetti, R.; Santuccio, C.; Mastrangelo, S.,
Hepatotoxicity from green tea: a review of the literature
and two unpublished cases. European Journal of Clinical
Pharmacology 2009, 65, (4), 331-341.
Meeran, S. M.; Akhtar, S.; Katiyar, S. K., Inhibition of
UVB-induced skin tumor development by drinking green tea
polyphenols is mediated through DNA repair and subsequent
inhibition of inflammation. J Invest Dermatol 2009, 129,
(5), 1258-70.
Meeran, S. M.; Katiyar, S. K., Cell cycle control as a
basis for cancer chemoprevention through dietary agents.
Front Biosci 2008, 13, 2191-202.
Menacho-Marquez, M.; Murguia, J. R., Yeast on drugs:
Saccharomyces cerevisiae as a tool for anticancer drug
research. Clin Transl Oncol 2007, 9, (4), 221-8.
Mitscher, L. A.; Jung, M.; Shankel, D.; Dou, J. H.; Steele,
L.; Pillai, S. P., Chemoprotection: A review of the
potential therapeutic antioxidant properties of green tea
(Camellia sinensis) and certain of its constituents.
Medicinal Research Reviews 1997, 17, (4), 327-365.
Mnich, C. D.; Hoek, K. S.; Virkki, L. V.; Farkas, A.;
Dudli, C.; Laine, E.; Urosevic, M.; Dummer, R., Green tea
extract reduces induction of p53 and apoptosis in UVB-
irradiated human skin independent of transcriptional
controls. Experimental Dermatology 2009, 18, (1), 69-77.
Motegi, A.; Myung, K., Measuring the rate of gross
chromosomal rearrangements in Saccharomyces cerevisiae: A
practical approach to study genomic rearrangements
observed in cancer. Methods 2007, 41, (2), 168-76.
Nakagawa, K.; Miyazawa, T., Absorption and distribution of
tea catechin, (-)-epigallocatechin-3-gallate, in the rat.
J Nutr Sci Vitaminol (Tokyo) 1997, 43, (6), 679-84.
Nakagawa, K.; Miyazawa, T., Chemiluminescence-high-
performance liquid chromatographic determination of tea
catechin, (-)-epigallocatechin 3-gallate, at picomole
levels in rat and human plasma. Anal Biochem 1997, 248,
(1), 41-9.
Okai, Y.; Higashi-Okai, K., Potent suppressing activity of
the non-polyphenolic fraction of green tea (Camellia
sinensis) against genotoxin-induced umu C gene expression
in Salmonella typhimurium (TA 1535/pSK 1002)--association
with pheophytins a and b. Cancer Lett 1997, 120, (1), 117-
23.
Prakash, S.; Prakash, L., Nucleotide excision repair in
yeast. Mutation Research-Fundamental and Molecular
Mechanisms of Mutagenesis 2000, 451, (1-2), 13-24.
Ross, S. J.; Findlay, V. J.; Malakasi, P.; Morgan, B. A.,
Thioredoxin peroxidase is required for the transcriptional
response to oxidative stress in budding yeast. Mol Biol
Cell 2000, 11, (8), 2631-42.
Rowe, L. A.; Degtyareva, N.; Doetsch, P. W., DNA damage-
induced reactive oxygen species (ROS) stress response in
Saccharomyces cerevisiae. Free Radic Biol Med 2008, 45,
(8), 1167-77.
San Filippo, J.; Sung, P.; Klein, H., Mechanism of
eukaryotic homologous recombination. Annu Rev Biochem
2008, 77, 229-57.
Schild, D.; Wiese, C., Overexpression of RAD51 suppresses
recombination defects: a possible mechanism to reverse
genomic instability. Nucleic Acids Res 2009, 38, (4), 1061-
70.
Schwarz, A.; Maeda, A.; Gan, D.; Mammone, T.; Matsui, M.
S.; Schwarz, T., Green tea phenol extracts reduce UVB-
induced DNA damage in human cells via interleukin-12.
Photochem Photobiol 2008, 84, (2), 350-5.
Shim, J. S.; Kang, M. H.; Kim, Y. H.; Roh, J. K.; Roberts,
C.; Lee, I. P., Chemopreventive effect of green tea
(Camellia sinensis) among cigarette smokers. Cancer
Epidemiol Biomarkers Prev 1995, 4, (4), 387-91.
Smith, S.; Hwang, J. Y.; Banerjee, S.; Majeed, A.; Gupta,
A.; Myung, K., Mutator genes for suppression of gross
chromosomal rearrangements identified by a genome-wide
screening in Saccharomyces cerevisiae. Proc Natl Acad Sci
U S A 2004, 101, (24), 9039-44.
Tachibana, T.; Okazaki, S.; Murayama, A.; Naganuma, A.;
Nomoto, A.; Kuge, S., A major peroxiredoxin-induced
activation of Yap1 transcription factor is mediated by
reduction-sensitive disulfide bonds and reveals a low
level of transcriptional activation. J Biol Chem 2009,
284, (7), 4464-72.
van Gent, D. C.; Hoeijmakers, J. H. J.; Kanaar, R.,
Chromosomal stability and the DNA double-stranded break
connection. Nature Reviews Genetics 2001, 2, (3), 196-206.
Van Laethem, A.; Garmyn, M.; Agostinis, P., Starting and
propagating apoptotic signals in UVB irradiated
keratinocytes. Photochem Photobiol Sci 2009, 8, (3), 299-
308.
Wong, J. M. S.; Ingles, C. J., A compromised yeast RNA
polymerase II enhances UV sensitivity in the absence of
global genome nucleotide excision repair. Molecular and
General Genetics 2001, 264, (6), 842-851.
Yang, M. M.; Jarrett, S. G.; Craven, R.; Kaetzel, D. M.,
YNK1, the yeast homolog of human metastasis suppressor
NM23, is required for repair of UV radiation- and
etoposide-induced DNA damage. Mutation Research-
Fundamental and Molecular Mechanisms of Mutagenesis 2009,
660, (1-2), 74-78.
Zhou, B. B.; Chaturvedi, P.; Spring, K.; Scott, S. P.;
Johanson, R. A.; Mishra, R.; Mattern, M. R.; Winkler, J.
D.; Khanna, K. K., Caffeine abolishes the mammalian G(2)/M
DNA damage checkpoint by inhibiting ataxia-telangiectasia-
mutated kinase activity. J Biol Chem 2000, 275, (14),
10342-8.
Zhou, R.; Zhou, Y.; Chen, D.; Li, S.; Haug, A., Effects of
soaking temperature and soaking time during preparation of
water extract of tea on anticlastogenicity against
environmental tobacco smoke in the sister-chromatid
exchange assay. Toxicol Lett 2000, 115, (1), 23-32.
Zhu, Q. Y.; Zhang, A. Q.; Tsang, D.; Huang, Y.; Chen, Z.
Y., Stability of green tea catechins. Journal of
Agricultural and Food Chemistry 1997, 45, (12), 4624-4628.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47414-
dc.description.abstract綠茶已知含豐富多酚化合物,並被視為具抗癌與抗致突變性之物質。本篇研究探討綠茶萃出物對紫外線照射所誘發的酵母菌基因不穩定性之影響。將綠茶萃出物添加於培養液中進行酵母菌培養,之後再對酵母菌施予紫外光照射,以觀察其細胞存活率、細胞突變率、細胞週期、活性氧自由基群與修復相關基因之表現。結果顯示,綠茶組在紫外線照射後,其活性氧自由基群含量隨時間而下降;但控制組或EGCG及咖啡因處理組別則呈現上升之趨勢。然而,綠茶添加與否並無影響因紫外線照射所引起之細胞週期停滯現象。在抗氧化相關酵素基因表現的研究上則發現,綠茶可調節硫氧還原蛋白過氧化脢、超氧岐化脢與過氧化氫催化脢之基因表現。且DNA修復蛋白,RAD14和RAD51也在綠茶添加組有較強之基因表現。因此,綠茶添加組別顯現較控制組與其他對照組更高的細胞存活率,且其紫外線誘導基因突變比率,也是所有組別中最低的。綜合上述結論得知,綠茶萃出物可藉由降低活性氧自由基群,與活化氧化還原和DNA修復系統來達到穩定酵母菌基因體之正面效應。而本研究結果也證明,酵母菌可應用於探討生物活性成分之功能。zh_TW
dc.description.abstractGreen tea is renowned for containing rich polyphenols that are considered the anti-carcinogenic and anti-mutagenic agents. In this study, we investigated how green tea extract (GTE) affects yeast genome instability induced by UVB irradiation. Yeast was cultured in mediums with or without GTE. After UVB irradiation, the cells were collected for assays of survival, gene mutation, reactive oxygen species (ROS), cell cycle, and expressions of redox and repair genes. The reactive oxygen species (ROS) levels in cells were declined gradually after UVB exposure in GTE-treated group; nevertheless, an increasing trend was observed in control or EGCG or caffeine-treated group. However, the G1/S phase cell cycle arrest induced by UVB damage was unaffected by the addition of GTE. Furthermore, the gene expressions of antioxidative enzymes, TSA1, SOD1 and CTT1 were modulated by GTE. DNA-repair genes, RAD14 and RAD51, responsible for nucleotide excision repair and homologous recombination repair pathways respectively, were activated with GTE treatment. As a result, the cell survival rates were elevated while the gene mutation rates were decreased with the administration of GTE. In conclusion, we found that GTE had positive effects on the maintenance of genome stability in yeast through effectively lowering ROS levels, and activating redox and DNA repair systems. These results also demonstrate that yeast can be a powerful tool for distinguishing the biological functions of bioactive compounds.en
dc.description.provenanceMade available in DSpace on 2021-06-15T05:58:46Z (GMT). No. of bitstreams: 1
ntu-99-R97641031-1.pdf: 1962749 bytes, checksum: fed89a7ff62abe658dde1cb85bc1edd8 (MD5)
Previous issue date: 2010
en
dc.description.tableofcontentsAbstract………………………………………………… I
Abstract (Chinese version )………………………… III
Contents………………………………………………… IV
Figures ………………………………………………… VI
Tables …………………………………………………… VIII
Chapter 1. Literature Reviews…………………………………………………………………1
1. Introduction of green tea polyphenols
1.1 The constituents of green tea polyphenols …………… 1
1.2 Chemoprevention of green tea polyphenols ………………3
2. DNA damage and repair
2.1 Brief introduction of DNA damage and repair……………6
2.2 DNA damage response……………………………………………8
2.3 UV irradiation induced nucleotide-excision repair……9
2.4 Double-strand breaks induced homologous recombination
repair…………………………………………………………… 11
3. The aspects in genome stability
3.1 Carcinogenesis related with genome instability……… 13
3.2 The associations between green tea polyphenols and
genome stability……………………………………………… 14
3.3 The impacts of caffeine on genome stability .........15
4. Introduction of Saccharomyces cerevisiae
4.1 The advantages of yeast as a model organism ………… 16
4.2 DNA repair proteins in S. cerevisiae conserved in
human………………………………………………………………17
4.3 Redox regulation in S. cerevisiae…………………………20
4.4 The principle of gross chromosomal rearrangement assay
in S. cerevisiae……………………………………………… 22
5. Objectives…………………………………………………………23
6. Experimental Design ………………………………………… 24
Chapter 2. Materials and Methods……………………………… 25
Chapter 3. Results ……………………………………………… 39
Chapter 4. Discussion …………………………………………… 62
Chapter 5. Conclusion …………………………………………… 65
References ………………………………………………………… 66
Appendix 1 ...............................................71
Appendix 2................................................72
Appendix 3 ...............................................73
Appendix 4 ...............................................74
Appendix 5 ...............................................75
Appendix 6 ...............................................76
Appendix 7 ...............................................77
Appendix 8 ...............................................78
dc.language.isoen
dc.subject活性氧自由基群zh_TW
dc.subject綠茶萃出物zh_TW
dc.subject紫外線照射zh_TW
dc.subject基因穩定性zh_TW
dc.subjectDNA修復zh_TW
dc.subjectgreen tea extracten
dc.subjectROSen
dc.subjectDNA repairen
dc.subjectgenome stabilityen
dc.subjectUVB irradiationen
dc.title綠茶萃出物對維持酵母菌基因穩定性之影響zh_TW
dc.titleEffect of green tea extract on the maintenance of genome stability in yeasten
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree碩士
dc.contributor.coadvisor許順堯(Shun-Yao Hsu)
dc.contributor.oralexamcommittee何其儻(Chi-Tang Ho),潘敏雄(Min-Hsiung Pan),謝淑貞(Shu-Chen Shieh),高承福(Cheng-Fu Kao)
dc.subject.keyword綠茶萃出物,紫外線照射,基因穩定性,DNA修復,活性氧自由基群,zh_TW
dc.subject.keywordgreen tea extract,UVB irradiation,genome stability,DNA repair,ROS,en
dc.relation.page93
dc.rights.note有償授權
dc.date.accepted2010-08-17
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept食品科技研究所zh_TW
顯示於系所單位:食品科技研究所

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  未授權公開取用
1.92 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved