請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47138
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 梁碧惠 | |
dc.contributor.author | Ming-Han Hsieh | en |
dc.contributor.author | 謝明翰 | zh_TW |
dc.date.accessioned | 2021-06-15T05:48:41Z | - |
dc.date.available | 2011-09-13 | |
dc.date.copyright | 2010-09-13 | |
dc.date.issued | 2010 | |
dc.date.submitted | 2010-08-19 | |
dc.identifier.citation | 1. Natori, T.; Koezuka, Y.; Higa, T. Agelasphins, novel α–galactosylceramides from the marine sponge Agelas mauritianus. Tetrahedron Lett. 1993, 34, 5591–5592.
2. Akimoto, K.; Natori, T.; Morita, M. Synthesis and stereochemistry of agelasphin–9b. Tetrahedron Lett. 1993, 34, 5593–5596. 3. Natori, T.; Morita, M.; Akimoto, K.; Koezuka, Y. Agelasphins, Novel antitumor and immunostimulatory cerebrosides from the marine sponge Agelas–Mauritianus. Tetrahedron 1994, 50, 2771–2784. 4. Morita, M.; Motoki, K.; Akimoto, K.; Natori, T.; Sakai, T.; Sawa, E.; Yamaji, K.; Koezuka, Y.; Kobayashi, E.; Fukushima, H. Structure–activity relationship of α–Galactosylceramides against B16–bearing mice. J. Med. Chem. 1995, 38, 2176–2187. 5. Kawano, T.; Cui, J. Q.; Koezuka, Y.; Toura, I.; Kaneko, Y.; Motoki, K.; Ueno, H.; Nakagawa, R.; Sato, H.; Kondo, E.; Koseki, H.; Taniguchi, M. CD1d–restricted and TCR–mediated activation of Vα14 NKT cells by glycosylceramides. Science 1997, 278, 1626–1629. 6. Kronenberg, M.; Rudensky, A. Regulation of immunity by self–reactive T cells. Nature 2005, 435, 598–604. 7. Porcelli, S. A.; Modlin, R. L. The CD1 system: antigen–presenting molecules for T cell recognition of lipids and glycolipids. Annu. Rev. Immunol. 1999, 17, 297–329. 8. Brigl, M.; Brenner, M. B. CD1: Antigen presentation and T cell function. Annu. Rev. Immunol. 2004, 22, 817–890. 9. Calabi, F.; Jarvis, J. M.; Martin, L.; Milstein, C. Two classes of CD1 genes. Eur. J. Immunol. 1989, 19, 285–292. 10. Wu, D.; Fujio, M.; Wong, C. H., Glycolipids as immunostimulating agents. Bioorgan. Med. Chem. 2008, 16, 1073–1083. 11. Zajonc, D. M.; Elsliger, M. A.; Teyton, L.; Wilson, I. A. Crystal structure of CD1a in complex with a sulfatide self antigen at a resolution of 2.15 A. Nat. Immunol. 2003, 4, 808–815. 12. Zajonc, D. M.; Crispin, M. D. M.; Bowden, T. A.; Young, D. C.; Cheng, T.–Y.; Hu, J.; Costello, C. E.; Rudd, P. M.; Dwek, R. A.; Miller, M. J.; Brenner, M. B.; Moody, D. B.; Wilson, I. A. Molecular mechanism of lipopeptide presentation by CD1a. Immunity 2005, 22, 209–219. 13. Borg, N. A.; Wun, K. S.; Kjer–Nielsen, L.; Wilce, M. C. J.; Pellicci, D. G.; Koh, R.; Besra, G. S.; Bharadwaj, M.; Godfrey, D. I.; McCluskey, J.; Rossjohn, J. CD1d–lipid–antigen recognition by the semi–invariant NKT T–cell receptor. Nature 2007, 448, 44–49. 14. Gadola, S. D.; Zaccai, N. R.; Harlos, K.; Shepherd, D.; Castro–Palomino, J. C.; Ritter, G.; Schmidt, R. R.; Jones, E. Y.; Cerundolo, V. Structure of human CD1b with bound ligands at 2.3 A, a maze for alkyl chains. Nat. Immunol. 2002, 3, 721–726. 15. Batuwangala, T.; Shepherd, D.; Gadola, S. D.; Gibson, K. J. C.; Zaccai, N. R.; Fersht, A. R.; Besra, G. S.; Cerundolo, V.; Jones, E. Y. The crystal structure of human CD1b with a bound bacterial glycolipid. J. Immunol. 2004, 172, 2382–2388. 16. Koch, M.; Stronge, V. S.; Shepherd, D.; Gadola, S. D.; Mathew, B.; Ritter, G.; Fersht, A. R.; Besra, G. S.; Schmidt, R. R.; Jones, E. Y.; Cerundolo, V. The crystal structure of human CD1d with and without α–galactosylceramide. Nat. Immunol. 2005, 6, 819–826. 17. Zeng, Z.–H.; Castano, A. R.; Segelke, B. W.; Stura, E. A.; Peterson, P. A.; Wilson, I. A. Crystal structure of mouse CD1: an MHC–like fold with a large hydrophobic binding groove. Science 1997, 277, 339–345. 18. Zajonc, D. M.; Cantu Iii, C.; Mattner, J.; Zhou, D.; Savage, P. B.; Bendelac, A.; Wilson, I. A.; Teyton, L. Structure and function of a potent agonist for the semi–invariant natural killer T cell receptor. Nat. Immunol. 2005, 6, 810–818. 19. Bendelac, A.; Savage, P. B.; Teyton, L. The biology of NKT cells. Annu. Rev. Immunol. 2007, 25, 297–336. 20. Park, S.–H.; Weiss, A.; Benlagha, K.; Kyin, T.; Teyton, L.; Bendelac, A., The mouse CD1d–restricted repertoire is dominated by a few autoreactive T cell receptor families. J. Exp. Med. 2001, 193, 893–904. 21. Cardell, S.; Tangri, S.; Chan, S.; Kronenberg, M.; Benoist, C.; Mathis, D. CD1–restricted CD4+ T–cells in major histocompatibility complex class II–deficient mice. J. Exp. Med. 1995, 182, 993–1004. 22. Mattner, J.; DeBord, K. L.; Ismail, N.; Goff, R. D.; Cantu, C.; Zhou, D. P.; Saint–Mezard, P.; Wang, V.; Gao, Y.; Yin, N.; Hoebe, K.; Schneewind, O.; Walker, D.; Beutler, B.; Teyton, L.; Savage, P. B.; Bendelac, A. Exogenous and endogenous glycolipid antigens activate NKT cells during microbial infections. Nature 2005, 434, 525–529. 23. Kinjo, Y.; Wu, D.; Kim, G.; Xing, G. W.; Poles, M.; Tsuji, M.; Kawahara, K.; Wong, C. H.; Kronenberg, M. Recognition of bacterial glycosphingolipids by natural killer T cells. Faseb Journal 2005, 19, A405–A405. 24. Godfrey, D. I.; MacDonald, H. R.; Kronenberg, M.; Smyth, M. J.; Kaer, L. V. NKT cells: what's in a name? Nat. Rev. Immunol. 2004, 4, 231–237. 25. Taniguchi, M.; Harada, M.; Kojo, S.; Nakayama, T.; Wakao, H. The regulatory role of Vα14 NKT cells in innate and aquired immune response. Annu. Rev. Immunol. 2003, 21, 483–513. 26. Oki, S.; Chiba, A.; Yamamura, T.; Miyake, S. The clinical implication and molecular mechanism of preferential IL–4 production by modified glycolipid–stimulated NKT cells. J. Clin. Invest. 2004, 113, 1631–1640. 27. Im, J. S.; Arora, P.; Bricard, G.; Molano, A.; Venkataswamy, M. M.; Baine, I.; Jerud, E. S.; Goldberg, M. F.; Baena, A.; Yu, K. O. A.; Ndonye, R. M.; Howell, A. R.; Yuan, W. M.; Cresswell, P.; Chang, Y. T.; Illarionov, P. A.; Besra, G. S.; Porcelli, S. A. Kinetics and cellular site of glycolipid loading control the outcome of natural killer T cell activation. Immunity 2009, 30, 888–898. 28. Prigozy, T. I.; Naidenko, O.; Qasba, P.; Elewaut, D.; Brossay, L.; Khurana, A.; Natori, T.; Koezuka, Y.; Kulkarni, A.; Kronenberg, M. Glycolipid antigen processing for presentation by CD1d molecules. Science 2001, 291, 664–667. 29. Zhou, X. T.; Forestier, C.; Goff, R. D.; Li, C. H.; Teyton, L.; Bendelac, A.; Savage, P. B. Synthesis and NKT cell stimulating properties of fluorophore– and biotin–appended 6'–amino–6'–deoxy–galactosylceramides. Org. Lett. 2002, 4, 1267–1270. 30. Trappeniers, M.; Van Beneden, K.; Decruy, T.; Hillaert, U.; Linclau, B.; Elewaut, D.; Van Calenbergh, S. 6'–Derivatised α–GalCer analogues capable of inducing strong CD1d–mediated Th1–biased NKT cell responses in mice. J. Am. Chem. Soc. 2008, 130, 16468–16489. 31. Wu, D.; Xing, G. W.; Poles, M. A.; Horowitz, A.; Kinjo, Y.; Sullivan, B.; Bodmer–Narkevitch, V.; Plettenburg, O.; Kronenberg, M.; Tsuji, M.; Ho, D. D.; Wong, C. H. Bacterial glycolipids and analogs as antigens for CD1d–restricted NKT cells. Proc. Natl. Acad. Sci. USA 2005, 102, 1351–1356. 32. Raju, R.; Castillo, B. F.; Richardson, S. K.; Thakur, M.; Severins, R.; Kronenberg, M.; Howell, A. R. Synthesis and evaluation of 3'– and 4'–deoxy and –fluoro analogs of the immunostimulatory glycolipid, KRN7000. Bioorg. Med. Chem. Lett. 2009, 19, 4122–4125. 33. Tashiro, T.; Nakagawa, R.; Hirokawa, T.; Inoue, S.; Watarai, H.; Taniguchi, M.; Mori, K. RCAI–37, 56, 59, 60, 92, 101, and 102, cyclitol and carbasugar analogs of KRN7000: Their synthesis and bioactivity for mouse lymphocytes to produce Th1–biased cytokines. Bioorg. Med. Chem. 2009, 17, 6360–6373. 34. Fan, G. T.; Pan, Y. S.; Lu, K. C.; Cheng, Y. P.; Lin, W. C.; Lin, S.; Lin, C. H.; Wong, C. H.; Fang, J. M.; Lin, C. C. Synthesis of α–galactosylceramide and the related glycolipids for evaluation of their activities on mouse splenocytes. Tetrahedron 2005, 61, 1855–1862. 35. Veerapen, N.; Reddington, F.; Bricard, G.; Porcelli, S. A.; Besra, G. S. Synthesis and biological activity of α–L–fucosyl ceramides, analogues of the potent agonist, α–D–galactosyl ceramide KRN7000. Bioorg. Med. Chem. Lett. 2010, 20, 3223–3226. 36. Sidobre, S.; Hammond, K. J. L.; Benazet–Sidobre, L.; Maltsev, S. D.; Richardson, S. K.; Ndonye, R. M.; Howell, A. R.; Sakai, T.; Besra, G. S.; Porcelli, S. A.; Kronenberg, M. The T cell antigen receptor expressed by Vα14 iNKT cells has a unique mode of glycosphingolipid antigen recogniton. Proc. Natl. Acad. Sci. USA 2004, 101, 12254–12259. 37. Trappeniers, M.; Goormans, S.; Van Beneden, K.; Decruy, T.; Linclau, B.; Al–Shamkhani, A.; Elliott, T.; Ottensmeier, C.; Werner, J. M.; Elewaut, D.; Van Calenbergh, S. Synthesis and in vitro evaluation of α–GalCer epimers. ChemMedChem 2008, 3, 1061–1070. 38. Park, J. J.; Lee, J. H.; Ghosh, S. C.; Bricard, G.; Venkataswamy, M. M.; Porcelli, S. A.; Chung, S. K. Synthesis of all stereoisomers of KRN7000, the CD1d–binding NKT cell ligand. Bioorg. Med. Chem. Lett. 2008, 18, 3906–3909. 39. Park, J. J.; Lee, J. H.; Seo, K. C.; Bricard, G.; Venkataswamy, M. M.; Porcelli, S. A.; Chung, S. K. Syntheses and biological activities of KRN7000 analogues having aromatic residues in the acyl and backbone chains with varying stereochemistry. Bioorg. Med. Chem. Lett. 2010, 20, 814–818. 40. Leung, L.; Tomassi, C.; Van Beneden, K.; Decruy, T.; Elewaut, D.; Elliott, T.; Al–Shamkhani, A.; Ottensmeier, C.; Van Calenbergh, S.; Werner, J.; Williams, T.; Linclau, B. Synthesis and in vivo evaluation of 4–deoxy–4,4–difluoro–KRN7000. Org. Lett. 2008, 10, 4433–4436. 41. Miyamoto, K.; Miyake, S.; Yamamura, T. A synthetic glycolipid prevents autoimmune encephalomyelitis by inducing TH2 bias of natural killer T cells. Nature 2001, 413, 531–534. 42. Goff, R. D.; Gao, Y.; Mattner, J.; Zhou, D. P.; Yin, N.; Cantu, C.; Teyton, L.; Bendelac, A.; Savage, P. B. Effects of lipid chain lengths in α–galactosylceramides on cytokine release by natural killer T cells. J. Am. Chem. Soc. 2004, 126, 13602–13603. 43. Yu, K. O. A.; Im, J. S.; Molano, A.; Dutronc, Y.; Illarionov, P. A.; Forestier, C.; Fujiwara, N.; Arias, I.; Miyake, S.; Yamamura, T.; Chang, Y. T.; Besra, G. S.; Porcelli, S. A. Modulation of CD1d–restricted NKT cell responses by using N–acyl variants of α–galactosylceram ides. Proc. Natl. Acad. Sci. USA. 2005, 102, 3383–3388. 44. Fujio, M.; Wu, D. G.; Garcia–Navarro, R.; Ho, D. D.; Tsuji, M.; Wong, C. H. Structure–based discovery of glycolipids for CD1d–mediated NKT cell activation: tuning the adjuvant versus immunosuppression activity. J. Am. Chem. Soc. 2006, 128, 9022–9023. 45. Chang, Y. J.; Huang, J. R.; Tsai, Y. C.; Hung, J. T.; Wu, D.; Fujio, M.; Wong, C. H.; Yu, A. L., Potent immune–modulating and anticancer effects of NKT cell stimulatory glycolipids. Proc. Natl. Acad. Sci. USA. 2007, 104, 10299–10304. 46. Liang, P.–H.; Wang, S.–K.; Wong, C.–H. Quantitative analysis of carbohydrate−protein interactions using glycan microarrays: determination of surface and solution dissociation constants. J. Am. Chem. Soc. 2007, 129, 11177–11184. 47. Wong, C.–H.; Yu, A.; Chang, Y.–J.; Lin, K.–H.; Hung, J.–T. α–Galactosyl ceramide analogs and their use as immunotherapies. US 2010/0008954 A1. 48. Yang, G. L.; Schmieg, J.; Tsuji, M.; Franck, R. W. The C–glycoside analogue of the immunostimulant α–galactosylceramide (KRN7000): Synthesis and striking enhancement of activity. Angew. Chem. Int. Ed. 2004, 43, 3818–3822. 49. Dere, R. T.; Zhu, X. M. The first synthesis of a thioglycoside analogue of the immunostimulant KRN7000. Org. Lett. 2008, 10, 4641–4644. 50. Blauvelt, M. L.; Khalili, M.; Jaung, W.; Paulsen, J.; Anderson, A. C.; Wilson, S. B.; Howell, A. R. α–S–GalCer: Synthesis and evaluation for iNKT cell stimulation. Bioorg. Med. Chem. Lett. 2008, 18, 6968–6970. 51. Howell, A. R.; Ndakala, A. J. The preparation and biological significance of phytosphingosines. Curr. Org. Chem. 2002, 6, 365–391. 52. Figueroa–Perez, S.; Schmidt, R. R. Total synthesis of α–galactosyl cerebroside. Carbohydr. Res. 2000, 328, 95–102. 53. Plettenburg, O.; Bodmer–Narkevitch, V.; Wong, C. H. Synthesis of α–galactosylceramide, a potent immunostimulatory agent. J. Org. Chem. 2002, 67, 4559–4564. 54. Lin, C. C.; Fan, G. T.; Fang, J. M. A concise route to phytosphingosine from lyxose. Tetrahedron Lett. 2003, 44, 5281–5283. 55. Liang, Y. F.; Andersch, J.; Bols, M. Garner's aldehyde. J. Chem. Soc. Perk. Tran. 1 2001, 2136–2157. 56. Imashiro, R.; Sakurai, O.; Yamashita, T.; Horikawa, H. A short and efficient synthesis of phytosphingosines using asymmetric dihydroxylation. Tetrahedron 1998, 54, 10657–10670. 57. Ndonye, R. M.; Izmirian, D. P.; Dunn, M. F.; Yu, K. O. A.; Porcelli, S. A.; Khurana, A.; Kronenberg, M.; Richardson, S. K.; Howell, A. R. Synthesis and evaluation of sphinganine analogues of KRN7000 and OCH. J. Org. Chem. 2005, 70, 10260–10270. 58. Shirota, O.; Nakanishi, K.; Berova, N. Phytosphingosines – a facile synthesis and spectroscopic protocol for configurational assignment. Tetrahedron 1999, 55, 13643–13658. 59. Takikawa, H.; Muto, S.–e.; Mori, K. Diastereoselective epoxidation of the double bond at C–4 of sphingosines to provide phytosphingosine relatives such as α–galactosylceramide KRN7000. Tetrahedron 1998, 54, 3141–3150. 60. Kim, S.; Song, S.; Lee, T.; Jung, S.; Kim, D. Practical synthesis of KRN7000 from phytosphingosine. Synthesis 2004, 847–850. 61. Xia, C. F.; Yao, Q. J.; Schumann, J.; Rossy, E.; Chen, W. L.; Zhu, L. Z.; Zhang, W. P.; De Libero, G.; Wang, P. G. Synthesis and biological evaluation of α–galactosylceramide (KRN7000) and isoglobotrihexosylceramide (iGb3). Bioorg. Med. Chem. Lett. 2006, 16, 2195–2199. 62. Luo, S. Y.; Kulkarni, S. S.; Chou, C. H.; Liao, W. M.; Hung, S. C. A concise synthesis of tetrahydroxy–LCB, (α–galactosyl ceramide, and 1,4–dideoxy–1,4– imino–L–ribitol via D–allosamines as key building blocks. J. Org. Chem. 2006, 71, 1226–1229. 63. Schombs, M.; Park, F. E.; Du, W.; Kulkarni, S. S.; Gervay–Hague, J. One–pot syntheses of immunostimulatory glycolipids. J. Org. Chem. 2010, in press. 64. Schmidt, R. R.; Zimmermann, P. Glycosylimidates .23. Synthesis of glycosphingolipids and Psychosines. Angew. Chem. Int. Ed. 1986, 25, 725–726. 65. Garcia, B. A.; Poole, J. L.; Gin, D. Y. Direct glycosylations with 1–hydroxy glycosyl donors using trifluoromethanesulfonic anhydride and diphenyl sulfoxide. J. Am. Chem. Soc. 1997, 119, 7597–7598. 66. Garcia, B. A.; Gin, D. Y. Dehydrative glycosylation with activated diphenyl sulfonium reagents. Scope, mode of C(1)–hemiacetal activation, and detection of reactive glycosyl intermediates. J. Am. Chem. Soc. 2000, 122, 4269–4279. 67. Nguyen, H. M.; Chen, Y. N.; Duron, S. G.; Gin, D. Y. Sulfide–mediated dehydrative glycosylation. J. Am. Chem. Soc. 2001, 123, 8766–8772. 68. Du, W. J.; Gervay–Hague, J. Efficient synthesis of α–galactosyl ceramide analogues using glycosyl iodide donors. Org. Lett. 2005, 7, 2063–2065. 69. Du, W.; Kulkarni, S. S.; Gervay–Hague, J. Efficient, one–pot syntheses of biologically active α–linked glycolipids. Chem. Commun. 2007, 2336–2338. 70. Giaccone, G.; Punt, C. J. A.; Ando, Y.; Ruijter, R.; Nishi, N.; Peters, M.; von Blomberg, B. M. E.; Scheper, R. J.; van der Vliet, H. J. J.; van den Eertwegh, A. J. M.; Roelvink, M.; Beijnen, J.; Zwierzina, H.; Pinedo, H. M. A phase I study of the natural killer T–cell ligand α–Galactosylceramide (KRN7000) in patients with solid tumors. Clin. Cancer Res. 2002, 8, 3702–3709. 71. Ishikawa, A.; Motohashi, S.; Ishikawa, E.; Fuchida, H.; Higashino, K.; Otsuji, M.; Iizasa, T.; Nakayama, T.; Taniguchi, M.; Fujisawa, T. A phase I study of α–galactosylceramide (KRN7000)–pulsed dendritic cells in patients with advanced and recurrent non–small cell lung cancer. Clin. Cancer Res. 2005, 11, 1910–1917. 72. Smyth, M. J.; Godfrey, D. I. NKT cells and tumor immunity– a double–edged sword. Nat. Immunol. 2000, 1, 459–460. 73. Schiefner, A.; Fujio, M.; Wu, D.; Wong, C. H.; Wilson, I. A. Structural evaluation of potent NKT cell agonists: implications for design of novel stimulatory ligands. J. Mol. Biol. 2009, 394, 71–82. 74. Topliss, J. G. Utilization of operational schemes for analog synthesis in drug design. J. Med. Chem. 1972, 15, 1006–1011. 75. Phytosphingosine HCl [(2S,3S,4R)–2–amino–1,3,4–octadecanetriol hydrochloride] is now readily available from a yeast fermentation process. For information, contact Evonik Degussa Taiwan Ltd., 9F, 133 Min Sheng E. Rd., Sec. 3, Taipei, 10596, Taiwan; Tel +886–2–27171242 EXT 213; Fax +886–2–27172106; e–mail: irma.chen@evonik.com. 76. Alper, P. B.; Hung, S. C.; Wong, C. H. Metal catalyzed diazo transfer for the synthesis of azides from amines. Tetrahedron Lett. 1996, 37, 6029–6032. 77. Tatai, J.; Fugedi, P. A new, powerful glycosylation method: Activation of thioglycosides with dimethyl disulfide–triflic anhydride. Org. Lett. 2007, 9, 4647–4650. 78. Dondoni, A.; Perrone, D., Synthesis of 1,1–dimethylethyl (S)–4–formyl–2,2– dimethyl–3–oxazolidinecarboxylate by oxidation of the alcohol. Org. Syn. 2004, 10, 320–326. 79. Kolb, H. C.; VanNieuwenhze, M. S.; Sharpless, K. B. Catalytic asymmetric dihydroxylation. Chem. Rev. 1994, 94, 2483–2547. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47138 | - |
dc.description.abstract | 從海棉中萃取出的醣脂質化合物— α-Galactosylceramide (α-GalCer),在in vivo與in vitro研究顯示其具有抗腫瘤活性。這種醣脂質與抗原呈現細胞上的CD1d蛋白結合後,形成CD1d/醣脂質/自然殺手T細胞複合體,而刺激自然殺手T細胞產生Th1 細胞激素和Th2細胞激素。在醯基鏈或醣基之C6”有芳香基取代之α-GalCer衍生物,有較佳之刺激Th1細胞激素分泌之選擇性。目前尚未有科學家研究這兩類化合物芳香基上之取代的結構與活性關係,因此,根據Topliss方法,我們設計苯基取代的癸醯基鏈類似物,使用A20CD1d 和mNK1.2系統測試其對IL-2分泌之刺激,結果顯示這類癸醯基鏈苯基取代基的化合物具有與α-GalCer相當之活性。我們在C6”位置上以苯基醯胺取代,發現碳鏈長度最短之苯基乙醯胺取代的87在87 - 89當中最有活性。因此,我們進一步合成C6”和醯基鏈雙苯基取代之化合物,其中在C6”之苯基有推電子取代之94, 98和100,相較於α-GalCer的免疫刺激活性略為增加。另外,我們合成醯基鏈有雙羥基之化合物,為增加化合物之水溶性,活性測試顯示其活性與α-GalCer相當。
目前最有活性之α-GalCer類似物C34,被選為進入前臨床及臨床試驗之抗癌藥物。為了藥物化學之研究,文獻中僅有小量之醣脂質合成方法,但大量的製程研究還未被報導過。為此,我們開發大量的C34製程,以phytosphingosine HCl為起始物,經由八個化學反應,總產率為14%。關鍵的醣化反應,我們選擇 thioglycoside做為供給者以Me2S2-Tf2O在溫和的條件下反應,較適合於工業上之應用。經過反應條件之最佳化,我們能夠在實驗室操作50克之批次。 | zh_TW |
dc.description.abstract | α-Galactosylceramide (α-GalCer), a glycolipid derived from marine sponge, found to exhibit antitumor activity in vitro and in vivo. Upon binding with CD1d molecule on APC, this CD1d/glycolipid/NKT cell complex stimulates the production of both Th1 and Th2 cytokines by NKT cells. Aromatic acyl chain modifications and aromatic substituents on ceramide and galactose C6” of α-GalCer, respectively, were found to exhibit potent agonistic activity to Th1 cytokines secretions. The structure-activity relationship (SAR) study of the substitutions on both aromatic rings has not yet been reported. Base on Topliss rule, we designed various phenyl-substituted acyl chain analogs of α-GalCer and evaluated their IL-2 secretion in A20CD1d & mNK1.2 system. Compounds with different aromatic substitutions on undecanoyl chain were shown to have comparable activity to α-GalCer. The C6” phenyl acetamido substituted analog 87 was the most potent one among 87 - 89. Furthermore, the C6” and acyl chain bi-modified analogs were synthesized and evaluated, compounds with electron-donating property (94, 98, 100) at C6” phenyl acetamido group were found to slightly increase immunostimulating activity compared to α-GalCer.
The most potent α-GalCer analog, C34, was chosen for preclinical and clinical application for anticancer therapy. Although milligram-scale syntheses of glycolipids have been developed for medicinal chemical research, a large scale synthesis and process development have not been reported. To this end, we developed a scale-up synthesis of C34 in an eight-step process commenced from phytosphingosine HCl in total 14% yield. The critical step of this process is glycosylation, thiolglycoside was selected as a glycosyl donor which was activated by Me2S2-Tf2O under mild condition. Such strategy is more applicable in industrial practice. After each step was fine tuned and optimized, we were able to operate up to 50 g scale in the laboratorial batch. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T05:48:41Z (GMT). No. of bitstreams: 1 ntu-99-R97423018-1.pdf: 16953381 bytes, checksum: 2895ff4e1315857eaf978f403f83df47 (MD5) Previous issue date: 2010 | en |
dc.description.tableofcontents | 中文摘要……………………………………………………………… I
英文摘要……………………………………………………………… II 表目錄………………………………………………………………… V 路徑目錄……………………………………………………………… VI 圖目錄………………………………………………………………… VII 詞彙…………………………………………………………………… IX 一、研究背景………………………………………………………… 1 1.1. α-Galactosylceramide之發現 ……………………………… 1 1.2. α-GalCer之作用機制 ………………………………………… 2 1.3. α-GalCer類似物之結構活性關係……………………………… 6 1.3.1. 醣基部份之研究……………………………………………… 6 1.3.2. Ceramide部分之研究………………………………………… 10 1.4. Glycolipid之合成……………………………………………… 15 1.4.1. Phytosphingosine 部份之合成…………………………… 15 1.4.2. 醣化反應之研究…………………………………………… 19 1.5. 研究動機與目的……………………………………………… 23 二、結果和討論……………………………………………………… 26 2.1. C34合成之研究 ……………………………………………… 26 2.1.1. 醣化反應方法之研究……………………………………… 28 2.1.2. 供給者之合成……………………………………………… 32 2.1.3. 醯基鏈之合成……………………………………………… 33 2.1.4. 其他合成方式……………………………………………… 36 2.1.5. 製程放大與討論…………………………………………… 38 2.2. α-GalCer衍生物合成………………………………………… 41 2.3. 生物活性……………………………………………………… 47 三、結論……………………………………………………………… 51 四、實驗部分………………………………………………………… 53 4.1. 溶劑、藥品及儀器來源……………………………………… 53 4.2. 合成步驟……………………………………………………… 56 五、參考文獻………………………………………………………… 118 六、附圖……………………………………………………………… 129 | |
dc.language.iso | zh-TW | |
dc.title | 合成α-GalCer之衍生物作為免疫刺激劑 | zh_TW |
dc.title | Synthesis of α-GalCer analogs as immunostimulants | en |
dc.type | Thesis | |
dc.date.schoolyear | 98-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 王光昭,方俊民,忻凌偉,鄭偉杰 | |
dc.subject.keyword | 醣脂質,自然殺手T細胞,免疫刺激, | zh_TW |
dc.subject.keyword | α-Galactosylceramide,glycolipid,natural killer T cells,immunotherapy,immunostimulation, | en |
dc.relation.page | 241 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2010-08-19 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 藥學研究所 | zh_TW |
顯示於系所單位: | 藥學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-99-1.pdf 目前未授權公開取用 | 16.56 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。