請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46859完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 周正俊(Cheng-Chun Chou) | |
| dc.contributor.author | Shu-Hui Kao | en |
| dc.contributor.author | 高淑惠 | zh_TW |
| dc.date.accessioned | 2021-06-15T05:42:20Z | - |
| dc.date.available | 2013-08-21 | |
| dc.date.copyright | 2010-08-21 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-08-20 | |
| dc.identifier.citation | 沈立言。1990。精油微膠囊之研究。中興大學博士論文。台中。台灣。
林惠美。2006。蓮藕澱粉顆粒結構之不均勻性與其衍生應用。台灣大學博士論文。台北。台灣。 邱欣怡。2004。藉最適化方法探討添加益菌質於囊壁材質對微膠囊化原生菌之影響。台灣大學碩士論文。台北。台灣。 食品工業發展研究所。2000。乳酸菌專輯。食品工業發展研究所。新竹。台灣。 連紋乾。2000。保健膳食補助品之製備—利用阿拉伯膠及脫脂奶粉低溫噴霧乾燥微膠囊化雙叉桿菌。台灣大學碩士論文。台北。台灣。 Adhikari, K.;Mustapha, A.;Grun, I. U.;Fernando, L. Viability of microencapsulated bifidobacteria in set yogurt during refrigerated storage. J. Dairy Sci. 2000, 83, 1946-1951. Arai, O.;Sasaki, M.;Sugimoto, T. Effectiveness of yoghurt incorporated with enteric bifidobacteria capsules. Food Ind. 1996, 39, 53-58. Arunachalam, K. D. Role of bifidobacteria in nutrition, medicine and technology. Nutr. Res. 1999, 19, 1559-1597. Badenhuizen, N. P. Abhanlung zur physikalischen Chemie der Stärke und der Brotbereitung. XXV. Weitere Beobachtungen iiber die Blockchenstruktur der Starkekiirner. Zeitschrift fir Physik und Chemie 1936, A-175, 383-395.(Cited by Gallant et al., 1997) Badenhuizen, N. P. Die Strukur des Starkekorns. Protoplasma 1937, 28, 293-326.(Cited by Gallant et al., 1997) Bauer, H.; Sigarlakie, E. Faure, J. C. Scanning and transmission electron microscopy of three strains of Bifidobacterium. Can. J. Microbiol. 1975, 21, 1305-1307. Bayram, Ö. A.;Bayram, M.;Tekin, A. R. Spray drying of sumac flavour using sodium chloride, sucrose, glucose and starch as carriers. J. Food Eng. 2005, 69, 253-260. Begley, M.;Gahan, C. G. M.;Hill, C. The interaction between bacteria and bile. FEMS Microbiol. Rev. 2005, 29, 625-651. Benno, Y.;Sawada, K.;Mitsuoka, T. The intestinal microflora of infants:composition of fecal flora in breastfed and bottle-fed infants. Microbiol. Immunol. 1984, 28, 975-986. Blanshard, J. M. V. Starch granule structure and function:a physicochemical approach. In Starch:properties and potentials, critical reports on applied chemistry. Galliard, T.;Wiley, J. & Sons. Chichester:U.K., 1987;pp. 16-54 Bruschi, M. L.;Cardoso, M. L. C.;Lucchesi, M. B.;Gremião, M. P. D. Gelatin microparticles containing propolis obtained by spray-drying technique: preparation and characterization. Int. J. Pharm. 2003, 264, 45-55. Champagne, C. P.;Fustier, P. Microencapsulation for the improved delivery of bioactive compounds into foods. Current Opinion in Biotechnology 2007, 18, 184-190. Charteris, W. P.;Kelly, P. M.;Morelli, L.;Collins, J. K. Selective detection, enumeration and identification of potentially probiotic Lactobacillus and Bifidobacterium species in mixed bacterial populations. Int. J. Food Microbio. 1997, 35, 1-27. Chou, C. C.;Hou, J. W. Growth of bifidobacteria in soymilk and their survival in the fermented soymilk drink during storage. Int. J. Food Microbio. 2000, 56, 113-121. Chung, H. S.;Kim, Y. B.;Chun, S. L.;Ji, G. E. Screening and selection of acid and bile resistant bifidobacteria. Int. J. Food Microbiol. 1999, 47, 25-32. Clark, P. A.;Cotton, L. N.;Martin, J. H. Selection of bifidobacteria for use as dietary adjuncts in cultured dairy foods:II – Tolerance to simulated pH of human stomachs. Cult. Dairy Prod. J. 1993, 28, 11-14. Clark, P. A.;Martin, J. N. Selection of bifidobacteria for use as dietary adjuncts in cultured dairy foods:III – Tolerance to simulated bile concentrations of human small intestines. Cult. Dairy Prod. J. 1994, 29, 18-21. Conway, P. L.;Gorgach, S. L.;Goldin B. R. Survival of lactic-acid bacteria in the human stomach and adhesion to intestinal cells. J. Dairy Sci. 1987, 70, 1-12. Cui, S. W. Food Carbohydrates. Taylor & Francis Group, LLC.:Boca Raton, 2005;pp.314-326. Daly, C. Lactic acid bacteria and milk fermentations. J.Chem. Technol. Biotechnol. 1991, 51, 544-548. Davenport, H. W. Physiology of the Digestvie Tract. Year Book Medical Publishers Incorporated:Chicago, IL, 1977;pp.121 and 232 Dickinson, E. Hydrocolloids at interfaces and the influence on the properties of dispersed systems. Food Hydrocoll. 2003, 17, 25-39. Dubois, M.;Gilles, K. A.;Hamilton, J. K.;Rebers, P. A.;Smith, F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 1956, 28, 350-356. Dziezak, J. D. Microencapsulation and encapsulated ingredients. Food Technol. 1988, 4, 136-151. Ellis, R. P.;Cochrane, M. P.;Dale, M. F. B.;Duffus, C. M.;Lunn, A.;Morrison, I. M.;Prentice, R. D. M.;Swanston, J. S.;Tiller, S. A.;Starch production and industrial use. J. Agric. Food Chem. 1998, 77, 289-311. Espina, F.;Packard, V. S. Survival of Lactobacillus acidophilus in a spray-drying process. J. Food Prot. 1979, 42, 149-152. Fannon, J. E.;Hauber, R. J.;BeMiller, J. N. Surface pores of starch granules. Cereal Chem. 1992, 69, 284-288. Fannon, J. E.;Shull, J. M.;BeMiller, J. N. Interior channels of starch granules. Cereal Chem. 1993, 70, 611-613. Fávaro-Trindade, C. S.;Grosso, C. R. F. Microencapsulation of L. acidophilus (La-05) and B. lactis (Bb-12) and evaluation of their survival at the pH values of the stomach and in bile. J. Microencapsulation 2002, 19, 485-494. Fávaro-Trindade, C. S. Stability of microencapsulated B. lactis (BI 01) and L. acidophilus (LAC 4) by complex coacervation followed by spray drying. J. Microencapsulation 2007, 24, 685-693. Flahaut, S.;Hartke, A.;Giard, J. C.;Benachour, A.;Boutibonnes, P.;Auffray, Y. Relationship between stress response towards bile salts, acid and heat treatment in Enterococcus faecalis. FEMS Microbiol. Lett. 1996, 138, 49-54. Fu, W. Y.;Etzel, M. R. Spray drying of Lactococcus lactis spp. lactis C2 and cellular injury. J. Food Sci. 1995, 60, 195-200. Fuller, R. Probiotics in man and animals: a review. J. Appl. Bacteriol. 1989, 66, 365-378. Fuller, R. Probiotics. In The scientific basis. Chapman and Hall:London, 1992 Gallant, D. J.;Bouchet, B.;Baldwin, P. M. Microscopy of starch:evidence of a new level of granule organization. Carbohydrate Polymers 1997, 32, 177-191. Gharsallaoui, A.; Roudaut, G.; Chambin, O.; Voilley, A.; Saurel, R. Applications of spray-drying in microencapsulation of food ingredients: An overview. Food Research Int. 2007, 40, 1107-1121. Giannella, R. A.;Broitman, S. A.;Zamcheck, N. Gastric acid barrier to ingested microorganism in men: studies in vivo and in vitro. Gut 1972, 13, 251-256. Gibbs, B. F.;Kermasha, S.;Alli, I.;Mulligan, C. N. Encapsulation in the food industry: a review. Int. J. Food Sci. Nutr. 1999, 50, 213-224. Gilliland, S. E. Acidophilus milk products: a review of potential benefits to consumers. J. Dairy Sci. 1989, 72, 2483-2494. Gomes, A. M. P.;Malcata, F. X. Bifidobacterium spp. and Lactobacillus acidophillus:biological, biochemical, technological and therapeutical properties relevant for use as probiotics. Trends Food Sci. Technol. 1999, 10, 139-157. Gray, J. A.;BeMiller, J. N. Development and utilization of reflectance confocal laser scanning microscopy to locate reaction sites in modified starch granules. Cereal Chem. 2004, 81, 278-286. Gray, J. A.;BeMiller, J. N. Influence of reaction conditions on the location of reactions in waxy maize starch granules reacted with a propylene oxide analog at low substitution levels. Carbohydrate Polymers 2005, 60, 147-162. Hall, D. M.;Sayre, J. G. A scanning electron-microscope study of starches. Part I:crushing studies. Tex. Res. J. 1969, 39, 1044-1052. Hall, D. M.;Sayre, J. G. A scanning electron-microscope study of starches. Part II:cereal starches. Tex. Res. J. 1970, 40, 147-57. Helbert, W.;Chanzy, H. The ultrastructure of starch from ultrathin sectioning in melamine resin. Starch Stärke 1996, 48, 185-188. Hofmann, A. F. Bile acids: the good, the bad, and the ugly. News Physiol. Sci. 1999, 14, 24-29. Holcomb, J. E.;Frank, J. F.;Mc Gregor, J. U. Viability of Lactobacillus acidophilus and Bifidobacterium bifidum in soft serve frozen yogurt. Cult. Dairy Prod. J. 1991, 26, 4-5. Holzapfel, W. H.;Haberer, P.;Snel, J.;Huis, H. J. Overview of gut flora and probiotics. Int. J. Food Microbiol. 1998, 41, 85-101. Hoover, R. Composition, molecular structure, and physicochemical properties of tuber and root starches:a review. Carbohydrate Polymers 2001, 45, 253-267. Hose, H.;Sozzi, T. Probiotics, fact or fiction. J. Chem. Technol. Biotechnol. 1991, 51, 540-544. Hsiao, H. C.;Lian, W. C.;Chou, C. C. Effect of packaging conditions and temperature on viability of microencapsulated bifidobacteria during storage. J. Sci. Food Agric. 2004, 84, 134-139. Huber, K. C.;BeMiller, J. N. Visualization of channels and cavities of corn and sorghum starch granules. Cereal Chem. 1997, 74, 537-541. Huber, K. C.;BeMiller, J. N. Channels of maize and sorghum starch granules. Carbohydrate Polymers 2000, 41, 269-276. Huber, K. C.;BeMiller, J. N. Location of sites of reaction within starch granules. Cereal Chem. 2001, 78, 173-180. Hull, R. R.;Conway, P. L.;Evans A. J. Probiotic food — a new opportunity. Food Aust. 1992, 44, 112-113. Ibrahim, S. A.;Bezkorovainy, A. Survival of bifidobacteria in the presence of bile salt. J. Sci. Food Agric. 1993, 62, 351-354. Jafari, S. M.;Assadpoor, E.;He, Y.;Bhandari, B. Encapsulation efficiency of food flavours and oils during spray drying. Dry. Technol. 2008, 26, 816-835. Jimenez, M.;Garcia, H. S.;Beristain, C. I. Spray-drying microencapsulation and oxidative stability of conjugated linoleic acid. European Food Research and Technology 2004, 219, 588-592. Jin, Y. L.;Speers, R. A. Flocculation of Saccharomyces cerevisiae. Food Res. Int. 1998, 31, 421-440. Johnson, J. A. C.;Etzel, M. R. Inactivation of lactic acid bacteria during spray drying. In Food Dehydration. Barbosa-Canovas, G. V.;Okos, M. R. American Institute of Chemical Engineering:New York, 1993;pp. 98-107. Johnson, J. A. C.;Etzel, M. R. Properties of Lactobacillus helveticus CNRZ-32 attenuated by spray-drying, freeze-drying, or freezing. J. Dairy Sci. 1995, 78, 761-768. Johnson, J. A. C.;Etzel, M. R.;Chen, C. M.;Johnson, M. E. Accelerated ripening of reduced-fat Cheddar cheese using four attenuated Lactobacillus helveticus CNRZ-32 adjuncts. J. Dairy Sci. 1995, 78, 769-776. Karamallah, K. A. Gums and stabilizers for the food industry. The Royal Society of Chemistry:U.K., 2000;pp. 37–52. Karel, S. F.;Lividki, S. B.;Robertson, C. R. The immobilization of whole cells – engineering principles. Chem. Eng. Sci. 1985, 40, 1321-1354. Khalil, A. H.;Mansour, E. H. Alginate encapsulated bifidobacteria survival in mayonnaise. J. Food Sci. 1998, 63, 702-705. Kim, S. S.;Bhowmik, S. R. Survival of lactic acid bacteria during spray drying of plain yogurt. J. Food Sci. 1990, 55, 1008-1010. Kim, Y. D.;Morr, C. V. Microencapsulation properties of gum arabic and several food proteins:spray-dried orange oil emulsion particles. J. Agric. Food Chem. 1996, 44, 1314-1320. King, A. H. Encapsulation of food ingredients - a review of available technology. Encapsulation and Controlled Release of Food Ingredients 1995, 590, 26-39. Klaenhammer, T. R.;Kullen, M. J. Selection and design of probiotics. Int. J. Food Microbiol. 1999, 50, 45-47. Kourkoutasa, Y.;Bekatoroua, A.;Banatb, I. M.;Marchantb, R.;Koutinasa, A. A. Immobilization technologies and support materials suitable in alcohol beverages production:a review. Food Microbiol. 2004, 21, 377-397. Lankaputhra, W. E. V.;Shah, N. P. Survival of Lactobacillus and Bifidobacterium spp. in the presence of acid and bile salts. Cult. Dairy Prod. J. 1995, 30, 2-7. Lee, S. J.;Lee, Y. B.;Hong, J. H.;Chung, J. H.;Kim, S. S.;Lee, W. J.;Yoon, J. Optimization of pine flavor microencapsulation by spray drying. Food Science and Biotechnology 2005, 14, 747-751. Lee, Y. K.;Salminen, S. The coming of age of probiotics. Tends Food Sci. 1995, 6, 241-245. Lian, W. C.;Hsiao, H. C.;Chou, C. C. Survival of bifidobacteria after spray-drying. Int. J. Food Microbiol. 2002, 74, 79-86. Lian, W. C.;Hsiao, H. C.;Chou, C. C. Viability of microencapsulated bifidobacteria in simulated gastric juice and bile solution. Int. J. Food Microbiol. 2003, 86, 293-301. Liu, Q. Understanding Starches and Their Role. In Food Carbohydrates. Cui, S. W. Taylor & Francis:Boca Raton, FL, 2005;pp. 311-355. Madene, A.;Jacquot, M.;Scher, J.;Desobry, S. Flavour encapsulation and controlled release – a review. Int. J. Food Sci. Technol. 2006, 41, 1-21. Makri, E. A.;Doxastakis, G. I. Study of emulsions stabilized with Phaseolus vulgaris or Phaseolus coccineus with the addition of arabic gum, locust bean gum and xanthan gum. Food Hydrocoll. 2006, 20, 1141-1152. Matsumoto, K.;Nakai, Y.;Yonemochi, E.;Oguchi, T.;Yamamoto, K. Physicochemical characteristics of porous crystalline cellulose and formation of an amorphous state of ethenzamide by mixing. Int. J. Pharm. 1994, 108, 167-172. Mitsuoka, T. Intestinal flora and human health. New Food Ind. 1990, 32, 1-8. Mustapha, A.;Jiang, T.;Savaiano, D. A. Improvement of lactose digestion by humans following ingestion of unfermented acidophilus milk: influence of bile sensitivity, lactose transport, and acid tolerance of Lactobacillus acidophilus. J. Dairy Sci. 1997, 80, 1537-1545. Nagata, K.;Okamoto, H.;Danjo, K. Naproxen particle design using porous starch. Drug Development and Industrial Pharmaceutial 2001, 27, 287-296. Nahaisi M.H. Lactobacillus acidophilus: therapeutic properties, products and enumeration. Developments in Food Microbiology 1986, 2, 153-178. Naidu, A. S.;Bidlack, W. R.;Clemens, R. A. Probiotic spectra of lactic acid bacteria (LAB). Crit. Rev. Food Sci. Nutr. 1999, 39, 13-126. Nakai, Y.;Yamamoto, K.;Izumikawa, S. Interaction of medicinals and porous powder. III. Effect of pore diameter of porous glass powder on crystalline properties. Chem. Pharm. Bull.1989, 37, 435-438. Navarro, J. M.;Durand, G. Modification of yeast metabolism by immobilization onto porous glass. Eur. J. Appl. Microbiol. 1977, 4, 243-254. Norton, S.;D’Amore, T. Physiological effects of yeast cell immobilization:applications for brewing. Enzyme Microb. Technol. 1994, 16, 365-375. Noh, D. O.;Gilliland, S. E. Influence of bile on cellular integrity and β-galactosidase activity of Lactobacillus acidophilus. J. Dairy Sci. 1993, 76, 1253-1259. O’sullivan, M. G.;Thornton, G.;Osullivan, G. C.;Collins, J. K. Probiotic bacteria:myth or reality? Trends Food Sci. Technol. 1992, 3, 309-314. Oliveira, A. C.;Moretti, T. S.;Boschini, C.;Baliero, J. C. C.;Freitas, O.;Favaro-Trindade, C. S. Stability of microencapsulated B. lactis (BI 01) and L. acidophilus (LAC 4) by complex coacervation followed by spray drying. J. Microencapsulation 2007, 24, 685-693. Park, J. K.;Chang, H. N. Microencapsulation of microbial cells. Biotechnol. Adv. 2000, 18, 303-319. Pilkington, P. H.;Margaritis, A.;Mensour, N. A.;Russell, I. Fundamentals of immobilized yeast cells for continuous beer fermentation:a review. J. Inst. Brew. 1998, 104, 19-31. Pomeranz, Y. Functional Properties of Food Components. Academic Press, Inc:Orlando, FL., 1985 Potter, N. N. In Food Science The AVI:Westport, CT, 1980;pp. 283-289. Rao, A. V.;Shiwnarain, N;Maharaj, I. Survival of microencapsulated Bifidobacterium pseudolongum in simulated gastric and intestinal juices. Can. Inst. Food Technol. J. 1989, 22, 345-349. Rasic, J.;Kurmann, J. A. In Bifidobacteria and their role. Birkhauser Verlag:Basel, 1983 Randall, R. C.;Phillips, G. O.;Williams P. A. Fractionation and characteriazation of gum from Acacia senegal. Food Hydrocoll. 1989, 3, 65-75. Ré, M. I. Formulating drug delivery systems by spray drying. Dry. Technol. 2006, 24, 433-446. Ré, M. I. Microencapsulation by spray drying. Dry. Technol. 1998, 16, 1195-1236. Reineccius, G. A. Carbohydrates for flavor encapsulation. Food Technol. 1991, 45, 144-147. Reineccius, G. A. The spray drying of food flavors. Dry. Technol. 2004, 22, 1289-1324. Robinson, R. K. Survival of Lactobacillus acidophilus in fermented products. Suid Afrikaanse Tydskrif Vir Suiwelkunde 1987, 19, 25-27. Rodriguez-Huezo, M. E.;Pedroza-Islas, R.;Prado-Barragan, L. A.;Beristain, C. I.;Vernon-Carter, E. J. Microencapsulation by spray drying of multiple emulsions containing carotenoids. J. Food Sci. 2004, 69, E351-E359. Salminen, S.;Deighton, M.;Corbach, S. Lactic acid bacteria in health and disease. In Food Science and Technology New York, 1993;pp.199-225 Sanders, M. E. Overview of functional foods:Emphasis on probiotic bacteria. International Dairy Journal 1998, 8, 341-347. Santinho, A. J. P.;Pereira, N. L.;de Freitas, O.;Collett, J. H. Influence of formulation on the physicochemical properties of casein microparticles. Int. J. Pharm. 1999, 186, 191-198. Scardovi, V. The genus Bifidobacterium. In Bergey’s Manual of Systematic Bacteriology. Holt, J. G. Williams & Wilkins Co.:Baltimore, MD, 1986;pp.1951-1961 Shah, N. P. Isolation and enumeration of bifidobacteria in fermented milk products: a review. Milchwissenschaft-Milk Science International 1997, 52, 71-76. Shah, N. P. Probiotic bacteria: selective enumeration and survival in dairy foods. J. Dairy Sci. 2000, 83, 894-907. Shahidi, F.;Han, X. Q. Encapsulation of food ingredients. Crit. Rev. Food Sci. Nutr. 1993, 33, 501-547. Sheu, T. Y.;Rosenberg, M. Microencapsulation by spray-drying ethyl caprylate in whey-protein and carbohydrate wall systems. J. Food Sci. 1995, 60, 98-103 Sliwka, Microencapsulation. Angew. Chem. Internat. Edit. 1975, 14, 538-550 Stanton, C.;Gardiner, G.;Meehan, H.;Collins, K.;Fitzgeraldk, G.;Lynch, P. B.;Ross, R. P. Market potential for probiotics. Am. J. Clin. Nutr. 2001, 73, 476S-483S. Sunohara, H.;Ohno, T.;Shibata, N.;Seki, K. Process for producing capsule and capsule obtained thereby. Morishita Jintan Co.Ltd. 1995, US patent 5,478,570 Teixeira, P.;Castro, H.;Kirby, R. Spray drying as a method for preparing concentrated cultures of Lactobacillus bulgaricus. J. Appl. Bacteriol. 1995, 78, 456-462. To, B. C. S.;Etzel, M. R. Spray drying, freeze drying, or freezing of three different lactic acid bacteria species. J. Food Sci. 1997a, 62, 576-578. To, B. C. S.;Etzel, M. R. Survival of Brevibacterium linens ATCC 9174 after spray drying, freeze drying, or freezing. J. Food Sci. 1997b, 62, 167-170. Valetudie, J. C.;Colonna, P.;Bouchet, B.;Gallant, D. J. Hydrolysis of tropical tuber starches by bacterial and pancreatic α-amylase. Starch Stärke 1993, 45, 270-276. Wang, Y. C.;Yu, R. C.;Chou, C. C. Viability of lactic acid bacteria and bifidobacteria in fermented soymilk after drying, subsequent rehydration and storage. Int. J. Food Microbiol. 2004, 93, 209-217. Wenrong, S.;Griffiths, M. W. Survival of bifidobacteria in yoghurt and simulated gastric juice following immobilization in gellan-xanthan beads. Int. J. Food Microbiol. 2000, 61, 17-25. Whistler, R. L.;Spencer, W. W. Distribution of substituents in corn starch granules with low degrees of substitution. Arch. Biochem. Biophys. 1960, 87, 137-139. Yao, W. R.;Yao, H. Y. Adsorbent characteristics of porous starch. Starch Stärke 2002, 54, 260-263. Zhao, J. G.;Madson, M. A.;Whistler, R. L. Cavities in porous corn starch provide a large storage space. Cereal Chem. 1996, 73, 379-380. Zamora, L. M.;Carretero, C.;Parés, D. Comparative survival rates of lactic acid bacteria isolated from blood, following spray-drying and freeze-drying. Food Sci. Tech. Int. 2006, 12, 77-84. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46859 | - |
| dc.description.abstract | 微膠囊化是保護益生菌乾燥菌體的一種方式,為瞭解以孔洞狀澱粉顆粒為載體時是否可提高乾燥微膠囊化益生菌之存活率,本研究主要是利用10%不同水解率(30、45或60%)之孔洞澱粉及10%阿拉伯膠做為載體,藉由噴霧乾燥法、冷凍乾燥法進行Bifidobacterium longum B6之微膠囊化,並探討微膠囊化對B. longum B6在胃酸(pH 2.0)、膽鹽(2%)之耐受性及其貯存穩定性。
除未水解澱粉試驗組外,試驗前將澱粉顆粒以澱粉葡萄糖分解酵素預先水解為水解率約30、45與60%之三種孔洞狀澱粉試驗組,結果顯示,水解玉米澱粉1.5、2.5與4小時,可得到水解率30、45與60%孔洞澱粉。一般而言冷凍乾燥後B. longum B6之存活率高於噴霧乾燥者,以冷凍乾燥法利用水解率30及45%之孔洞澱粉為載體微膠囊化菌體之存活率分別為44.31及35.66%。在出口溫度為50℃下進行噴霧乾燥後,菌體存活率則分別為33.85及14.95%,將出口溫度提高至60℃時,造成菌體存活率之下降。微膠囊化粉末與pH 2.0胃酸溶液接觸3小時後B. longum B6之存活率皆比未微膠囊化之菌體高,呈現保護效果(p<0.05)。與2%膽鹽溶液接觸4小時後,顯示以水解率30與45%孔洞澱粉載體微膠囊化粉末中B. longum B6具有較高的存活率(p<0.05),且45%孔洞澱粉包覆者具有最佳之效果。以水解率30與45%孔洞澱粉為載體進行微膠囊化可提高B. longum B6菌體之儲存安定性,此外冷凍乾燥微膠囊中菌體之儲存安定性較噴霧乾燥者高,且於4℃儲存菌體之存活率較於25℃高,增加孔洞澱粉載體可小幅的延緩菌體儲存過程存活率下降之趨勢,顯示使用S30或S45為載體進行微膠囊化可提高益生菌在加工製程之存活率。 | zh_TW |
| dc.description.abstract | Microencapsulation is a method to protect dry probiotic powders. To understand if the survival rate of microencapsulated probiotic could be raised with the porous starch granules are taken as the carriers. In this study, using 10% porous starch obtained at different hydrolysis rate (30, 45, and 60%) and 10% gum arabic as the carriers, the microencapsulated cells of Bifidobacterium longum B6 were first prepared by spray-drying or freeze-drying. Survival of these microencapsulated and free cells of test organism in simulated gastric juice (pH 2.0) and bile solution (2%) as well as their stability during storage were examined.
In addition to the treatment group of native starch, we firstly hydrolyzed the corn starch granules with amyloglucosidase into three porous starch treatment groups: the one with hydrolysis rate of about 30, 45, and 60%. It was found that the porous starch with hydrolysis rate 30, 45, and 60% (porous starch-30, 45 and 60%) could be derived from native starch degraded for 1.5, 2.5, and 4 h, respectively. Survival of B. longum B6 is generally higher after freeze-drying than spray-drying. Freeze-drying with porous starch-30% + gum arabic or porous starch-45% + gum arabic. B. longum B6 showed a survival rate of 44.31 and 35.66%, respectively. While spray-drying with an outlet-air temperature of 50℃, B. longum B6 exhibited a survival rate of 33.85 and 14.95%, respectively. Elevation of outlet-air temperature resulted in reduced survival of treat organism. Regardless of drying method, B. longum B6 encapsulated with gum arabic alone or gum arabic + porous starch-30 or 45% showed a higher survival in the simulated gastric juice (pH 2.0) than the nonencapsulated cells. Encapsulated with porous starch-30 or 45% + gum arabic also exhibited a protective effect on test organism in 2% bile solution. An enhanced storage stability were also noted with these microencapsulated B. longum B6. Besides, survival of the test organism encapsulated with freeze-drying and held at 4℃ is higher than that encapsulated with spray-drying and stored at 25℃. Increasing porous starch carriers could slightly delay the decrease of the survival rate of bifidobacteria in the storage process. It revealed that using S30 or S45 as the carriers to microencapsulated probiotic could enhance the survival rate of probiotic in the processing. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T05:42:20Z (GMT). No. of bitstreams: 1 ntu-99-R96641013-1.pdf: 5495008 bytes, checksum: 4be71cb297877bab35da1ccb27102c5d (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | 頁次
中文摘要 …………………………………………………………………………….. i Abstract ……………………………………………………………………………… ii 目錄 ………………………………………………………………………………… iii 表目錄 ………………………………………………………………………………. v 圖目錄 ……………………………………………………………………………… vi 壹、前言 ……………………………………………………………………………... 1 貳、文獻整理 ………………………………………………………………………... 2 一、益生菌 ……………………………………………………………………. 2 二、微膠囊 ……………………………………………………………………. 6 (一) 固定化技術(immobilization) …………….……………………... 6 (二) 微膠囊技術之原理 ……………………………………………….... 9 三、包覆物質 ………………………………………………………………... 13 (一) 阿拉伯膠(Gum arabic) ……………………………………........ 13 (二) 孔洞狀澱粉 ……………………………………………………….. 14 參、材料與方法 …………………………………………………………………... 20 一、實驗架構 ………………………………………………………………... 20 二、實驗材料 ………………………………………………………………... 21 三、儀器設備 ………………………………………………………………... 22 四、實驗方法 ………………………………………………………………... 23 (一) 未水解澱粉及不同水解率孔洞澱粉之製備 …………………….. 23 (二) 雙叉桿菌之保存 ………………………………………………….. 23 (三) 雙叉桿菌之製備 ………………………………………………….. 23 (四) 利用噴霧乾燥與冷凍乾燥製備微膠囊化顆粒 ………………….. 24 (五) 雙叉桿菌在模擬胃酸及膽鹽之耐受性試驗 …………………….. 24 (六) 儲存試驗 ………………………………………………………….. 26 (七) 以掃描式電子顯微鏡觀察粉末之外觀型態 …………………….. 26 (八) 澱粉水解率測定 ………………………………………………….. 26 (九) 粉末水分含量之計算 …………………………………………….. 27 (十) 菌數之測定及存活率之計算方式 ……………………………….. 27 (十一) 統計分析 ……………………………………………………….. 28 肆、結果與討論 …………………………………………………………………... 29 一、部分水解玉米澱粉 ……………………………………………………... 29 (一) 玉米澱粉水解 …………………………………………………….. 29 (二) 玉米澱粉顆粒型態 ……………………………………………….. 30 二、噴霧乾燥及冷凍乾燥微膠囊化對菌體存活之影響 …………………... 34 三、胃酸與膽鹽耐受性試驗 ………………………………………………... 36 (一) 胃酸耐受性試驗 ………………………………………………….. 36 (二) 膽鹽耐受性試驗 ………………………………………………….. 43 四、儲存試驗 ………………………………………………………………... 47 伍、結論 …………………………………………………………………………... 53 陸、參考文獻 ……………………………………………………………………... 54 柒、附錄 ………………………………………………………………………...… 66 | |
| dc.language.iso | zh-TW | |
| dc.subject | 存活 | zh_TW |
| dc.subject | 孔洞澱粉 | zh_TW |
| dc.subject | 雙叉桿菌 | zh_TW |
| dc.subject | 微膠囊化 | zh_TW |
| dc.subject | 乾燥 | zh_TW |
| dc.subject | Bifidobacterium | en |
| dc.subject | survival | en |
| dc.subject | drying | en |
| dc.subject | microencapsulation | en |
| dc.subject | porous starch | en |
| dc.title | 以孔洞澱粉進行微膠囊化影響Bifidobacterium longum B6其對模擬胃酸及膽鹽之敏感性與儲存安定性 | zh_TW |
| dc.title | Microencapsulation with porous starch carriers affects the storage stability and susceptibility of Bifidobacterium longum B6 to simulated gastric acid and bile salt | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 呂廷璋(Ting-Jang Lu) | |
| dc.contributor.oralexamcommittee | 游若?,丘志威,李?鈴 | |
| dc.subject.keyword | 孔洞澱粉,雙叉桿菌,微膠囊化,乾燥,存活, | zh_TW |
| dc.subject.keyword | porous starch,Bifidobacterium,microencapsulation,drying,survival, | en |
| dc.relation.page | 66 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2010-08-20 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 食品科技研究所 | zh_TW |
| 顯示於系所單位: | 食品科技研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf 未授權公開取用 | 5.37 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
