Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46425
Title: 單指標條件分配模型之擬最小平方估計法相關推論
Pseudo Least Integrated Squares Estimation For Single-Index Conditional Distribution Models
Authors: Ming-Yueh Huang
黃名鉞
Advisor: 江金倉(Chin-Tsang Chiang)
Keyword: 交互驗證法,自助重取法,單指標模型,擬最小平方法,擬最大概似估計,
adaptive Lasso,cross-validation,naive bootstrap,oracle properties,single-index model,pseudo least squares estimator,pseudo least integrated squares estimator,pseudo maximum likelihood estimator,random weighted bootstrap,
Publication Year : 2010
Degree: 碩士
Abstract: 在單指標條件分配模型之下,我們提出擬最小平方估計法來估計模型中的單指標係數。數值實驗顯示此估計式的表現比傳統的擬最大概似估計式以及半參數化最小平方估計式要好。此外,根據所考量之資料結構,提出交互驗證法作為帶寬選取標準,同時借助自助重取法提供估計式的變異估計及信賴區間之建立。利用定義的殘差統計量,我們進一步建立模型適當性之檢定方法。當模型中之單指標有零係數發生狀況,多階段的Adaptive LASSO 演算法有效偵測出此類群變數。在數值方面,廣泛的模擬與實際資料之驗證呈現所提出方法之可行性。
A more flexible single-index regression model is employed to characterize the conditional distribution. For this emiparametric model, a pseudo least integrated squares pproach is developed for the estimation of index oefficients. It is shown in the numerical studies that our estimator outperforms both the pseudo maximum likelihood and semiparametric least squares ones. In addition, we propose the generalized cross-validation criteria for bandwidth selection and the bootstrap implementation for the estimation of asymptotic variance and the construction of confidence intervals. With our defined residual process, a test rule is established to check the adequacy of the considered single-index conditional distribution model. To tackle with the problem of sparse variables, a multiple-stage adaptive Lasso algorithm is developed to identify significant variables and achieve the semiparametric efficiency bound. In this study, a class of simulation scenarios was conducted to assess the finite sample properties of the proposed estimators and inference procedures. Two empirical examples from the house-price study in Boston and the environmental study in New York are further used to illustrate the usefulness of our approaches.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46425
Fulltext Rights: 有償授權
Appears in Collections:數學系

Files in This Item:
File SizeFormat 
ntu-99-1.pdf
  Restricted Access
5.57 MBAdobe PDF
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved