Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46285
Title: 緊緻流形間的均曲率流與施瓦西時空上的常均曲率超曲面
Mean Curvature Flow Between Compact Manifolds and Constant Mean Curvature Hypersurfaces in Schwarzschild Spacetimes
Authors: Kuo-Wei Lee
李國瑋
Advisor: 李瑩英(Yng-Ing Lee)
Keyword: 均曲率流,高餘維,長時間存在性,施瓦西時空,Kruskal 擴張,常均曲率超曲面,常均曲率層.,
mean curvature flow,higher codimension,long time existence,Schwarzschild spacetime,the Kruskal extension,constant mean curvature hypersurfaces,constant mean curvature foliation.,
Publication Year : 2010
Degree: 博士
Abstract: 本論文分為兩部份:第一部份是研究緊緻流形間的均曲率流,論文中將王慕道於2002年[19]與崔茂培、王慕道於2004年[17]這兩篇關於高餘維的均曲率流有長時間存在性與收斂性做進一步地推廣,其特色是流形的截面曲率不限定為常數,以及放寬幾何量*Ω的下界。文章後面也給予兩個關於均曲率流的應用。
第二部份是探討施瓦西(Schwarzschild)時空上的球對稱類空常均曲率超曲面,從分析施瓦西時空的內部與外部的球對稱類空常均曲率超曲面的漸近行為,藉由Kruskal擴張,可以將外部與內部的曲面適當地相接,進而得到整體有定義的曲面。文章的最後一節,我們重新以較清楚的方式討論某一類型的常均曲率層,此常均曲率層的研究曾經由Edward Malec與Niall O Murchadha在2003年的文章中[9]討論過。
The thesis consists of two parts. First part is “Mean curvature flow of the graphs of maps between compact manifolds.” We make several improvements on the results of M.-T. Wang in [19] and his joint paper with M.-P. Tsui [17] concerning the long time existence and convergence for solutions of mean curvature flow in higher co-dimension. Both the curvature condition and lower bound of $*Omega$ are weakened. New applications are also obtained.
Second part is “Spherically symmetric spacelike hypersurfaces with constant mean curvature in Schwarzschild spacetimes.” We analyze all spherically symmetric spacelike constant mean curvature hypersurfaces in Schwarzschild exterior and in Schwarzschild interior. They can be joined by choosing suitable parameters through the Kruskal extension, which is the maximal extension of Schwarzschild metric. We also give another argument for some constant mean curvature foliation in Schwarzschild spacetime, which was ever discussed by Edward Malec and Niall O Murchadha in [9].
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46285
Fulltext Rights: 有償授權
Appears in Collections:數學系

Files in This Item:
File SizeFormat 
ntu-99-1.pdf
  Restricted Access
759.6 kBAdobe PDF
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved