請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46162
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 王兆麟 | |
dc.contributor.author | Chi-Lin Yang | en |
dc.contributor.author | 楊奇林 | zh_TW |
dc.date.accessioned | 2021-06-15T04:56:10Z | - |
dc.date.available | 2012-08-06 | |
dc.date.copyright | 2010-08-06 | |
dc.date.issued | 2010 | |
dc.date.submitted | 2010-07-29 | |
dc.identifier.citation | Ch1
1. Tsalafoutas IA, Tsapaki V, Triantopoulou C, et al. CT-guided interventional procedures without CT fluoroscopy assistance: patient effective dose and absorbed dose considerations. AJR Am J Roentgenol 2007;188:1479-84. 2. Flegel T, Podell M, March PA, et al. Use of a disposable real-time CT stereotactic navigator device for minimally invasive dog brain biopsy through a mini-burr hole. AJNR Am J Neuroradiol 2002;23:1160-3. 3. Meyer JM, Schmitz-Rode T, Krombach G, et al. Navi-ball: a new guidance device for CT-directed punctures. Invest Radiol 2001;36:299-302. 4. Chakeres D, Slone W, Christoforidis G, et al. Real-time CT-guided spinal biopsy with a disposable stereotactic device: a technical note. AJNR Am J Neuroradiol 2002;23:605-8. 5. Vogl TJ, Proschek D, Schwarz W, et al. CT-guided percutaneous vertebroplasty in the therapy of vertebral compression fractures. Eur Radiol 2006;16:797-803. 6. Johnson JP, Stokes JK, Oskouian RJ, et al. Image-guided thoracoscopic spinal surgery: a merging of 2 technologies. Spine 2005;30:E572-8. 7. Holly LT, Schwender JD, Rouben DP, et al. Minimally invasive transforaminal lumbar interbody fusion: indications, technique, and complications. Neurosurg Focus 2006;20:E6. 8. Schmid G, Schmitz A, Borchardt D, et al. Effective dose of CT- and fluoroscopy-guided perineural/epidural injections of the lumbar spine: a comparative study. Cardiovasc Intervent Radiol 2006;29:84-91. 9. Gangi A, Dietemann JL, Mortazavi R, et al. CT-guided interventional procedures for pain management in the lumbosacral spine. Radiographics 1998;18:621-33. 10. Dimmick S, Jones M, Challen J, et al. CT-guided procedures: evaluation of a phantom system to teach accurate needle placement. Clin Radiol 2007;62:166-71. 11. Aguirre DA, Bermudez S, Diaz OM. Spinal CT-guided interventional procedures for management of chronic back pain. J Vasc Interv Radiol 2005;16:689-97. 12. Teeuwisse WM, Geleijns J, Broerse JJ, et al. Patient and staff dose during CT guided biopsy, drainage and coagulation. Br J Radiol 2001;74:720-6. 13. Voges J, Schroder R, Treuer H, et al. CT-guided and computer assisted stereotactic biopsy. Technique, results, indications. Acta Neurochir (Wien) 1993;125:142-9. 14. Mueller PR, vanSonnenberg E. Interventional radiology in the chest and abdomen. N Engl J Med 1990;322:1364-74. 15. Silverman SG, Tuncali K, Adams DF, et al. CT fluoroscopy-guided abdominal interventions: techniques, results, and radiation exposure. Radiology 1999;212:673-81. 16. Nawfel RD, Judy PF, Silverman SG, et al. Patient and personnel exposure during CT fluoroscopy-guided interventional procedures. Radiology 2000;216:180-4. 17. Wagner LK. CT fluoroscopy: another advancement with additional challenges in radiation management. Radiology 2000;216:9-10. 18. Law EM, Little AF, Salanitri JC. Non-vascular intervention with real-time CT fluoroscopy. Australas Radiol 2001;45:109-12. 19. Das M, Sauer F, Schoepf UJ, et al. Augmented reality visualization for CT-guided interventions: system description, feasibility, and initial evaluation in an abdominal phantom. Radiology 2006;240:230-5. 20. Messmer P, Gross T, Suhm N, et al. Modality-based navigation. Injury 2004;35 Suppl 1:S-A24-9. 21. Meyer BC, Peter O, Nagel M, et al. Electromagnetic field-based navigation for percutaneous punctures on C-arm CT: experimental evaluation and clinical application. Eur Radiol 2008;18:2855-64. 22. Nagel M, Schmidt G, Petzold R, et al. A navigation system for minimally invasive CT-guided interventions. Medical Image Computing and Computer-Assisted Intervention. Palm Springs, CA, USA: Springer Berlin 2005:33-40. 23. Bale R, Widmann G. Navigated CT-guided interventions. Minim Invasive Ther Allied Technol 2007;16:196-204. 24. Widmann G, Bale R. Navigated Interventions - Techniques and Indications In Mahnken AH, Ricke J eds. CT- and MR-Guided Interventions in Radiology: Springer Berlin Heidelberg, 2009:69-77. 25. Haaga JR. Interventional CT: 30 years' experience. Eur Radiol 2005;15 Suppl 4:D116-20. 26. Bale RJ, Freysinger W, Martin A, et al. [First experiences with computer-assisted frameless stereotactic interstitial brachytherapy (CASIB)]. Strahlenther Onkol 1998;174:473-7. 27. Bale RJ, Burtscher J, Eisner W, et al. Computer-assisted neurosurgery by using a noninvasive vacuum-affixed dental cast that acts as a reference base: another step toward a unified approach in the treatment of brain tumors. J Neurosurg 2000;93:208-13. 28. Khadem R, Yeh CC, Sadeghi-Tehrani M, et al. Comparative tracking error analysis of five different optical tracking systems. Comput Aided Surg 2000;5:98-107. 29. Mascott CR. Comparison of magnetic tracking and optical tracking by simultaneous use of two independent frameless stereotactic systems. Neurosurgery 2005;57:295-301; discussion 295-301. 30. Wood BJ, Locklin JK, Viswanathan A, et al. Technologies for guidance of radiofrequency ablation in the multimodality interventional suite of the future. J Vasc Interv Radiol 2007;18:9-24. 31. Wagner A, Schicho K, Birkfellner W, et al. Quantitative analysis of factors affecting intraoperative precision and stability of optoelectronic and electromagnetic tracking systems. Med Phys 2002;29:905-12. 32. Birkfellner W, Watzinger F, Wanschitz F, et al. Systematic distortions in magnetic position digitizers. Med Phys 1998;25:2242-8. 33. Marmulla R, Hilbert M, Niederdellmann H. [Intraoperative precision of mechanical, electromagnetic, infrared and laser-guided navigation systems in computer-assisted surgery]. Mund Kiefer Gesichtschir 1998;2 Suppl 1:S145-8. 34. Maurer CR, Jr., Maciunas RJ, Fitzpatrick JM. Registration of head CT images to physical space using a weighted combination of points and surfaces. IEEE Trans Med Imaging 1998;17:753-61. 35. Jacob AL, Messmer P, Kaim A, et al. A whole-body registration-free navigation system for image-guided surgery and interventional radiology. Invest Radiol 2000;35:279-88. Ch2 1. Sherouse GW, Novins K, Chaney EL. Computation of Digitally Reconstructed Radiographs for Use in Radiotherapy Treatment Design. Int. J. Radiation Oncology Bio. Phys. 1990;18:651-8. 2. Cullip TJ, Symon JR, Rosenman JG, et al. Digitally Reconstructed Fluoroscopy and Other Interactive Volume Visualizations in 3D Treatment Planning. Int. J. Radiation Oncology Biol. Phys. 1993;27:145-51. 3. Milickovic N, Baltas D, Giannouli S, et al. CT Imaging Based Digitally Reconstructed Radiographs and Their Application in Brachytherapy. Phys. Med. Biol. 2000;45:2787-800. 4. Parker S, Parker M, Livnat Y, et al. Interactive Ray Tracing for Volume Visualization. IEEE Trans. Visualization and Computer Graphics 1999;5:238-50. 5. Hashimoto S, Shirato H, Nishioka T, et al. Remote Verification in Radiotherapy Using Digitally Reconstructed Radiography (DRR) and Portal Images: A PILOT STUDY. Int. J. Radiation Oncology Bio. Phys 2001;50:579-85. 6. Tomaževič D, Likar B, Slivnik T, et al. 3-D/2-D Registration of CT and MR to X-ray Images. IEEE Trans. Med. Imag. 2003;22:1407-16. 7. Chaney EL, Thorn JS, Tracton G, et al. A Portable Software Tool for Computing Digitally Reconstructed Radiographs. Int. J. Radiation Oncology Bio. Phys. 1995;32:491-7. 8. Rohlfing T, Russakoff DB, Denzler J, et al. Progressive Attenuation Fields: Fast 2D-3D image registration without precomputation. Medical Physics 2005;32:2870-80. 9. Penney GP, Weese J, Little JA, et al. A Comparison of Similarity Measures for Use in 2-D-3D Medical Image Registration. IEEE Trans. Med. Imag. 1998;17:586-95. 10. Thompson CM, Hamilton CS, Vaarkamp J. Thorax set-up verification with multiple oblique treatment portal images. Br J Radiol 2009. 11. Lacroute P, Levoy M. Fast Volume Rendering Using a Shear-Warp Factorization of the Viewing Transformation. SIGGRAPH94’, 1994. 12. Schulze JP, Niemeier R, Lang U. The Perspective Shear-Warp Algorithm in A Virtual Environment. IEEE Visualization Proceedings 2001:207-13. 13. Ntasis E, Cai W, Sakas G, et al. Real Time Digital Reconstructed Radiograph (DRR) Rendering in Frequency Domain. IEEE Proc. of the 1st Joint BMES/EMBS Conf. Serving Humanity, Advancing Technology. Atlanta, GA, USA., 1999. 14. Malzbender T. Fourier Volume Rendering. ACM Trans. on Graphics 1993;12:233-50. 15. Birkfellner W, Seemann R, Figl M, et al. Wobbled Splatting-a Fast Perspective Volume rendering Method for Simulation of X-ray images from CT. Phys. Med. Biol. 2005;50:N73-N84. 16. Russakoff DB, Rohlfing T, Rueckert D, et al. Fast Calculation of Digitally Reconstructed Radiographs Using Light Fields. SPIE Proc. Medical Imaging, 2003:684-95. 17. Russakoff DB, Rohlfing T, Mori K, et al. Fast Generation of Digitally Reconstructed Radiographs Using Attenuation Fields With Application to 2D-3D Image Registration. IEEE Trans. Med. Imag. 2005;24:1441-54. 18. Gortler SJ, Grzeszezuk R, Szeliski R, et al. The Lumigraph. In Proceedings of 23rd Annual conference on computer graphics and interactive techniques. New Yourk: ACM 1996:43-54. 19. Li X, Yang J, Zhu Y. Digitally reconstructed radiograph generation by an adaptive Monte Carlo method. Phys Med Biol 2006;51:2745-52. 20. Aodong S, Limin L. Point-based digitally reconstructed radiograph. Pattern Recognition, 2008. ICPR 2008. 19th International Conference on, 2008:1-4. 21. Nieh J, Levoy M. Volume Rendering on Scalable Shared-Memory MIMD Architectures. Workshop on Volume Visualization. Boston, MA, 1992. 22. Levoy M. Efficient Ray Tracing of Volume Data. ACM Trans. On Graphics 1990;9:245-61. 23. LaRose D. Interactive X-ray/CT registration using accelerated volume rendering. Robotics Institute: Carnegie Mellon University, 2001. 24. Mora B, Ebert DS. Instant Volume Understanding with Order-Independent Volume Rendering. EUROGRAPHICS, 2004. 25. Cabral B, Cam N, Foran J. Accelerated Volume Rendering and Tomographic Reconstruction Using Texture Mapping Hardware. ACM Symp. on Vol. Vis., 1994. 26. Yan H, Ren L, Godfrey DJ, et al. Accelerating reconstruction of reference digital tomosynthesis using graphics hardware. Medical Physics 2007;34:3768-76. 27. Spoerk J, Bergmann H, Wanschitz F, et al. Fast DRR splat rendering using common consumer graphics hardware. Medical Physics 2007;34:4302-8. Ch3 1. Smith HE, Yuan PS, Sasso R, et al. An evaluation of image-guided technologies in the placement of percutaneous iliosacral screws. Spine 2006;31:234-8. 2. Zhou Y, Singh N, Abdi S, et al. Fluoroscopy radiation safety for spine interventional pain procedures in university teaching hospitals. Pain Physician 2005;8:49-53. 3. Fish DE, Lee PC, Marcus DB. The S1 'Scotty dog': report of a technique for S1 transforaminal epidural steroid injection. Arch Phys Med Rehabil 2007;88:1730-3. 4. Schmid G, Schmitz A, Borchardt D, et al. Effective dose of CT- and fluoroscopy-guided perineural/epidural injections of the lumbar spine: a comparative study. Cardiovasc Intervent Radiol 2006;29:84-91. 5. Boone JM, Levin DC. Radiation exposure to angiographers under different fluoroscopic imaging conditions. Radiology 1991;180:861-5. 6. Jones DP, Robertson PA, Lunt B, et al. Radiation exposure during fluoroscopically assisted pedicle screw insertion in the lumbar spine. Spine 2000;25:1538-41. 7. Giordano BD, Baumhauer JF, Morgan TL, et al. Cervical spine imaging using standard C-arm fluoroscopy: patient and surgeon exposure to ionizing radiation. Spine 2008;33:1970-6. 8. Yang CL, Wang JL, Yang BD. Fast, high precision, and high quality digitally reconstructed radiograph (DRR) generation. 15th International Conference on Mechanics in Medicine and Bopology. Singapore, 2006. 9. Oddy MJ, Aldam CH. Ionising radiation exposure to orthopaedic trainees: the effect of sub-specialty training. Ann R Coll Surg Engl 2006;88:297-301. 10. Smith GL, Wakeman R, Briggs TW. Radiation exposure of orthopaedic trainees: quantifying the risk. J R Coll Surg Edinb 1996;41:132-4. 11. Gebhard FT, Kraus MD, Schneider E, et al. Does computer-assisted spine surgery reduce intraoperative radiation doses? Spine (Phila Pa 1976) 2006;31:2024-7; discussion 8. 12. Gevirtz C, Haddad A. Radiation Safety Considerations for Interventional Pain Physicians. Topics in Pain Management: Lippincott Williams & Wilkins, 2008 Ch4 1. Flegel T, Podell M, March PA, et al. Use of a disposable real-time CT stereotactic navigator device for minimally invasive dog brain biopsy through a mini-burr hole. AJNR Am J Neuroradiol 2002;23:1160-3. 2. Meyer JM, Schmitz-Rode T, Krombach G, et al. Navi-ball: a new guidance device for CT-directed punctures. Invest Radiol 2001;36:299-302. 3. Chakeres D, Slone W, Christoforidis G, et al. Real-time CT-guided spinal biopsy with a disposable stereotactic device: a technical note. AJNR Am J Neuroradiol 2002;23:605-8. 4. Vogl TJ, Proschek D, Schwarz W, et al. CT-guided percutaneous vertebroplasty in the therapy of vertebral compression fractures. Eur Radiol 2006;16:797-803. 5. Johnson JP, Stokes JK, Oskouian RJ, et al. Image-guided thoracoscopic spinal surgery: a merging of 2 technologies. Spine 2005;30:E572-8. 6. Holly LT, Schwender JD, Rouben DP, et al. Minimally invasive transforaminal lumbar interbody fusion: indications, technique, and complications. Neurosurg Focus 2006;20:E6. 7. Schmid G, Schmitz A, Borchardt D, et al. Effective dose of CT- and fluoroscopy-guided perineural/epidural injections of the lumbar spine: a comparative study. Cardiovasc Intervent Radiol 2006;29:84-91. 8. Gangi A, Dietemann JL, Mortazavi R, et al. CT-guided interventional procedures for pain management in the lumbosacral spine. Radiographics 1998;18:621-33. 9. Dimmick S, Jones M, Challen J, et al. CT-guided procedures: evaluation of a phantom system to teach accurate needle placement. Clin Radiol 2007;62:166-71. 10. Aguirre DA, Bermudez S, Diaz OM. Spinal CT-guided interventional procedures for management of chronic back pain. J Vasc Interv Radiol 2005;16:689-97. 11. Silbergleit R, Mehta BA, Sanders WP, et al. Imaging-guided injection techniques with fluoroscopy and CT for spinal pain management. Radiographics 2001;21:927-39; discussion 40-2. 12. Koizuka S, Saito S, Kawauchi C, et al. Percutaneous radiofrequency lumbar facet rhizotomy guided by computed tomography fluoroscopy. J Anesth 2005;19:167-9. 13. Meleka S, Patra A, Minkoff E, et al. Value of CT fluoroscopy for lumbar facet blocks. AJNR Am J Neuroradiol 2005;26:1001-3. 14. Jacobi V, Thalhammer A, Kirchner J. Value of a laser guidance system for CT interventions: a phantom study. Eur Radiol 1999;9:137-40. 15. Messmer P, Gross T, Suhm N, et al. Modality-based navigation. Injury 2004;35 Suppl 1:S-A24-9. 16. Nagel M, Schmidt G, Petzold R, et al. A navigation system for minimally invasive CT-guided interventions. Medical Image Computing and Computer-Assisted Intervention. Palm Springs, CA, USA: Springer Berlin 2005:33-40. 17. Bale R, Widmann G. Navigated CT-guided interventions. Minim Invasive Ther Allied Technol 2007;16:196-204. 18. Meyer BC, Peter O, Nagel M, et al. Electromagnetic field-based navigation for percutaneous punctures on C-arm CT: experimental evaluation and clinical application. Eur Radiol 2008;18:2855-64. 19. Widmann G, Bale R. Navigated Interventions - Techniques and Indications In Mahnken AH, Ricke J eds. CT- and MR-Guided Interventions in Radiology: Springer Berlin Heidelberg, 2009:69-77. 20. Hubbell JH, Seltzer SM. Tables of X-Ray Mass Attenuation Coefficients and Mass Energy-Absorption Coefficients (version 1.4), 2004. Available from: http://physics.nist.gov/xaamdi. 21. Levy EB, Tang J, Lindisch D, et al. Implementation of an electromagnetic tracking system for accurate intrahepatic puncture needle guidance: accuracy results in an in vitro model. Acad Radiol 2007;14:344-54. 22. Krempien R, Hassfeld S, Kozak J, et al. Frameless image guidance improves accuracy in three-dimensional interstitial brachytherapy needle placement. Int J Radiat Oncol Biol Phys 2004;60:1645-51. 23. Tiesenhausen CV, Weber S, Hoffmann K-T, et al. A new mobile and light-weight navigation system for interventional radiology. International Congress Series 2005;1281:412-7. 24. Khan MF, Dogan S, Maataoui A, et al. Accuracy of biopsy needle navigation using the Medarpa system--computed tomography reality superimposed on the site of intervention. Eur Radiol 2005;15:2366-74. 25. Postec F, Bossard D, Disant F, et al. Computer-assisted navigation system in pediatric intranasal surgery. Arch Otolaryngol Head Neck Surg 2002;128:797-800. 26. Han D, Zhou B, Ge W, et al. Advantages of using an image-guided system for transnasal endoscopic surgery. Chin Med J (Engl) 2003;116:1106-7. 27. Nottmeier EW, Crosby T. Timing of vertebral registration in three-dimensional, fluoroscopy-based, image-guided spinal surgery. J Spinal Disord Tech 2009;22:358-60. 28. Gauci CA. Manual of RF Techniquesed. Meggen (LU), Switzerland: FlivoPress SA, 2004. 29. Teeuwisse WM, Geleijns J, Broerse JJ, et al. Patient and staff dose during CT guided biopsy, drainage and coagulation. Br J Radiol 2001;74:720-6. 30. Nawfel RD, Judy PF, Silverman SG, et al. Patient and personnel exposure during CT fluoroscopy-guided interventional procedures. Radiology 2000;216:180-4. 31. Gurung J, Khan MF, Maataoui A, et al. Multislice CT of the pelvis: dose reduction with regard to image quality using 16-row CT. Eur Radiol 2005;15:1898-905. 32. Nevinny-Stickel M, Sweeney RA, Bale RJ, et al. Reproducibility of patient positioning for fractionated extracranial stereotactic radiotherapy using a double-vacuum technique. Strahlenther Onkol 2004;180:117-22. Ch5 1. Waddell G. Low back pain: a twentieth century health care enigma. Spine 1996;21:2820-5. 2. van Tulder MW, Koes BW, Bouter LM. A cost-of-illness study of back pain in The Netherlands. Pain 1995;62:233-40. 3. Nachemson AL. Newest knowledge of low back pain. A critical look. Clin Orthop Relat Res 1992:8-20. 4. Geurts JW, Lou L, Gauci CA, et al. Radiofrequency treatments in low back pain. Pain Pract 2002;2:226-34. 5. Katz JN. Lumbar disc disorders and low-back pain: socioeconomic factors and consequences. J Bone Joint Surg Am 2006;88 Suppl 2:21-4. 6. Flegel T, Podell M, March PA, et al. Use of a disposable real-time CT stereotactic navigator device for minimally invasive dog brain biopsy through a mini-burr hole. AJNR Am J Neuroradiol 2002;23:1160-3. 7. Meyer JM, Schmitz-Rode T, Krombach G, et al. Navi-ball: a new guidance device for CT-directed punctures. Invest Radiol 2001;36:299-302. 8. Chakeres D, Slone W, Christoforidis G, et al. Real-time CT-guided spinal biopsy with a disposable stereotactic device: a technical note. AJNR Am J Neuroradiol 2002;23:605-8. 9. Smith HE, Vaccaro AR, Yuan PS, et al. The use of computerized image guidance in lumbar disk arthroplasty. J Spinal Disord Tech 2006;19:22-7. 10. Vogl TJ, Proschek D, Schwarz W, et al. CT-guided percutaneous vertebroplasty in the therapy of vertebral compression fractures. Eur Radiol 2006;16:797-803. 11. Smith HE, Yuan PS, Sasso R, et al. An evaluation of image-guided technologies in the placement of percutaneous iliosacral screws. Spine 2006;31:234-8. 12. Assaker R, Reyns N, Pertruzon B, et al. Image-guided endoscopic spine surgery: Part II: clinical applications. Spine 2001;26:1711-8. 13. von Jako RA, Cselik Z. Percutaneous laser discectomy guided with stereotactic computer-assisted surgical navigation. Lasers Surg Med 2009;41:42-51. 14. Gangi A, Dietemann JL, Mortazavi R, et al. CT-guided interventional procedures for pain management in the lumbosacral spine. Radiographics 1998;18:621-33. 15. Aguirre DA, Bermudez S, Diaz OM. Spinal CT-guided interventional procedures for management of chronic back pain. J Vasc Interv Radiol 2005;16:689-97. 16. Simopoulos TT, Kraemer J, Nagda JV, et al. Response to pulsed and continuous radiofrequency lesioning of the dorsal root ganglion and segmental nerves in patients with chronic lumbar radicular pain. Pain Physician 2008;11:137-44. 17. Malik K, Benzon HT. Radiofrequency applications to dorsal root ganglia: a literature review. Anesthesiology 2008;109:527-42. 18. Leclaire R, Fortin L, Lambert R, et al. Radiofrequency facet joint denervation in the treatment of low back pain: a placebo-controlled clinical trial to assess efficacy. Spine 2001;26:1411-6; discussion 7. 19. Kalichman L, Li L, Kim DH, et al. Facet joint osteoarthritis and low back pain in the community-based population. Spine 2008;33:2560-5. 20. Pagura JR. Percutaneous radiofrequency spinal rhizotomy. Appl Neurophysiol 1983;46:138-46. 21. van Wijk RM, Geurts JW, Lousberg R, et al. Psychological predictors of substantial pain reduction after minimally invasive radiofrequency and injection treatments for chronic low back pain. Pain Med 2008;9:212-21. 22. Martel J, Bueno A, Nieto-Morales ML, et al. Osteoid osteoma of the spine: CT-guided monopolar radiofrequency ablation. Eur J Radiol 2008. 23. Bogduk N, Macintosh J, Marsland A. Technical limitations to the efficacy of radiofrequency neurotomy for spinal pain. Neurosurgery 1987;20:529-35. 24. Carrino JA, Morrison WB, Parker L, et al. Spinal injection procedures: volume, provider distribution, and reimbursement in the U.S. medicare population from 1993 to 1999. Radiology 2002;225:723-9. 25. Gevirtz C, Haddad A. Radiation Safety Considerations for Interventional Pain Physicians. Topics in Pain Management: Lippincott Williams & Wilkins, 2008. 26. Rampersaud YR, Foley KT, Shen AC, et al. Radiation exposure to the spine surgeon during fluoroscopically assisted pedicle screw insertion. Spine 2000;25:2637-45. 27. Silbergleit R, Mehta BA, Sanders WP, et al. Imaging-guided injection techniques with fluoroscopy and CT for spinal pain management. Radiographics 2001;21:927-39; discussion 40-2. 28. Koizuka S, Saito S, Kawauchi C, et al. Percutaneous radiofrequency lumbar facet rhizotomy guided by computed tomography fluoroscopy. J Anesth 2005;19:167-9. 29. Meleka S, Patra A, Minkoff E, et al. Value of CT fluoroscopy for lumbar facet blocks. AJNR Am J Neuroradiol 2005;26:1001-3. 30. Strobel K, Pfirrmann CW, Schmid M, et al. Cervical nerve root blocks: indications and role of MR imaging. Radiology 2004;233:87-92. 31. Wagner AL. CT fluoroscopic-guided cervical nerve root blocks. AJNR Am J Neuroradiol 2005;26:43-4. 32. Wagner AL. CT fluoroscopy-guided epidural injections: technique and results. AJNR Am J Neuroradiol 2004;25:1821-3. 33. Schmid G, Schmitz A, Borchardt D, et al. Effective dose of CT- and fluoroscopy-guided perineural/epidural injections of the lumbar spine: a comparative study. Cardiovasc Intervent Radiol 2006;29:84-91. 34. Tsalafoutas IA, Tsapaki V, Triantopoulou C, et al. CT-guided interventional procedures without CT fluoroscopy assistance: patient effective dose and absorbed dose considerations. AJR Am J Roentgenol 2007;188:1479-84. 35. Wolter T, Mohadjer M, Berlis A, et al. Cervical CT-guided, selective nerve root blocks: improved safety by dorsal approach. AJNR Am J Neuroradiol 2009;30:336-7. 36. Bale R, Widmann G. Navigated CT-guided interventions. Minim Invasive Ther Allied Technol 2007;16:196-204. 37. Widmann G, Bale R. Navigated Interventions - Techniques and Indications In Mahnken AH, Ricke J eds. CT- and MR-Guided Interventions in Radiology: Springer Berlin Heidelberg, 2009:69-77. 38. Messmer P, Gross T, Suhm N, et al. Modality-based navigation. Injury 2004;35 Suppl 1:S-A24-9. 39. Nagel M, Schmidt G, Petzold R, et al. A navigation system for minimally invasive CT-guided interventions. Medical Image Computing and Computer-Assisted Intervention. Palm Springs, CA, USA: Springer Berlin 2005:33-40. 40. Meyer BC, Peter O, Nagel M, et al. Electromagnetic field-based navigation for percutaneous punctures on C-arm CT: experimental evaluation and clinical application. Eur Radiol 2008;18:2855-64. 41. Gurung J, Khan MF, Maataoui A, et al. Multislice CT of the pelvis: dose reduction with regard to image quality using 16-row CT. Eur Radiol 2005;15:1898-905. 42. van Wijk RM, Geurts JW, Wynne HJ. Long-lasting analgesic effect of radiofrequency treatment of the lumbosacral dorsal root ganglion. J Neurosurg 2001;94:227-31. 43. Sluijter ME. Radiofrequency Part 1: The lumbosacral regioned. Switzerland: FlivoPress, 2001. 44. CTDOSE. National Radiation Laboratory, Christchurch, New Zealand, 1993 45. Perisinakis K, Theocharopoulos N, Damilakis J, et al. Estimation of patient dose and associated radiogenic risks from fluoroscopically guided pedicle screw insertion. Spine 2004;29:1555-60. 46. Garcia Cosamalon PJ, Mostaza A, Fernandez J, et al. Dorsal percutaneous radiofrequency rhizotomy guided with CT scan in intercostal neuralgias. Technical note. Acta Neurochir (Wien) 1991;109:140-1. 47. Magnusson A, Radecka E, Lonnemark M, et al. Computed-tomography-guided punctures using a new guidance device. Acta Radiol 2005;46:505-9. 48. Hodgson A. Computer-Assisted Orthopedic Surgery. In Peters T, Cleary K eds. Image-Guided Interventions : Technology and Applications: Springer Science, 2008. 49. McParland BJ. A study of patient radiation doses in interventional radiological procedures. Br J Radiol 1998;71:175-85. 50. Boswell MV, Trescot AM, Datta S, et al. Interventional techniques: evidence-based practice guidelines in the management of chronic spinal pain. Pain Physician 2007;10:7-111. 51. Theocharopoulos N, Perisinakis K, Damilakis J, et al. Occupational exposure from common fluoroscopic projections used in orthopaedic surgery. J Bone Joint Surg Am 2003;85-A:1698-703. 52. Begemann PGC. CT-Guided Interventions –Indications, Technique, Pitfalls. In Mahnken AH, Ricke J eds. CT- and MR-Guided Interventions in Radiology. Germany: Springer, 2009. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46162 | - |
dc.description.abstract | Computed Tomography (CT)-guided intervention has become an integral component of modern patient care. However, due to the lack of real-time visualization feedback, the workflow of the CT-guided intervention involves repeated CT scans, that often lead to prolong operation time and higher radiation dose to the patient.
The objective of this dissertation is to propose a navigation system to streamline the current CT-guided intervention workflow. The goal is to develop a miniature patient-mount navigation system for spinal diseases. The miniature design is the key concept of the system to enable tracking capability without the lost of the accuracy. Another important feature is the auto-registration technique to eliminate the cumbersome registration procedure. To further improve the performance, an intuitive user interface utilizing the virtual bi-plane fluoroscopy technique is proposed. The integrated user interface allows surgeons to follow their already-mastered interventional technique without learning a new protocol. To evaluate the feasibility of the system, three validations are conducted. The first two validations, one with physical phantom and the other with in vitro porcine model, are used to validate machine accuracy and operation error, respectively. The third validation, involving an in vivo clinical human trial, is used to validate the clinical feasibility and efficacy of the system on percutaneous pulsed radiofrequency stimulation of dorsal root ganglion (PRF-DRG). The in vivo human trial shows machine position error 4.6 mm and tilting error 3.6°, which are within the range of conventional fluoro-guided technique. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T04:56:10Z (GMT). No. of bitstreams: 1 ntu-99-D92548002-1.pdf: 3449640 bytes, checksum: 0125d30a7ea85f188f31cd28b3e61a2d (MD5) Previous issue date: 2010 | en |
dc.description.tableofcontents | Abstract i
List of Figures iv List of Tables vi Chapters: 1 INTRODUCTION 1 1.1 Background and Motivation 1 1.2 Research Objectives and Scopes 3 1.3 Literature Review 4 1.3.1 Image-guided Intervention 4 1.3.2 CT-guided Intervention 5 1.3.3 CT-navigation System for Interventions 9 1.4 Dissertation Organization 11 1.5 Reference 11 2 FAST AND HIGH PRECISION DIGITALLY RECONSTRUCTED RADIOGRAPH GENERATION 14 2.1 Introduction 14 2.2 Background 15 2.2.1. Digitally Reconstructed Radiograph (DRR) Calculation 15 2.2.2. GPU-based DRR Generation 16 2.2.3. Compensation Filter 18 2.3 Materials and Methods 18 2.3.1 Distribution 21 2.3.2 Accumulation 21 2.3.3 Reconstruction 21 2.4 Results 22 2.5 Discussions 25 2.6 Reference 26 3 VIRTUAL FLUOROSCOPY 29 3.1 Introduction 29 3.2 Materials and Methods 30 3.2.1 System description 30 3.2.2 Radiation-Free Training System for Fluoroscopic-guided Intervention 33 3.2.3 Fluoroscopy Interface for CT-navigation System 36 3.3 Results 37 3.4 Discussions 39 3.5 Reference 40 4 DEVELOPMENT OF MINIATURE PATIENT-MOUNTED NAVIGATION SYSTEM 42 4.1 Introduction 42 4.2 Materials and Methods 43 4.2.1 System Overview 43 4.2.2 Miniature Tracking Unit 44 4.2.3 Reference Frame Unit 45 4.2.4 Image Processing Unit 46 4.2.5 Physical Phantom Model 47 4.2.6 In Vitro Porcine Model 48 4.3 Results 50 4.3.1 Registration Accuracy 50 4.3.2 Physical Phantom Model (Mechanical Accuracy) 50 4.3.4 In Vitro Porcine Model (Operative Accuracy) 50 4.4 Discussions 50 4.5 Reference 55 5 CLINICAL TRIAL FOR PERCUTANEOUS PULSED RADIOFREQUENCY STIMULATION OF DORSAL ROOT GANGLION 58 5.1 Introduction 58 5.2 Materials and Methods 60 5.3 Results 66 5.4 Discussions 67 5.5 Reference 71 6 CONCLUSION AND FUTURE WORK 76 6.1 Conclusion 76 6.2 Feature Work 77 | |
dc.language.iso | en | |
dc.title | 一個用於電腦斷層導引介入性治療的微型導航系統 | zh_TW |
dc.title | A Miniature Navigation System for CT-guided Intervention | en |
dc.type | Thesis | |
dc.date.schoolyear | 98-2 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 曾清秀,方晶晶,顏炳郎,賴達明,溫永銳,楊炳德 | |
dc.subject.keyword | 手術導航,電腦輔助手術,電腦斷層,雙平面螢光攝影,影像定位, | zh_TW |
dc.subject.keyword | Surgery navigation,Computer aided surgery,Computed tomography,Bi-plane fluoroscopy,Image registration, | en |
dc.relation.page | 77 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2010-07-30 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
顯示於系所單位: | 醫學工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-99-1.pdf 目前未授權公開取用 | 3.37 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。