請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/4588完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃宇廷(Yu-tin Huang) | |
| dc.contributor.author | En Shih | en |
| dc.contributor.author | 石恩 | zh_TW |
| dc.date.accessioned | 2021-05-14T17:43:46Z | - |
| dc.date.available | 2015-08-25 | |
| dc.date.available | 2021-05-14T17:43:46Z | - |
| dc.date.copyright | 2015-08-25 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-08-05 | |
| dc.identifier.citation | [1] R. Britto, F. Cachazo, B. Feng and E. Witten, Phys. Rev. Lett. 94, 181602 (2005) [hep-th/0501052].
[2] N. Arkani-Hamed, F. Cachazo, C. Cheung and J. Kaplan, JHEP 1003, 020 (2010) [arXiv:0907.5418 [hep-th]]. [3] N. Arkani-Hamed, J. L. Bourjaily, F. Cachazo, A. B. Goncharov, A. Postnikov and J. Trnka, [arXiv:1212.5605 [hep-th]]. [4] H. Elvang and Y. t. Huang, [arXiv:1308.1697 [hep-th]]. [5] O. Aharony, O. Bergman, D. L. Jafferis and J. Maldacena, JHEP 0810, 091 (2008) [arXiv:0806.1218 [hep-th]]. [6] K. Hosomichi, K. -M. Lee, S. Lee, S. Lee and J. Park, JHEP 0809, 002 (2008) [arXiv: 0806.4977 [hep-th]]. [7] S. Lee, Phys. Rev. Lett. 105, 151603 (2010) [arXiv:1007.4772 [hep-th]]. [8] Y. -T. Huang and C. Wen, “ABJM amplitudes and the positive orthogonal Grassmannian,” JHEP 1402, 104 (2014) [arXiv:1309.3252 [hep-th]]. [9] Y. -t. Huang, C. Wen and D. Xie, “The Positive orthogonal Grassmannian and loop amplitudes of ABJM,” [arXiv:1402.1479 [hep-th]]. [10] J. M. Drummond, J. M. Henn and J. Plefka, JHEP 0905, 046 (2009) [arXiv: 0902.2987 [hep-th]]. [11] N. Arkani-Hamed and J. Kaplan, JHEP 0804, 076 (2008) [arXiv:0801.2385 [hep-th]]. [12] D. A. McGady and L. Rodina, [arXiv:1408.5125 [hep-th]]. [13] D. Nguyen, M. Spradlin, A. Volovich and C. Wen, JHEP 1007, 045 (2010) [arXiv: 0907.2276 [hep-th]]. [14] A. Hodges, JHEP 1307 (2013) [arXiv:1108.2227 [hep-th]]. [15] N. Arkani-Hamed, F. Cachazo and J. Kaplan, JHEP 1009, 016 (2010) [arXiv: 0808.1446 [hep-th]]. [16] B. Feng and M. Luo, Front. Phys. 7, 533 (2012) [arXiv:1111.5759 [hep-th]]. [17] L. J. Dixon, In *Boulder 1995, QCD and beyond* 539-582 [hep-ph/9601359]. 61 [18] L. J. Dixon, J. Phys. A 44, 454001 (2011) [arXiv:1105.0771 [hep-th]]. [19] L. J. Dixon, [arXiv:1310.5353 [hep-ph]]. [20] R. Boels and F. Brummer, “Introduction to Supersymmetry and Supergravity - or Supersymmetry in 12954 minutes ” [21] R. Boels “Introduction to Scattering Amplitudes Lecture 1: QCD and the SpinorHelicity Formalism” [22] R. Britto, J. Phys. A 44, 454006 (2011) [arXiv:1012.4493 [hep-th]]. [23] R. Boels, JHEP 1001, 010 (2010) [arXiv:0908.0738 [hep-th]]. [24] R. H. Boels and C. Schwinn, Phys. Rev. D 84, 065006 (2011) [arXiv:1104.2280 [hep-th]]. [25] M. T. Grisaru and H. N. Pendleton, Some Properties Of Scattering Amplitudes In Supersymmetric Theories, Nucl. Phys. B 124, 81 (1977). M. T. Grisaru, H. N. Pendleton and P. van Nieuwenhuizen, Supergravity And The S Matrix, Phys. Rev. D 15, 996 (1977). [26] H. Elvang, D. Z. Freedman and M. Kiermaier, J. Phys. A 44, 454009 (2011) [arXiv: 1012.3401 [hep-th]]. [27] J. Wess and J. Bagger, “Supersymmetry and supergravity,”Princeton, USA: Univ. Pr. (1992) 259 p [28] Y. Tachikawa, Lect. Notes Phys. 890, 2014 [arXiv:1312.2684 [hep-th]]. [29] B. Feng, K. Zhou, C. Qiao and J. Rao, JHEP 1503, 023 (2015) [arXiv:1411.0452 [hep-th]]. [30] B. Feng, J. Rao and K. Zhou, [arXiv:1504.06306 [hep-th]]. [31] P. Benincasa, C. Boucher-Veronneau and F. Cachazo, JHEP 0711, 057 (2007) [hepth/0702032 [HEP-TH]]. [32] P. Benincasa and F. Cachazo, [arXiv:0705.4305 [hep-th]]. [33] Z. Bern, J. J. Carrasco, D. Forde, H. Ita and H. Johansson, Phys. Rev. D 77, 025010 (2008) [arXiv:0707.1035 [hep-th]]. [34] N. Arkani-Hamed and J. Kaplan, JHEP 0804, 076 (2008) [arXiv:0801.2385 [hep-th]]. [35] S. Sannan, “Gravity As The Limit Of The Type II Superstring Theory,” Phys. Rev. D 34, 1749 (1986) [36] F. A. Berends, W. T. Giele and H. Kuijf, “On relations between multi-gluon and multi-graviton scattering,” Phys. Lett. B 211, 91 (1988). 62 [37] H. Elvang, Y. t. Huang and C. Peng, JHEP 1109, 031 (2011) [arXiv:1102.4843 [hep-th]]. [38] D. Nandan and C. Wen, JHEP 1208, 040 (2012) [arXiv:1204.4841 [hep-th]]. [39] R. Boels, K. J. Larsen, N. A. Obers and M. Vonk, JHEP 0811, 015 (2008) [arXiv: 0808.2598 [hep-th]]. [40] R. H. Boels, D. Marmiroli and N. A. Obers, JHEP 1010, 034 (2010) [arXiv:1002.5029 [hep-th]]. [41] S. He, D. Nandan and C. Wen, JHEP 1102, 005 (2011) [arXiv:1011.4287 [hep-th]]. [42] T. Schuster, Phys. Rev. D 89, no. 10, 105022 (2014) [arXiv:1311.6296 [hep-ph]]. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/4588 | - |
| dc.description.abstract | 本論文概覽重力理論中計算散射振幅的新發展,並且針對一種新的計算方法做探討。我們首先回顧旋量-螺度理論、在殼超重力以及在殼遞迴式的理論基礎。之後我們重點討論使用BCFW遞迴式對於超重力振幅的計算。特别是我們呈現一種基於N=7超重力中BCFW遞迴式的散射振幅展開式。這個表示式能夠顯現重力振幅在特定高能量極限下優化的表現。這是尋找重力振幅的自然構件所踏出的初步研究,其終極目標是揭露重力的結構,以其建構能顯現其隱藏對稱性的描述。 | zh_TW |
| dc.description.abstract | This thesis reviews some aspects of the modern developments in calculation methods and assesses a new expression for scattering amplitudes in gravity. We first revisit the basics of spinor helicity formalism, on-shell superspace, and on-shell recursion relations. Special focus is then given to calculating supergravity amplitudes using BCFW recursion relations. In particular, we present an expansion in the form of a BCFW representation in N=7 supergravity which can manifest bonus behavior of gravity amplitudes under certain high energy limits. This is a initial step in search of natural building blocks for supergravity amplitudes, taken with the eventual goal of uncovering the structure of gravity and providing a description that can manifest its hidden symmetries. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-14T17:43:46Z (GMT). No. of bitstreams: 1 ntu-104-R01222055-1.pdf: 1008752 bytes, checksum: 07fc0f1fcc4d59037c4b286395f0d6db (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 1. Introduction 7
2. On-shell amplitude methods 12 2.1. Spacetime symmetry and spinor-helicity . . . . . . . . . . . . . . . . . . 12 2.1.1. The Lorentz and Poincare groups . . . . . . . . . . . . . . . . . . 13 2.1.2. Spinor helicity formalism . . . . . . . . . . . . . . . . . . . . . . . 19 2.2. Supersymmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.2.1. Global supersymmetry . . . . . . . . . . . . . . . . . . . . . . . . 23 2.2.2. On-shell superspace . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.2.3. Supersymmetry Ward identities . . . . . . . . . . . . . . . . . . . 25 2.3. Scattering amplitudes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.3.1. The MHV classification . . . . . . . . . . . . . . . . . . . . . . . . 26 2.3.2. 3-point amplitudes . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.4. On-shell recursion relations . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.4.1. On-shell recursion relations: a general formulation . . . . . . . . . 28 2.4.2. BCFW recursion relations . . . . . . . . . . . . . . . . . . . . . . 30 2.4.3. Super-BCFW recursion relations . . . . . . . . . . . . . . . . . . 31 2.4.4. Large z behavior under BCFW shifts . . . . . . . . . . . . . . . . 32 3. Supergravity amplitudes 34 3.1. Perturbative gravity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.2. Supergravity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.3. N = 8 supergravity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.3.1. N = 7 formalism of N = 8 supergravity . . . . . . . . . . . . . . 39 3.3.2. N = 7 BCFW recursion . . . . . . . . . . . . . . . . . . . . . . . 41 3.4. N = 7 “bad shift” BCFW representation . . . . . . . . . . . . . . . . . . 42 3.4.1. A particular [−, +⟩ test shift: NkMHV amplitudes . . . . . . . . . 42 3.4.2. Large z behavior under general test shifts . . . . . . . . . . . . . 46 3.4.3. Comparison to other formulas for supergravity amplitudes . . . . 48 3.4.4. N = 8 bonus relations and N = 7 bonus scaling: the MHV case . 49 3.5. Bonus scaling of “bad shift” BCFW for string amplitudes . . . . . . . . . 50 4. Conclusion and Future directions 54 A. Amplitudes of Yang-Mills 56 A.1. Yang-Mills and super-Yang-Mills . . . . . . . . . . . . . . . . . . . . . . 56 A.2. Color structure of Yang-Mills amplitudes . . . . . . . . . . . . . . . . . . 58 A.3. N = 4 super-Yang-Mills . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 | |
| dc.language.iso | en | |
| dc.subject | 超重力 | zh_TW |
| dc.subject | 壞位移 | zh_TW |
| dc.subject | 大z | zh_TW |
| dc.subject | 散射振幅 | zh_TW |
| dc.subject | BCFW遞 | zh_TW |
| dc.subject | N=7 | zh_TW |
| dc.subject | N=8 | zh_TW |
| dc.subject | scattering amplitudes | en |
| dc.subject | N=7 | en |
| dc.subject | N=8 | en |
| dc.subject | supergravity | en |
| dc.subject | bad shift | en |
| dc.subject | large-z | en |
| dc.subject | BCFW recursion | en |
| dc.title | N=7超重力中之優化漸進表現以及BCFW | zh_TW |
| dc.title | Bonus Scaling and BCFW in N=7 Supergravity | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳恆榆(Heng-Yu Chen),陳俊瑋(Jiuun-Wei Chen) | |
| dc.subject.keyword | 散射振幅,超重力,N=8,N=7,BCFW遞,大z,壞位移, | zh_TW |
| dc.subject.keyword | scattering amplitudes,supergravity,N=8,N=7,BCFW recursion,large-z,bad shift, | en |
| dc.relation.page | 63 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2015-08-05 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 物理研究所 | zh_TW |
| 顯示於系所單位: | 物理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf | 985.11 kB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
