請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/4586完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 莊永裕 | |
| dc.contributor.author | Andreas Dopfer | en |
| dc.contributor.author | 竇菲 | zh_TW |
| dc.date.accessioned | 2021-05-14T17:43:44Z | - |
| dc.date.available | 2016-02-15 | |
| dc.date.available | 2021-05-14T17:43:44Z | - |
| dc.date.copyright | 2016-02-15 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-11-27 | |
| dc.identifier.citation | [1] Sameer Agarwal, Noah Snavely, Steven M. Seitz, and Richard Szeliski. Bundle adjustment in the large. In Proceedings of the European Confer- ence on Computer Vision (ECCV), pages 29–42. Springer Verlag, Berlin, Heidelberg, 2010.
[2] Sameer Agarwal, Noah Snavely, Ian Simon, Steven M. Seitz, and Richard Szeliski. Building rome in a day. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Kyoto, Japan, Sep- tember 2009. [3] Ijaz Akhter, Yaser Sheikh, Sohaib Khan, and Takeo Kanade. Trajectory space: A dual representation for nonrigid structure from motion. In IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), volume 33(7), pages 1442–1456, July 2011. [4] Ijaz Akhter, Yaser Ajmal Sheikh, Sohaib Khan, and Takeo Kanade. Non- rigid structure from motion in trajectory space. In Conference on Neural Information Processing Systems (NIPS), December 2008. [5] Del Bue Alessio. A factorization approach to structure from motion with shape priors. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 1–8, June 2008. [6] AnatLevin and Richard Szeliski. Visual odometry and map correla- tion. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 611–618, 2004. [7] K.B. Atkinson and J.B. Fryer. Close Range Photogrammetry and Machine Vision. Whittles Publishing, 1996. [8] Adrien Bartoli, Vincent Gay-Bellile, Umberto Castellani, Julien Peyras, S?ren Olsen, and Patrick Sayd. Coarse-to-fine low-rank structure-from- motion. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 1–8, June 2008. [9] Ake Bjo ̈rck. Numerical Methods for Least Squares Problems. Society for Industrial and Applied Mathematics, 1996. [10] Matthew Brand. A direct method for 3d factorization of nonrigid mo- tion observed in 2d. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), volume 2, pages 122–128, June 2005. [11] Christoph Bregler, Aaron Hertzmann, and Henning Biermann. Recov- ering non-rigid 3d shape from image streams. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), volume 2, pages 690–696, 2000. [12] SuShing Chen. Structure from motion without the rigidity assumption. IEEE 3rd Workshop on Computer Vision: Representation and Control, pages 105–112, 1985. [13] Javier Civera, Andrew J. Davison, and J. M. M. Montiel. Inverse depth parametrization for monocular slam. IEEE Transactions on Robotics, 24(5):932–945, October 2008. [14] T.F. Cootes, G.J. Edwards, and C.J. Taylor. Active appearance mod- els. In Proceedings of the European Conference on Computer Vision (ECCV), pages 484–498. Springer Verlag, Berlin, Heidelberg, 1998. [15] Joa ̃o Paulo Costeira and Takeo Kanade. A multi-body factorization method for motion analysis. In Proceedings of the IEEE International Con- ference on Computer Vision (ICCV), pages 1071–1076, June 1995. [16] Geoffrey Cross, Andrew W. Fitzgibbon, and Andrew Zisserman. Par- allax geometry of smooth surfaces in multiple views. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), volume 1, pages 323–329, 1999. [17] Yuchao Dai, Hongdong Li, and Mingyi He. A simple prior-free method for non-rigid structure-from-motion factorization. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 2018–2025, June 2012. [18] Navneet Dalal and Bill Triggs. Histograms of oriented gradients for hu- man detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), volume 1, pages 886–893, 2005. [19] Andrew J. Davison, Ian D. Reid, Nicolas D. Molton, and Olivier Stasse. Monoslam: Real-time single camera slam. In IEEE Transactions on Pat- tern Analysis and Machine Intelligence (PAMI), volume 29(6), pages 1052– 1067, 2007. [20] Andreas Dopfer and Chieh-Chih Wang. What can we learn from ac- cident videos? In International Automatic Control Conference (CACS), pages 68–73, December 2013. [21] Andreas Dopfer, Hao-Hsueh Wang, and Chieh-Chih Wang. 3d active appearance model alignment using intensity and range data. In Robot- ics and Autonomous Systems, volume 62, pages 168–176, February 2014. [22] Ian L. Dryden and Kanti V. Mardia. Statistical shape analysis, volume 4. John Wiley & Sons New York, 1998. [23] Olivier Faugeras and Quang-Tuan Luong. The Geometry of Multiple Im- ages: The Laws That Govern The Formation of Images of A Scene and Some of Their Applications. MIT Press, Cambridge, MA, USA, 2001. [24] Andrew W. Fitzgibbon and Andrew Zisserman. Multibody structure and motion: 3-d reconstruction of independently moving objects. In Proceedings of the European Conference on Computer Vision (ECCV), vol- ume 1842, pages 891–906. Springer Verlg, Berlin, Heidelberg, 2000. [25] Andreas Geiger. Probabilistic Models for 3D Urban Scene Understanding from Movable Platforms. PhD thesis, KIT, 2013. [26] Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel Urtasun. Vision meets robotics: The kitti dataset. International Journal of Robotics Research (IJRR), 2013. [27] John C. Gower. Generalized procrustes analysis. Psychometrika, 40(1):33–51, 1975. [28] S. I. Granshaw. Bundle adjustment methods in engineering pho- togrammetry. The Photogrammetric Record, 10(56):181–207, 1980. [29] The Guardian. Apple maps: how google lost when everyone thought it had won. http://www.theguardian.com/technology/2013/ nov/11/apple-maps-google-iphone-users, November 2013. [30] Dirk Ha ̈hnel, Rudolph Triebel, Wolfram Burgard, and Sebastian Thrun. Map building with mobile robots in dynamic environments. In Pro- ceedings of the IEEE International Conference on Robotics and Automation (ICRA), volume 2, pages 1557–1563, 2003. [31] Chris Harris and Mike Stephens. A combined corner and edge detector. In Alvey vision conference, volume 15, page 50, 1988. [32] Richard Hartley and Rene ́ Vidal. Perspective nonrigid shape and mo- tion recovery. In Proceedings of the European Conference on Computer Vi- sion (ECCV), pages 276–289. Springer Verlag, Berlin, Heidelberg, 2008. [33] Richard I. Hartley and Andrew Zisserman. Multiple View Geometry in Computer Vision. Cambridge University Press, ISBN: 0521540518, sec- ond edition, 2004. [34] Anders Heyden. Projective structure and motion from image se- quences using subspace methods. In Proceedings of the Scandinavian Conference on Image Analysis, pages 963–968, 1997. [35] Chen-Han Hsiao and Chieh-Chih Wang. Achieving undelayed ini- tialization in monocular slam with generalized objects using velocity estimate-based classification. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), May 2011. [36] Anil K. Jain. Fundamentals of Digital Image Processing. Prentice-Hall, NJ, USA, 1989. [37] Yekeun Jeong, David Niste ́r, Drew Steedly, Richard Szeliski, and In-So Kweon. Pushing the envelope of modern methods for bundle adjust- ment. In IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), volume 34, pages 1605–1617, August 2012. [38] Gunnar Johansson. Visual perception of biological motion and a model for its analysis. Perception & Psychophysics, 14(2):201–211, 1973. [39] H.M. Karara and L.P. Adams. Non-topographic Photogrammetry. Science and engineering series. American Society for Photogrammetry and Re- mote Sensing, 1989. [40] L. Kontsevich, M. Kontsevich, and A. Shen. Two algorithms for recon- structing shapes. Optoelectronics, Instrumentation and Data Processing, 5:76–81, 1987. [41] Karl Kraus, Josef Jansa, and Helmut Kager. Photogrammetry. Ferdinand Du ̈mmlers Verlag, 1997. [42] Abhijit Kundu, K. Madhava Krishna, and C.V. Jawahar. Realtime multibody visual slam with a smoothly moving monocular camera. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), pages 2080–2087, November 2011. [43] Henning Lategahn, Andreas Geiger, Bernd Kitt, and Christoph Stiller. Motion-without-structure: Real-time multipose optimization for accu- rate visual odometry. In Proceedings of the IEEE Intelligent Vehicles Sym- posium (IV), 2012. [44] Thomas Lemaire, Cyrille Berger, Il-Kyun Jung, and Simon Lacroix. Vision-based slam: Stereo and monocular approaches. International Journal of Computer Vision, 74(3):343–364, 2007. [45] Kenneth Levenberg. A method for the solution of certain non-linear problems in least squares. Quarterly Journal of Applied Mathmatics, II(2):164–168, 1944. [46] Jesse Levinson, Jake Askeland, Jan Becker, Jennifer Dolson, David Held,So ̈renKammel,ZicoJ.Kolter,DirkLanger,OliverPink,Vaughan Pratt, Michael Sokolsky, Ganymed Stanek, David M. Stavens, Alex Teichman, Moritz Werling, and Sebastian Thrun. Towards fully au- tonomous driving: Systems and algorithms. In Proceedings of the IEEE Intelligent Vehicles Symposium (IV), pages 163–168, June 2011. [47] Ting Li, Vinutha Kallem, Dheeraj Singaraju, and Rene ́ Vidal. Projective factorization of multiple rigid-body motions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 1– 6, 2007. [48] Kuen-Han Lin and Chieh-Chih Wang. Stereo-based simultaneous lo- calization, mapping and moving object tracking. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 3975–3980, 2010. [49] David G. Lowe. Object recognition from local scale-invariant features. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), volume 2, pages 1150–1157, 1999. [50] Simon Lucey and Jack Valmadre. General trajectory prior for non-rigid reconstruction. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 1394–1401, 2012. [51] Yi Ma, Stefano Soatto, Jana Kosecka, and S. Shankar Sastry. An Invi- tation to 3-D Vision: From Images to Geometric Models. SpringerVerlag, 2003. [52] Donald W. Marquardt. An Algorithm for Least-Squares Estimation of Nonlinear Parameters. SIAM Journal on Applied Mathematics, 11(2):431– 441, 1963. [53] Jorge Nocedal and Stephen J. Wright. Numerical Optimization. Springer, New York, NY, 2004. [54] Kemal Egemen Ozden, Konrad Schindler, and Luc Van Gool. Multi- body structure-from-motion in practice. In IEEE Transactions on Pat- tern Analysis and Machine Intelligence (PAMI), volume 32(6), pages 1134– 1141, Los Alamitos, CA, USA, 2010. [55] Hyun Soo Park, Takaaki Shiratori, Iain Matthews, and Yaser Sheikh. 3d reconstruction of a moving point from a series of 2d projections. In Proceedings of the European Conference on Computer Vision (ECCV), pages 158–171. Springer Verlag, Berlin, Heidelberg, 2010. [56] Kamisetty Ramamohan Rao and Ping Yip. Discrete Cosine Transform: Algorithms, Advantages, Applications. Academic Press Professional, Inc., San Diego, CA, USA, 1990. [57] Konrad Schindler, David Suter, and Hanzi Wang. A model-selection framework for multibody structure-and-motion of image sequences. International Journal of Computer Vision (IJCV), 79(2):159–177, 2008. [58] D.A. Shulman and J. Aloimonos. (Non)rigid Motion Interpretation: A Regularized Approach. Number no. 1860 in CAR (Series). University of Maryland, 1987. [59] Randall Smith, Matthew Self, and Peter Cheeseman. A stochastic map for uncertain spatial relationships. In Proceedings of the 4th International Symposium on Robotics Research, pages 467–474, Cambridge, MA, USA, 1988. MIT Press. [60] Noah Snavely, Steven M. Seitz, and Richard Szeliski. Photo tourism: Exploring photo collections in 3d. In SIGGRAPH Conference Proceedings, pages 835–846, New York, NY, USA, 2006. ACM Press. [61] Germany Statistical Federal Office. Verkehr, verkehrsunfa ̈lle, fachserie 8, reihe 7 (annual report on traffic accidents). https://www.destatis.de/DE/Publikationen/ Thematisch/TransportVerkehr/Verkehrsunfaelle/ VerkehrsunfaelleJ.html, July 2014. [62] Peter Sturm and Bill Triggs. A factorization based algorithm for multi- image projective structure and motion. In Proceedings of the European Conference on Computer Vision (ECCV), pages 709–720. Springer Verlag, Berlin, Heidelberg, 1996. [63] Richard Szeliski. Computer Vision: Algorithms and Applications. Springer London, 2010. [64] Sebastian Thrun. Leave the driving to the car, and reap benefits in safety and mobility. The New York Times, December 2011. [65] Sebastian Thrun, Mike Montemerlo, Hendrik Dahlkamp, David Stavens, Andrei Aron, James Diebel, Philip Fong, John Gale, Mor- gan Halpenny, Gabriel Hoffmann, Kenny Lau, Celia Oakley, Mark Palatucci, Vaughan Pratt, Pascal Stang, Sven Strohband, Cedric Dupont, Lars-Erik Jendrossek, Christian Koelen, Charles Markey, Carlo Rummel, Joe van Niekerk, Eric Jensen, Philippe Alessandrini, Gary Bradski, Bob Davies, Scott Ettinger, Adrian Kaehler, Ara Nefian, and Pamela Mahoney. Stanley: The robot that won the darpa grand challenge. Journal of Field Robotics, 23(9):661–692, 2006. [66] Carlo Tomasi and Takeo Kanade. Shape and motion from image streams under orthography: a factorization method. International Jour- nal of Computer Vision (IJCV), 9(2):137–154, 1992. [67] Phil Tresadern and Ian Reid. Articulated structure from motion by fac- torization. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2005. [68] Bill Triggs, Philip F. McLauchlan, Richard I. Hartley, and Andrew W. Fitzgibbon. Bundle adjustment — a modern synthesis. In Vision Al- gorithms: Theory and Practice, volume 1883 of Lecture Notes in Computer Science, pages 298–372. Springer Berlin Heidelberg, 2000. [69] Shimon Ullman. Maximizing rigidity: The incremental recovery of 3-d structure from rigid and and rubbery motion. Perception, 13:255–274, 1983. [70] Chris Urmson, Joshua Anhalt, Drew Bagnell, Christopher Baker, Robert Bittner, M. N. Clark, John Dolan, Dave Duggins, Tugrul Galatali, Chris Geyer, Michele Gittleman, Sam Harbaugh, Martial Hebert, Thomas M. Howard, Sascha Kolski, Alonzo Kelly, Maxim Likhachev, Matt McNaughton, Nick Miller, Kevin Peterson, Brian Pilnick, Raj Rajkumar, Paul Rybski, Bryan Salesky, Young-Woo Seo, Sanjiv Singh, Jarrod Snider, Anthony Stentz, William Whittaker, Ziv Wolkowicki, Jason Ziglar, Hong Bae, Thomas Brown, Daniel Demitr- ish, Bakhtiar Litkouhi, Jim Nickolaou, Varsha Sadekar, Wende Zhang, Joshua Struble, Michael Taylor, Michael Darms, and Dave Ferguson. Autonomous driving in urban environments: Boss and the urban chal- lenge. Journal of Field Robotics, 25(8):425–466, 2008. [71] Rene ́ Vidal and Daniel Abretske. Nonrigid shape and motion from multiple perspective views. In Proceedings of the European Conference on Computer Vision (ECCV), volume 3952, pages 205–218. Springer Verlag, Berlin, Heidelberg, 2006. [72] Chieh-Chih Wang, Charles Thorpe, and Sebastian Thrun. Online si- multaneous localization and mapping with detection and tracking of moving objects: Theory and results from a ground vehicle in crowded urban areas. In Proceedings of the IEEE International Conference on Robot- ics and Automation (ICRA), volume 1, pages 842–849, 2003. [73] Chieh-Chih Wang, Charles Thorpe, Sebastian Thrun, Martial Hebert, and Hugh Durrant-Whyte. Simultaneous localization, mapping and moving object tracking. International Journal of Robotics Research, 26:889– 916, 2007. [74] World Health Organization (WHO). Global status report on road safety 2013. http://www.who.int/violence_injury_prevention/ road_safety_status/2013/en/, March 2013. [75] Wikipedia. Dashcam. http://en.wikipedia.org/wiki/ Dashcam, 2014. [76] Changchang Wu, Sameer Agarwal, Brian Curless, and Steven M. Seitz. Multicore bundle adjustment. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 3057–3064, Washington, DC, USA, 2011. [77] Jing Xiao, Jinxiang Chai, and Takeo Kanade. A closed-form solution to non-rigid shape and motion recovery. International Journal of Computer Vision (IJCV), 67(2):233–246, April 2006. [78] Jing Xiao and Takeo Kanade. Uncalibrated perspective reconstruction of deformable structures. In Proceedings of the IEEE International Confer- ence on Computer Vision (ICCV), 2005. [79] Jingyu Yan and Marc Pollefeys. A factorization-based approach to ar- ticulated motion recovery. In Proceedings of the IEEE Conference on Com- puter Vision and Pattern Recognition (CVPR), pages 815–821, 2005. [80] Jingyu Yan and Marc Pollefeys. Automatic kinematic chain building from feature trajectories of articulated objects. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 712–719, 2006. [81] Zhengyou Zhang. A flexible new technique for camera calibra- tion. IEEE Transactions Pattern Analysis Machine Intelligence (PAMI), 22(11):1330–1334, November 2000. [82] Danping Zou and Ping Tan. Coslam: Collaborative visual slam in dy- namic environments. In IEEE Transactions on Pattern Analysis and Ma- chine Intelligence (PAMI), volume 35(2), pages 354–366, February 2013. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/4586 | - |
| dc.description.abstract | 本論文提出一項應用於動態環境下之光線束法平差演算法。根據一個或多個相機的影像,本演算法可重建相機的3D軌跡,以及環境中之靜態與動態物體的3D位置。我們提出一個高效率的低維度表示形式,藉此描述物體與攝影機的軌跡。每一物體的軌跡由一系列基軌跡的線性組合近似而成。我們提出的方法不須倚賴任何對於物體移動方式的事前了解,甚至不須知道物體為靜止與否。同時,與其他方法不同的是,我們可以處理不完全,並具有雜訊的資料。經由模擬與實際測試驗證,本文提出的方法可以有效重建物體與相機的3D軌跡。 | zh_TW |
| dc.description.abstract | This work proposes an extension of Bundle Adjustment to dynamic scenes. In the setting of one or multiple cameras moving in a dynamic environment, the camera pose and the 3D positions of static and moving objects are reconstructed from the captured image sequences. An efficient, low- dimensional representation of the scene is introduced, which is based on approximating trajectories by linear combinations of trajectory bases. Our reconstruction approach requires no knowledge about the objects, not even which are moving or static and is, in difference to other approaches, able to deal with incomplete and noisy data. Experimental evaluation in simulation as well as with real data shows its effectiveness in reconstructing dynamic scenes from moving cameras. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-14T17:43:44Z (GMT). No. of bitstreams: 1 ntu-104-D98922041-1.pdf: 12940805 bytes, checksum: 199106f786b2076dd3cc9120efcfcbb4 (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | ABSTRACT................................. iii
LISTOFFIGURES............................. vii CHAPTER1. Motivation ........................ 1 THESISSTATEMENT........................... 5 CHAPTER2. RelatedWork....................... 7 CHAPTER3. Background........................ 15 3.1. CameraModels.......................... 16 3.2. FeaturePoints........................... 20 3.2.1. NoiseandErrors ....................... 21 3.3. SceneRepresentation....................... 22 3.4. Nonlinear Optimization for Bundle Adjustment . . . . . . . . 23 3.4.1. NonlinearLeastSquares................... 24 3.4.2. TrustRegionMethods .................... 25 3.4.3. LossFunctions ........................ 28 CHAPTER4. DynamicSceneRepresentation . . . . . . . . . . . . . 31 4.1. Fundamentals........................... 32 4.2. TrajectoryBases.......................... 33 4.2.1. Concept............................ 33 4.2.2. ChoiceofTrajectoryBases.................. 37 4.2.3. RepresentationalPower ................... 41 4.3. IncompleteMeasurementMatrix ................ 43 4.4. CameraRepresentation...................... 45 4.4.1. MultipleCameras ...................... 46 CHAPTER5. ReconstructingDynamicScenes . . . . . . . . . . . . 47 5.1. ErrorFunction........................... 47 5.2. Priors................................ 48 5.2.1. StaticPoints.......................... 49 5.2.2. PlanarMotion ........................ 49 5.2.3. ConstantDistance ...................... 50 5.2.4. OtherPriors.......................... 51 5.3. InitialEstimates.......................... 51 5.4. Reconstructability......................... 53 CHAPTER6. ExperimentalResults .................. 55 6.1. Categories............................. 56 6.1.1. SingleFastMovingCamera................. 56 6.1.2. OverlappingFieldofView ................. 56 6.1.3. IndependentlyMovingCameras .............. 57 6.2. SimulatedData .......................... 57 6.2.1. SimulatedScenarios ..................... 58 6.2.2. Evaluation .......................... 58 6.2.3. ReconstructionResults.................... 60 6.3. AnalysisandComparison .................... 61 6.3.1. InitialEstimates ....................... 61 6.3.2. ComparisontoNRSfM.................... 67 6.3.3. EffectofMultipleCameras ................. 69 6.3.4. EffectofLossFunctions ................... 70 6.4. RealData ............................. 71 6.4.1. KITTIStereoSequence.................... 71 6.4.2. CampusSequence1 ..................... 77 6.4.3. CampusSequence2 ..................... 81 CHAPTER7. Conclusion ........................ 85 BIBLIOGRAPHY.............................. 87 | |
| dc.language.iso | en | |
| dc.subject | 運動回復結構 | zh_TW |
| dc.subject | 軌 跡基底 | zh_TW |
| dc.subject | 多台移動相機 | zh_TW |
| dc.subject | 交通場景重構 | zh_TW |
| dc.subject | 場景重構 | zh_TW |
| dc.subject | 動態場景 | zh_TW |
| dc.subject | 光束法平差 | zh_TW |
| dc.subject | Traffic Scene Reconstruction | en |
| dc.subject | Bundle Adjustment | en |
| dc.subject | Dynamic Scene | en |
| dc.subject | Reconstruction | en |
| dc.subject | Structure from Motion | en |
| dc.subject | multiple moving cameras | en |
| dc.subject | Trajectory Bases | en |
| dc.title | 動態場景光束法平差 | zh_TW |
| dc.title | Dynamic Scene Bundle Adjustment | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 傅楸善,歐陽明,王傑智,連豊力,傅立成 | |
| dc.subject.keyword | 光束法平差,動態場景,場景重構,運動回復結構,多台移動相機,軌 跡基底,交通場景重構, | zh_TW |
| dc.subject.keyword | Bundle Adjustment,Dynamic Scene,Reconstruction,Structure from Motion,multiple moving cameras,Trajectory Bases,Traffic Scene Reconstruction, | en |
| dc.relation.page | 98 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2015-11-27 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 資訊工程學研究所 | zh_TW |
| 顯示於系所單位: | 資訊工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf | 12.64 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
