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ABSTRACT

This work proposes an extension of Bundle Adjustment to dynamic scenes.

In the setting of one or multiple cameras moving in a dynamic environ-

ment, the camera pose and the 3D positions of static and moving objects

are reconstructed from the captured image sequences. An efficient, low-

dimensional representation of the scene is introduced, which is based on

approximating trajectories by linear combinations of trajectory bases. Our

reconstruction approach requires no knowledge about the objects, not even

which are moving or static and is, in difference to other approaches, able

to deal with incomplete and noisy data. Experimental evaluation in sim-

ulation as well as with real data shows its effectiveness in reconstructing

dynamic scenes from moving cameras.

Keywords: Bundle Adjustment, Dynamic Scene, Reconstruction, Struc-

ture from Motion, multiple moving cameras, Trajectory Bases, Traffic Scene

Reconstruction
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CHAPTER 1

Motivation

BUNDLE Adjustment and Structure from Motion (SfM) meth-

ods have matured over the last years to a level where accu-

rate 3D reconstructions from image sequences of historical ar-

tifacts, buildings and even whole cities have been created [60,

2]. Some of these reconstructions are actively used by hundreds of millions

of users monthly [29]. Bundle adjustment techniques are commonly used

as the last step in SfM pipelines, as a refinement stage in real-time Simul-

taneous Localization and Mapping (SLAM) systems and they have helped

create large scale 3D city maps by Google, Apple, Nokia and others. As

impressive as these 3D models are, they all have in common that they only

consider static environments. Moving objects are filtered out.

The real world we live in is dynamic, everything we do involves some

form of motion. We spend a substantial amount of our lifetime in cars,

on public transportation or walking. While it is certainly not necessary,

and currently not possible, to reconstruct every movement made, there are

many scenarios where the ability to reconstruct the dynamic world from
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images will be highly useful. Therefore the scenes we are interested in are

scenes of our daily lives: busy roads filled with moving cars and motorbikes

or intersections with douzens pedestrians walking just to name a few.

One or more of the moving objects have cameras and observe the scene.

We introduce a low-dimensional representation for such dynamic scenes

based on trajectory bases. Each moving point is seen as a trajectory, and

that trajectory is approximated by a linear combination of basis trajecto-

ries. This significantly reduces the scenes dimensionality and makes the

reconstruction traceable. If knowledge whether a point is static is available

it be directly encoded in the proposed representation. Used in a Bundle

Adjustment framework our representation has demonstrated the ability to

reconstruct challenging real world scenes.

One of the possible scenarios to benefit from our approach is road traffic.

Traffic accidents caused an estimated 1.24 million deaths in 2010 [74], while

leaving at least 20 times as many people injured. These numbers make traf-

fic accidents the number one cause of death for people aged 15-29. The

total number of accidents without people injured is even higher. In 2013

around 3,300 persons got killed on streets in Germany (82 million inhabi-

tants), 290,000 persons got injured and 2.1 million accidents without anyone

injured were reported by police authorities [61]. These numbers show the

extend of accidents occurring, even in one of the safer countries.

2
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A first step to make traffic safer is to understand why accidents happen.

In highly developed countries, data on accidents comes from law enforce-

ment authorities which try to reconstruct what happened in the case of se-

rious accidents. They look at the crash site, the damaged vehicles and ques-

tion witnesses. It is a time consuming, difficult task so that only a very small

fraction of accidents are reconstructed. Very few countries have the resources

to conduct these reconstructions, and then only accidents with fatalities or

severe injuries are reconstructed. Also these reconstructions often miss the

wider picture of what happened before the crash. There are big gaps in our

knowledge about accidents.

Recently dashboard mounted cameras (dash cams) for cars have become

available, and while their use is illegal in a few countries such as Austria

and Switzerland), the cameras quickly became ubiquitous in other coun-

tries. The reason for this is to have evidence in court in case of accidents,

and also to guard against fraud and police corruption. In Russia their use is

so common, that when the Chelyabinsk meteor hit the country in 2013 dash

cams where the main source for news coverage and the reconstruction of

what happened [75]. Since these cameras are widely used, videos of crashes

and close calls recorded by these devices flood popular video sharing sites

around the world.

Given those available traffic videos, an automated reconstruction method

could lead to a deeper understanding of why accidents happen, and what

leads to a certain accident. Data about accidents in countries with no re-

porting system in place can be collected, as well as data about less serious

3
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accidents which are currently seldomly analyzed. Such automated recon-

struction of traffic scenes is one of the main usage scenarios of this proposed

work. We have discussed the potential impact of these reconstructions in

[20], arguing that a framework of several building blocks is required for a

comprehensive automated understanding of accidents . Out of these blocks,

the ability to estimate the dynamic structure of a scene is the most impor-

tant, but currently least covered. With the term dynamic structure we mean

the positions and motion of the recording camera and all other moving en-

tities in the scene.

By completing the proposed work, we will create an important block

towards traffic accident analysis. This analysis can potentially decrease ac-

cidents by helping to automatically identify dangerous types of traffic situ-

ations – so authorities can change existing road layouts to increase safety, or

change traffic rules accordingly. Other potential uses are automated traffic

rule monitoring so the system could automatically identify illegal or dan-

gerous behavior and allow authorities to enforce laws. Another direct use

of such a system is for insurances to verify claims by identifying who or

what caused an accident.

Several works have argued that autonomous driving has the potential to

make traffic safer [64, 65, 70, 46], since autonomous cars can react faster, do

not get tired and will not get distracted. These autonomous vehicles can

benefit from automated dynamic scene or traffic understanding by using

the information gathered to learn general traffic patterns, learn the behavior

of human drivers, or use the data extracted directly in their decision making

process.

4



THESIS STATEMENT

In this chapter, we give an overview about the contributions of the proposed

thesis before going into details. The thesis statement is followed by a short

description of the significant terms in the statement.

We propose a novel, practical method to recon-
struct dynamic scenes from one or multiple moving
cameras. The method extends existing Bundle Ad-
justment methods to dynamic scenes by modeling
the scene and camera motion in an adaptive, low-
dimensional space.

Dynamic scenes: A 3D scene in which some or all objects are chang-

ing their position over time. Objects follow the rules of physics and

therefor follow smooth trajectories. For example, in a street inter-

section, some cars are moving, people walk on the sidewalk, other

cars have temporarily halted or are parked.

Reconstruct: Meaning we aim to find the 3D structure of a scene – we

estimate the 3D coordinates of points in the scene, given 2D image

observations.



THESIS STATEMENT

Novel, practical: We want to emphasize that the work we are doing

is new – so far bundle adjustment was only used for static scenes.

With the term practical we are pointing out that we aim to create

a robust method that is able to reconstruct real world scenes from

video sequences captured by any kind of camera without the re-

quirement of special hardware or capturing technique.

One or multiple moving cameras: The proposed method can work

using a single camera, but also make use of multiple cameras mov-

ing independently in the same scene.

Bundle Adjustment: The process of jointly refining camera param-

eters and 3D scene by minimizing the distance between observed

images and the projection of the estimated 3D scene to the image

plane. A non-linear least squares optimization problem.

Low-dimensional representation: Reconstructing a dynamic scenes

from images of one moving camera is not traceable in its naı̈ve

form. A compact, low dimensional representation is required. We

represent trajectories of moving objects and moving cameras by a

linear combination of predefined bases.

Adaptive representation: The representation adapts, if necessary, to

the length of the trajectory, using a larger number of parameters for

longer trajectories than for trajectories which are observed only for

a short time.

6



CHAPTER 2

Related Work

THE aim of this thesis is to reconstruct a dynamic scene from a

moving camera, which puts our work in the broad category of

photogrammetry – the science of making measurements from

photographs. This research field is as old as modern photog-

raphy, dating back to the middle of the nineteenth century. On the other

hand, it also fits in the area of computer vision – a field that is besides mak-

ing measurements, also aims at obtaining a qualitative understanding of

images. There are cultural differences between computer vision and pho-

togrammetry, often making the literature on the later hard to access for com-

puter vision researchers. Atkinson and Karara [7, 39] are relatively accessi-

ble introductions on non-aerial photogrammetry, [28] is an excellent tutorial

paper and [41] is probably the most widely used photogrammetry textbook.

In computer vision, reconstruction of a scene from a sequence of images

is SfM – a discipline that has evolved to a mature level. The case of a camera

moving through a static scene is solved in a coherent theory [33, 23, 51].

Several systems exist that are robustly able to recover static structure and
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camera motion from real world image sequences. The main limitation here

is the requirement of a static scene.

The term SfM describes a problem category – reconstructing the struc-

ture of a scene given images from a moving camera. One popular method

to solve it is based on factorization. Factorization rests on the idea that a

measurement matrix containing the image coordinates of P features in F

views has a rank of three. This insight was introduced by [66] and [40] in-

dependently. The exploitation of this rank three constraint to reconstruct

structure and camera motion is known as the Tomasi-Kanade algorithm. In

its initial form, it was proposed only for orthographic projection, but later

extended to projective models [62, 34]. These extensions require an addi-

tional estimation or knowledge of the projective depth for each point which

make them often not applicable in practice. Handling of multiple cameras

in a factorization-based fashion was introduced by [16]. All the mentioned

factorization methods require a full measurement matrix and do not handle

outliers well.

The first insight that the human vision system has the ability to recon-

struct dynamic structures in SfM like scenarios was found by Johansson in

a 1973 study [38]. In the computer vision community, the first attempts

to reconstruct dynamic structures began in the 1980s using constraints like

rigidity, symmetry or linear representations in low dimensions [69, 12, 58].

With the upcoming of factorization based methods in the 1990s, rigid multi-

body factorization was introduced. Multi-body factorization reconstructs

scenes consisting of several independently moving rigid objects. For each

object, its translation and rotation with respect to the camera are estimated.

8
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One of the first to discuss this approach was [15], since then it has been

extended by [24, 47, 57] to handle perspective sequences and recently [54]

claimed that multi body factorization has reached a stage that makes it prac-

tical useable on realistic sequences. It has several limitations such as a re-

quired minimum number of features for each object, and the restriction of

working only for rigid objects. None of these limitations will be present in

the proposed work.

A more general approach to handle nonrigid structure was introduced

by Bregler et al. [11] and termed Nonrigid Structure from Motion (NRSfM).

The deformations of a nonrigid object were modeled as a low dimensional

set of linear bases, called shape bases - similar to the work in [58]. The

shape at each time step is approximated by a weighted sum of K basis

shapes. Assuming that K basis shapes can capture the deformation of the

scene, Bregler et al.[11] described a rank 3K theorem, analogous to the rank

3 theorem in factorization for static scenes. In the nonrigid cases, the shape

bases used have to be estimated for each object, since they are specific to

the observed data. Initial algorithms lacked the stability of the rigid factor-

ization approach. [77, 10] proposed optimization strategies and extensions

to the seminal NRSfM algorithm. Bue [5] suggested to add shape priors,

Bartoli et al. [8] used smoothness priors, with the prior being the distance

of the deformation from the mean. Others [79, 80, 67] assumed articulated

nonrigid objects. The affine camera model for NRSfM was later extended

to perspective models [78, 71, 32], however robust solutions able to han-

dle significant nonrigidity remain elusive. Lately Dai et al. [17] introduced

an approach using no priors, achieving results similar or superior to prior

9
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based approaches by exploiting the (matrix) structure of the problem in a

better way.

Akhter et al. [4] proposed to represent the time varying structure by a

collection of trajectories. Their approach is very similar to the shape basis

used in previous NRSfM methods, but does not require their calculation

for each instance of the problem. The trajectory bases used are precalcu-

lated Discrete Cosine Transformation bases. In [3] Akhter et al. showed

the duality between both representations. Trajectory based representation

for NRSfM have been extended by others since then [50]. Both shape and

trajectory based NRSfM approaches are prone to outliers and image noise,

additionally they require large camera motions [55].

Another approach on reconstructing 3D structure from images are Active

Appearance Models (AAM). This method matches a statistical object model

and an appearance model to an observed image. Introduced by Cootes et al.

[14], it can match a 3D model to a single image. Using a sequence of images,

this method can be used to reconstruct the 3D motion of nonrigid objects

such as faces. We have extended the method to be able to benefit from

sensor data other than images [21]. Since the method requires a predefined

3D model and a corresponding statistical appearance model learned from

observations, it is not the optimal choice for handling dynamic scenes where

the appearance of objects changes from scene to scene.

In robotics, Simultaneous Localization and Mapping (SLAM) aims to lo-

calize a robot in a map while building the map at the same time [59]. Often

SLAM utilizes filter based methods, for which a kalman filter maintains

the location of static features and the state of the robot. Techniques based

10
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on monocular cameras have been demonstrated using an extended Kalman

filter framework [19, 44]. These monocular SLAM approaches have been

improved by inverse depth parametrization [13]. Wang et al. [73] pointed

out that SLAM can fail in dynamic situations, if moving objects are not

properly dealt with [72, 30]. Attempts to adapt SLAM to dynamic environ-

ments have been made. A theoretical framework for simultaneous local-

ization, mapping and moving object tracking (SLAMMOT) was proposed

and demonstrated based on LIDAR data Wang et al. [73]. An approach to

enable monocular SLAM for dynamic scenes [48, 35] augments static and

moving features into the state vector. Bearing-only tracking and monocu-

lar SLAM are solved concurrently. The significant difference of all SLAM

approaches to the proposed work is that they aim to reconstruct the scene

incrementally, while the proposed method looks at the complete data.

Reconstruction of scenes, no matter what method is being used, is prone

to noise and outliers. Therefore an optimization stage can be added in

which the reprojection error is being minimized. This technique is called

Bundle Adjustment (BA). In some forms, this method was already used in

early photogrammetry methods, even before computers were around. Sys-

tem implementations using factorization or filtering based approaches often

use BA as the last stage in their pipeline, or as a method that is applied in

intervals to enhance consistency. BA is also used as the primary way of

reconstruction, with factorization or triangulation only needed to generate

reasonable starting points. An excellent overview over BA techniques is

given by Triggs et al. [68]. Thanks to increased computing power, and even

more due to improvements in the optimization stack used, large scale BA

problems – up to city scale – have become solvable [37, 1, 76].

11
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Several attempts have been made to attack the reconstruction of dynamic

scenes, based on data from multiple cameras, triangulation after establish-

ing the camera poses, or a combination of them. Park [55] reconstructed dy-

namic scenes from images taken by multiple cameras (not video sequences),

but the camera poses were calculated in a separate step using known static

background. Zou and Tan [82] introduced a SLAM based method using

multiple moving cameras capable of reconstructing the environment and

tracking moving objects. Kundu et al. [42] suggested an incremental monoc-

ular SLAM, that can either track moving objects and reconstruct the static

scene only, or also reconstruct moving objects given they are observed in

a proper way. [82, 42] evaluated their algorithms only on sequences with

a very low number of objects. This makes their works not comparable to

ours, also their work is a framework built on a sequence of different pro-

cessing steps. Geiger [25] aimed to understand traffic scenes based on short

video sequences by introducing a probabilistic framework combining car

detection and lane detection, occupancy grid maps, scene flow and vehi-

cle tracklets achieving remarkable performance. His work is, in contrast to

ours, based on stereo camera sequences.

Even though our work does not resemble any of the here discussed work

directly, it has similarities with some of them. Multi-body factorization aims

to reconstruct the 3D motion of objects – and while it reconstructs the mo-

tion together with the objects orientation it requires sufficient features for

each object. Our work in contrast aims to reconstruct the trajectories of sin-

gle feature points.

12
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NRSfM methods reconstruct the 3D motion of single features like we

do and can be seen as an approach able to solve similar scenarios. That

is why we will compare the performance of our work to NRSfM methods.

NRSfM, as well as multi-body factorization, is based on factorization which

makes them not as robust to image noise, missing data and wrong data

associations as the proposed method. Our work utilizes robust statistical

methods to deal with real world scenarios. Also the used framework allows

direct integration of additional sensor data. As the title of this thesis already

suggests, bundle adjustment methods are similar to our work. Our work is

an extension to BA allowing it to deal with dynamic scenes – which has not

been done to date.

13





CHAPTER 3

Background

THIS chapter aims to introduce several concepts and methods

used. They are the building blocks and the background this

work is based on, and help understand the concepts later in-

troduced. First camera projection models will be discussed in

Section 3.1. This is necessary since this thesis circles around the concept of

reconstructing 3D data given 2D image observations, which is essentially

the inversion of what cameras do: project 3D points to a 2D image plane.

After describing affine and projective models, image features will be shortly

discussed. The proposed work is based on point features rather than image

intensity values, so they need to be characterized as well as their noise char-

acteristics and possible error cases, which is done in Section 3.2.

How to represent 3D scenes will be elaborated in Section 3.3. Starting

from static scenes representations for dynamic scenes, scenes in which some

or all points change their position over time, are discussed. After that Bun-

dle Adjustment and with it different optimization techniques that are used

for it is explained. Loss functions that are used to make the method more
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robust are introduced. They are specially important when dealing with im-

perfect real world data.

3.1. Camera Models

This thesis is about reconstructing real world scenes given images, or in

other words how to get 3D coordinates from a set of 2D image observations.

Therefore we start by discussing how the 2D image observations were cre-

ated: the projection models of cameras.

Most real world cameras are projective cameras. They can be represented

by a pinhole camera with additional terms for distortion. The affine or paral-

lel projection camera model is a simpler model in which the camera is only

represented by its orientation and the projection is parallel. It can be seen

as a special case of the perspective model (image point at infinity). This

model allows convenient manipulation - in proper matrix form one matrix

multiplication can reduce a 3D scene to its image. We use this model as a

proof of concept due to its simplicity and to compare our work to NRSfM

techniques which almost exclusively use this model.

FIGURE 3.1. Schematic comparison between perspective and affine
projection models. The left image shows perspective projection, the
right image shows affine projection.

16



3.1 CAMERA MODELS

Figure 3.1 gives an overview of the basic difference between the two

models discussed. We are aware that a multitude of projection models ex-

ist, but we restrict ourself to the two that are relevant for our work. The

notations used follow the book from Zisserman and Hartley [33].

A point P that is defined by the orthogonal coordinates P = (X, Y, Z) is

projected to the point p = (x, y) on the image plane by a camera. An affine

camera is defined by its orientation, given as a rotation matrix R truncated

to 3⇥ 2. The affine projection can be found by

p = P ·R

Projective cameras are defined by a focal length f and its pose which con-

sists of camera rotation R and its translation t. The pose will change for

each frame in the case of an image sequence taken by a moving camera. A

3D point P is projected onto the camera image p = (x, y) by

(X, Y, Z)

T 7! (f ·X/Z, f · Y/Z)T .

Taking into account that the origin of coordinates in the image plane is

not necessarily at the principal point p and expressing the equation it in

homogenous coordinates we get

0

BB@

X

Y

Z

1

1

CCA 7!

0

@
f ·X/Z + p

x

f · Y/Z + p

y

Z

1

A
=

2

4
f 0 p

x

0

0 f p

y

0

0 0 1 0

3

5

0

BB@

X

Y

Z

1

1

CCA (3.1)
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The matrix to project points to the image is called the camera calibration

matrix K.

K =

2

4
f 0 p

x

0 f p

y

0 0 1

3

5

Equation 3.1 can then be written in compact form

p = K[I | 0]P,

taking into account the camera pose we get

p = K[R | t]P.

FIGURE 3.2. Details on perspective projection. The left image de-
fines camera and image centric coordinate systems. the right image
shows the perspective projection and defines the focal length.

Figure 3.2 gives an overview over the camera parameters for perspective

projection. As radial distortion is present to some degree in most real world

cameras, we model it with two radial distortion parameters k1, k2. Although

different distortion models exist, we focus on a two parameter one here.
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r(p) is a function for radial distortion and ||p|| is the distance to the image

center.

||p|| =
q
(p

x

� p

x

)

2
+ (p

y

� p

y

)

2
,

r(p) = 1.0 + k1 ⇤ ||p||2 + k2 ⇤ ||p||4.

This gives a projection in pixels, where the origin of the image is the

center of the image, the positive x-axis points right, and the positive y-axis

points up. In the camera coordinate system, the positive z-axis points back-

wards, so the camera is looking down the negative z-axis.

As a short summary we list the steps necessary to project a 3D point P

onto an image based on the camera parameters f,R, t, k1, k2

P0
= R ·P+ t

p0
= �P0

/P0
z

p = f · r(p0
) · p0

The first line converts from world to camera coordinates, the second line

is the actual perspective division where P
z

is the projective depth. The third

line is the conversion to image coordinates. Summarizing the perspective

projection we get

p = proj(P,C
pose

,C
int

) (3.2)
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where C
pose

represents the camera pose, consisting of the camera center

position and the camera orientation (6 parameters) and C
int

stands for the

intrinsic camera parameters such as focal length, image center, and distor-

tion (we use 5 parameters).

3.2. Feature Points

This work is based on feature points, therefore their characteristics will

be shortly discussed. Image features are represented by their position on the

image plane. They are a tuple of coordinates, given either in pixels or after

applying the intrinsic camera parameters as metric distances. An image

feature in the context of this work is a point on images that represents a

real world 3D point. In subsequent images, the image feature shall denote

the same real world 3D point even when the camera sees the point from

different directions or distances.

Numerous kinds of feature point detectors exist, each with different char-

acteristics. Some methods such as SIFT [49] or HoG[18] use an area of the

image to characterize the feature point and identify the same point in other

images. They are robust to scaling and rotations. Other simple detectors

such as Harris [31] corner detector rely on optical flow to associate simple

features in subsequent images. A good overview of the state of the art in

feature point detection and tracking is given in the computer vision text-

book of Szelinski [63]. In this work we use corner features that are tracked

using optical flow for single camera scenarios. When using multiple cam-

eras, different or additional methods might be used to ensure correct data

association between different camera sequences. Since these feature points

20



3.2 FEATURE POINTS

are sparse, the work at hand represents a sparse 3D reconstruction, unlike

dense methods such as stereo.

All observations of image features can be stacked into a measurement ma-

trix Z, which is a 2P ⇥ F matrix with P being the number of features, and

F the number of frames in the sequence.

Z =

2

666666664

x11 x12 · · · x1P

y11 y12 · · · y1P

x21 x22 · · · x2P

y21 y22 · · · y2P
... . . . ...

x

F1 x

F2 · · · x

FP

y

F1 y

F2 · · · y

FP

3

777777775

3.2.1. Noise and Errors

Since a digital image is a discrete array of intensities, the features found

in an image will be tainted by discretization noise of some form. Some fea-

ture detectors resolve features to sub pixel resolution. This may reduce the

noise, but not eliminate it. Higher resolution image sequences may also

allow an reduction of this error. Features detected and tracked over a se-

quence of frames can drift, also leading to errors.

Another form of error is when a feature is not observed by the camera

anymore because of whatever reason. This will lead to an incomplete mea-

surement matrix. Worse than not observing a feature anymore is confusing

two features. This is called incorrect data association (DA) and can lead

to serious errors. Many reconstruction methods, especially factorization-

based ones, tend to fail completely in presence of wrong DA. Our approach
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is able to handle both missing data as well as wrong DA to some extent.

More details will be discussed in the remainder of this thesis.

3.3. Scene Representation

First the representation of static scenes is discussed, from which possi-

ble representations of dynamic scenes are derived. The 3D structure of the

scene is denoted as S, a matrix with the coordinates of one point in each

column.

S =

2

4
X1 · · · X

P

Y1 · · · Y

P

Z1 · · · Z

P

3

5

P is the number of points in the static scene, so the size of S is 3⇥P . If we

consider a scene with moving objects, S becomes S(t) where the t stands for

the time at which the scene is represented. The dynamic scene is a sequence

of snapshots of the scene.

S(f) =

2

4
X1 X

P

Y1 · · · Y

P

Z1 Z

P

3

5
; S

dyn

= [S(1)T S(2)T · · · S(F )

T

]

T

where F is the temporal length of the sequence denoting the total number

of frames and f the corresponding index. The size of S
dyn

is then F ⇥ 3P .

We can restructure S
dyn

into

S
dyn

⇤
=

2

4
X11 · · · X1P Y11 · · · Y1P Z11 · · · Z1P

...
...

...
...

...
...

X

F1 · · · X

FP

Y

F1 · · · Y

FP

Z

F1 · · · Z

FP

3

5
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to come to a useful form. Another way of representing the dynamic scene

is to acknowledge that the set of changing positions of each moving point

represents a trajectory. The set of all these trajectories then represents the

dynamic scene.

t(p) =

2

4
X1 X

F

Y1 · · · Y

F

Z1 Z

F

3

5
; S

dyn

= [t(1)T t(2)T · · · t(P )

T

]

T (3.3)

In addition to the scene itself, the extrinsic and intrinsic parameters of

the cameras are needed as described in Section 3.1. All parameters being

estimated, such as the scene structure, camera focal length, distortion and

poses will be parameterized in a single large state vector X.

3.4. Nonlinear Optimization for Bundle Adjustment

Bundle adjustment is the problem of refining a visual reconstruction to

jointly produce optimal 3D structure and viewing parameter estimates (cam-

era pose, orientation and camera parameters). Optimal means that the pa-

rameter estimates are found by minimization of some cost function that

quantifies the model fitting error. Jointly states that the solution is simul-

taneously optimal with respect to both structure and camera.

Bundle adjustment is a large, sparse geometric parameter estimation prob-

lem, with the parameters being the combined 3D feature coordinates, cam-

era poses and calibrations. Traditionally these adjustment computations

are formulated as nonlinear least squares problems. The cost function be-

ing quadratic in feature reproduction error with explicit outlier handling.

Newer approaches often use non-quadratic M-estimator like distributional
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models to integrate outlier handling, and also potentially include additional

penalties for overfitting [68].

This section gives an overview over the state of the art BA techniques that

are used for reconstruction. The core of the estimation is a nonlinear least

squares problem minimizing the distance between the observed image and

the reprojection of the estimated 3D scene to the image plane. Our work

makes use of these optimization techniques. More elaborate discussions of

nonlinear optimization and BA techniques are given by Triggs et al.[68] and

Nocedal and Wright [53].

3.4.1. Nonlinear Least Squares

The vector x 2 R is a n-dimensional vector of variables and F (x) =

[f1(x), · · · , fm(x)]T is a m-dimensional function of x. To put it into the con-

text of what was previously discussed: x is the state vector X that consists

of all variables to estimate. F (x) is the error function with the error being

the 2D distance between observed image feature position, and the position

calculated using the state vector and the projection function. It might fur-

ther contain a loss function (will be discussed in detail in Section 3.4.3). We

aim to solve

argmin

x

1

2

kF (x)k2 .

L  x  U

where L and U are upper and lower bounds on x. A global minimization

of F (x) is in general not traceable, therefore the aim is to find a solution by
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solving a sequence of approximations instead of solving the original prob-

lem.

J(x) is the Jacobian of F (x) (J
ij

(x) = @

j

f

i

(x), m ⇥ n matrix). The gra-

dient vector g(x) = r1
2kF (x)k2 = J(x)

T

F (x). An approximation can be

constructed by using the linearization F (x + �x) ⇡ F (x) + J(x)�x which

leads to

min

�x

1

2

kJ(x)�x+ F (x)k2

Depending on how the step size is evaluated, two major categories of

optimization algorithms emerge: trust region and line search methods. In

some sense the two methods are dual to each other. Trust region methods

first choose a step size (the size of the trust region) and then a step direction,

while line search methods first choose a step direction and then the size of

the step [9].

In the following sections we will discuss some of the possible algorithms

in more detail.

3.4.2. Trust Region Methods

Trust Region algorithms approximate the objective function using a model

function (often quadratic) over a subset of the search space [9]. This search

space is called the trust region. If the model function minimizes the true

objective function, then the trust region is expanded. Otherwise the trust

region is contracted and the model optimization problem is solved again.

The basic trust region algorithm is listed in Algorithm 1.
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Algorithm 1 Basic Trust Region Algorithm
1: Start from initial guess x and a trust region radius µ.
2: Solve:

argmin

�x

1

2

kJ(x)�x+ F (x)k2

such that kD(x)�xk2  µ

and L  x+�x  U.

3: calculate

⇢ =

kF (x+�x)k2 � kF (x)k2

kJ(x)�x+ F (x)k2 � kF (x)k2
.

4: if ⇢ > ✏ then x = x+�x.
5: if ⇢ > ⌘1 then ⇢ = 2⇢.
6: else if ⇢ < ⌘2 then ⇢ =

⇢

2 .
7: GOTO 2.

D(x) is a matrix defining a metric on the domain of F (x), ⇢ is a measure

for the quality of the step size �x. It measures how well the linear model

predicts the decrease in the value of the non-linear objective. The increase

or decrease of the trust region radius depends on this measure ⇢.

The key computational step in the algorithm is the solution of a con-

strained optimization problem (line 2 in Algorithm 1). There are different

ways of solving this problem, each giving rise to a different trust-region

algorithm. In the following, we will describe two of them: Levenberg-

Marquardt and Powell’s Method (also called dogleg method).

Levenberg-Marquardt. The Levenberg-Marquardt algorithm [45, 52]

was the first trust-region algorithm developed, and is still one of the most

popular methods to solve non-linear least squares problems to date.

The solution to line 2 in Algorithm 1 can be obtained by solving an un-

constrained optimization problem of the form
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argmin

�x

1

2

kJ(x)�x+ F (x)k2 + �kD(x)�xk2

� being a Lagrange multiplier that is inversely related to µ. Let D(x) be

a non-negative diagonal matrix (typically the square root of the diagonal of

J(x)

T

J(x)).

argmin

�x

1

2

kJ(x)�x+ F (x)k2 + 1

µ

kD(x)�xk2 (3.4)

After concatenating the matrix p
µD to the bottom of J and adding zeros

to the vector of f , we get the following simpler form

min

�x

1

2

kJ(x)�x+ f(x)k2.

This equation dominates the computational cost of the algorithm in most

cases. There are two ways of solving it: either by factorization (exact step

Levenberg - Marquardt algorithm), or iterative (Inexact step Levenberg -

Marquardt algorithm). Factorization based methods use a Cholesky or a QR

factorization to compute an exact solution of Equation 3.4. Inexact solutions

are based on truncated Newton methods [53]. The used implementation of

the proposed approach is based on Levenberg Marquardt. It is using sparse

Cholesky factorization.
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3.4.3. Loss Functions

For least squares problems where input data might contain outliers, it

is important to use a loss function, a function that reduces the influence of

these outliers. Otherwise a few outliers can easily drag the solution away

from the correct value. A robust loss function reduces the error for out-

liers, leading them to have a lower weight and not overly influence the final

solution.

min

x

1

2

X

i

⇢

i

�
kf

i

(x

i1 , · · · , xik
)k2
�
.

L  x  U

⇢

i

(·) is a loss function. It is a scalar valued function that has the purpose

of reducing the influence of outliers on the solution of the non-linear least

square problem. When we set the loss function as identity function p

i

(x) =

x, and the bounds to L = �1 and U = 1, we get the familiar classical

unconstrained non-linear least squares problem. The loss functions used

are scalar valued functions. In robust statistics they are called M-estimators

(from Maximum likelihood-type). Below some possible functions and their

respective curves. In our formulation s is the squared error.

Quadratic:

⇢(s) = s

Huber type:

⇢(s) =

(
s s  1

2

p
s� 1 s > 1
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Cauchy type:

⇢(s) = log(1 + s)

Arctan type:

⇢(s) = arctan(s)
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FIGURE 3.3. Top: Shape of different loss functions. Bottom: de-
tailed view for the range [0 1.2]
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CHAPTER 4

Dynamic Scene Representation

IN this chapter the core contributions of this paper are presented -

compact, efficient representations for dynamic scenes. First the di-

mensionality of the problem will be analyzed to illustrate the need

for a compact representation. Then the proposed representation is

introduced, its implications are elaborated and its representational power

is verified. The case of a full measurement matrix Z is explained first and

then expanded to the scenario of an incomplete measurement matrix. Also

the representation of camera poses, how static objects are treated, and how

additional priors can be included is discussed. After that ways to find rea-

sonable starting conditions for the bundle adjustment step are introduced,

and requirements for reconstructability in this problem category are elabo-

rated. We look at the case of reconstruction from a single camera first, then

extend to multiple cameras and elaborate on the benefits .
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4.1. Fundamentals

The problem we aim to solve is underdetermined, meaning there are

more unknowns than equations. We first assume that the measurement ma-

trix Z is full, meaning that in every frame every feature is observed. Figure

4.1 illustrates the difference between a fully and a partially observed scene.

FIGURE 4.1. Scene observations. In the left image every trajectory
is observed for every frame of the scene. In the right image features
are not visible all the time. Multiple gaps can occur leading to sev-
eral trajectories belonging to the same physical object.

Given that the number of frames is F and the number of trajectories is

P , we have F ⇥ 2P measurements. In a static environment we are looking

for 3P + 6F parameters – three components for the position of each point,

and six camera parameters per frame. These six camera parameters sepa-

rate into three translative and three rotative components since the camera

is moving. Given a reasonable number of frames and points this system is

well defined (typically F and P are large, so (F ⇥ 2P ) > (3P + 6F )). For

a short video sequence of 5 seconds we assume to have 150 frames (30 fps,

F = 150) and 20 points. These numbers are just picked to illustrate the dis-

cussed dimensionality. The numbers at hand give us 6000 observations for

60 + 900 unknown parameters making the problem generally traceable.
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In a dynamic environment the problem becomes more challenging. While

the number of camera related parameters stays the same, we need 3⇥F pa-

rameters instead of only 3 for each moving object. This leaves us with a

more problematic ratio between measurements and parameters to estimate

(typically (F ⇥ 2P ) < (F ⇥ 3P + 6F )). We make the assumption that ev-

ery point is moving. Given the numbers used before for illustration we still

have 6000 observations, but now 9000 + 900 unknown parameters – clearly

an intractable scenario.

4.2. Trajectory Bases

This Section describes the concept of utilizing Trajectory Bases to com-

pactly represent trajectories. Possible choices of bases are discussed and

compared, the representational power of the chosen bases analyzed and the

effect of the number of Bases (K) elaborated.

4.2.1. Concept

The moving objects we aim to reconstruct are real world objects, which

means that the speed and acceleration of each object is bounded. This is a

reasonable assumption given that the moving objects need to obey the laws

of physics. This assumption leads to another insight: the trajectory of each

object is smooth. Jumps in position of an object would require indefinite

acceleration, which is not possible for real world objects.

To represent the trajectory of each moving object, we use a linear combi-

nation of K predefined trajectory bases. ✓j 2 RF is a trajectory basis vector

of length F and a

xj

(i), a
yj

(i) and a

zj

(i) are the coefficients corresponding to
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that basis vector. The form stated in Equation 3.3 can be approximated as

follows using trajectory bases:

t =

2

4
X1 X

F

Y1 · · · Y

F

Z1 Z

F

3

5 ! t =

2

4
✓

1 · a1
x

+ · · · + ✓

K · aK
x

✓

1 · a1
y

+ · · · + ✓

K · aK
y

✓

1 · a1
z

+ · · · + ✓

K · aK
z

3

5 (4.1)

Each trajectory is approximated using 3K trajectory coefficients (trajec-

tory parameters), K coefficients for each dimension. Figure 4.2 illustrates

the concept and Figure 4.3 shows the first 10 bases of the used representa-

tion. The choice of bases is discussed in Section 4.2.2.

FIGURE 4.2. Trajectory bases representation. The trajectory on the
left is approximated by a linear combination of trajectory bases

A compact form for the whole scene can be obtained using the previ-

ously defined notation for S
dyn

⇤ . Structuring the trajectory coefficients a in

a matrix A and doing similar with the basis vectors ✓ into ⇥ we can obtain

the following form

S
dyn

⇤
= ⇥A (4.2)

with

A = [A

x

A

y

A

z

];
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FIGURE 4.3. First 10 bases of the trajectory bases used.

A

x

=

2

4
a

1
x

(1) · · · a

1
x

(P )

...
...

a

K

x

(1) · · · a

K

x

(P )

3

5
;

A

y

=

2

64
a

1
y

(1) · · · a

1
y

(P )

...
...

a

K

y

(1) · · · a

K

y

(P )

3

75 ;

A

z

=

2

4
a

1
z

(1) · · · a

1
z

(P )

...
...

a

K

z

(1) · · · a

K

z

(P )

3

5
;
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⇥ =

2

666666664

✓

T

1

✓

T

1

✓

T

1
...

✓

T

P

✓

T

P

✓

T

P

3

777777775

;

This way we represent the dynamic 3D structure of a scene using a small

number of trajectory coefficients A, making the problem of bundle adjust-

ment for dynamic scenes traceable. Originally the number of parameters

to estimate in S
dyn

was (3P ⇥ F ), using trajectory basis representation it

is reduced to (3P ⇥ K). Typically K ⌧ F . Using the same numbers like

before (F = 150, P = 20) and a K of 12 we get 6000 observations and

720 + 900 unknowns. This makes the problem traceable from a mathemati-

cal viewpoint. K is typically in the range of 6� 20, more about its influence

is discussed in the next section. Later we discuss the possibility of further

reducing the dimensionality by representing the camera pose in a similar

fashion. The apparent reduction in dimensionality results from the fact that

the described representation implies smooth trajectories.

The idea of representing a trajectory, or more generally speaking any dis-

crete signal, by a linear combinations of bases is not new. Lossy audio and

image compression use DCT to compress their data, and Akhter et al. [4, 3]

use it to represent nonrigid structure in NRSfM. To the best of our knowl-

edge we are the first to introduce it to the context of bundle adjustment for

dynamic scenes.
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4.2 TRAJECTORY BASES

4.2.2. Choice of Trajectory Bases

Trajectory bases are sets of finite discrete data points used to express the

trajectories of moving objects. Discrete Fourier Transform (DFT), Discrete

Sine Transform (DST) and Discrete Cosine Transform (DCT) [56, 36] use

sums of sinoid functions of different frequencies to represent a signal. The

three methods are closely related. They distinguish itself by the use of either

sine/cosine functions or both - and weather they operate on real numbers

only rather than complex ones.

The periodicity of DFTs leads to symmetrical boundaries which is not

desirable for the application at hand, and similar problems arise for DSTs.

Therefore DCTs are used as trajectory bases in this work.

For static scene Bundle Adjustment all reconstructed 3D points are in-

dependent of each other, and only depend on the camera pose at the time

when they are observed. When reconstructing trajectories of moving objects

the resulting Jacobian matrix in the optimization step is sparse. A sparse Ja-

cobian matrix allows faster computation then with a full matrix. By using

trajectory bases every parameter used to represent a trajectory influences

every point in the trajectory, leading to a non-sparse block in the Jacobian

matrix for each trajectory.

A choice of basis functions that are zero over wide areas of its length will

lead to a more sparse Jacobian. Splitting the used DCT bases into smaller

chunks and setting them to zero outside is a possibility, as well as creating

a function that piecewise defines the function. Figure 4.4 shows DCT trajec-

tory bases split into 3 regions. Figure 4.5 shows a piecewise defined basis
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CHAPTER 4. DYNAMIC SCENE REPRESENTATION

set, where one trajectory parameter only influences a small group of points,

with small overlap for points at the edge of one base.

FIGURE 4.4. Split DCT bases. Instead of 12 Bases the sequence is
split in 3 parts and each using 4 bases for representation. This way
the first third of the trajectory factors will only influence the first
part of the trajectory, the next third the next third of the trajectory,
and so on.

In Figure 4.6 the effect of these choices of basis functions can be seen.

Increasing zero sections in the bases increase the sparsity of the Jacobian

matrix. As a tradeoff splitting the trajectory introduces discontinuities at

the boundaries. The accuracy with which a trajectory can be represented

decreases due to this discontinuities.

38



4.2 TRAJECTORY BASES

FIGURE 4.5. Piecewise defined bases. Each trajcetory factor will
only influence a small portion of the trajectory resulting in a sparse
Jacobian martix.

Concluding we can see that a sparser Jacobian would lead to faster com-

putation, but lower accuracy. Since our method is an offline batch-processing

type of calculation we weight accuracy over speed and use full DCT trajec-

tory bases thru out this work.
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FIGURE 4.6. Structure of the Jacobian for one dimension of a single
trajectory using different trajectory bases. Black denotes non-zero
elements. From top to bottom: full DCT-type bases, DCT bases split
into 3 parts, DCT-bases split into 6 parts, piecewise defined bases
with small overlap. Total 48 bases each, 500 frames long trajectories.
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4.2.3. Representational Power

How accurate a given trajectory t can be approximated by a linear com-

bination of trajectory bases depends on the number of used bases K and the

characteristics of the trajectory itself. To empirically evaluate the represen-

tative power of our formulation, trajectories were created. Figure 4.7 shows

an example of such a generated trajectory together with the best possible

approximation using trajectory bases given certain values of K.

FIGURE 4.7. The black line is a trajectory, the other lines are the best
possible approximation of the trajectory given different values of K.

The influence of K on the reconstruction accuracy was evaluated by cre-

ating a large number of different trajectories, reconstructing them by a set of

K values and calculate the error for each case. Reconstruction accuracy E
rec
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is defined as the mean point to point distance between every point along

every trajectory and its reconstruction (E
rec

=

1
F ·P
P

dist(t� trec)).

FIGURE 4.8. Mean reconstruction error (mean point-point distance)
for different K values. Average over 1000 different trajectories,
each approximated by a different number of trajectory bases rang-
ing from K = [3 · · · 75].

With dist(·) being the Carthesian distance between each 3D point of the

trajectory. Figure 4.8 shows the mean reconstruction error for different val-

ues of K. As expected, the higher the value of K becomes, the better the

reconstruction gets.

However small values of K already yield good results. The actual best

choice of K is difficult, there are tradeoffs between reconstruction accuracy

and the introduction of possible ambiguities. Choosing a high K value re-

duces the smoothness assumption.
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The question of picking the best K was discussed in detail in the NRSfM

community [11, 77, 10, 5, 8, 4, 17], but without a clear conclusion on how

to best estimate it. Almost all publications hand-pick the optimal value for

each dataset evaluated, or give results on a set of different K values. The

effect of K on the reconstruction is similar for BA and NRSfM since both

aim to reconstruct a similar type of scenario. We pick K based on the length

of trajectory at hand, but will not further discuss ways to choose K, since it

is out of the focus of this work.

4.3. Incomplete Measurement Matrix

The previously discussed dynamic environment was assumed to be fully

observed (full measurement matrix Z) and therefore S
dyn

is full, meaning

that in every frame the position of every feature point is observed. In real

world scenes most points will not be visible for the whole sequence. Fea-

tures can leave the camera’s field of view due to their own motion, the cam-

era can move away from a feature, or features can become occluded by ob-

jects in the scene. We aim to only reconstruct the trajectory of a moving

object for the time where observations exist. Unlike other methods such as

NRSfM, the proposed dynamic scene bundle adjustment has no problems

with these environments.

To represent trajectories of various lengths in an efficient fashion trajec-

tory bases ✓ of variable length are required. Instead of using the same num-

ber of shape basis (K) for every trajectory, different values of K for each

based on the length of the trajectoy t is used. This efficiently reduces the
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parameter space to be estimated, since objects with a short trajectory are

represented by a smaller number of trajectory coefficients.

tp =

2

64
✓

1
t

· a1
xp

+ · · · + ✓

Kp
p

· aK
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1
t

· a1
yp
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· aK
yp

✓

1
t
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+ · · · + ✓

Kp
p

· aK
zp

3

75 (4.3)

For trajectories with different lengths, we use the following notation: tp

where p denotes the index of the trajectory: p ranges from 1 to the number

of trajectories P. The length L of each trajectory tp is len(tp). Each trajectory

is represented by three trajectory coefficient vectors a

xp

, a
yp

and a

zp

– each

K

p long. The coefficients relate to their corresponding trajectory basis ✓

p.

Stacking the trajectory coefficients into a matrix Ap, and the bases into ⇥, a

trajectory can be represented in the form

tp = ⇥

pAp

. (4.4)

To represent S
dyn

in the case of an incomplete measurement matrix a dy-

namic scene is the collection of all its trajectories.

S0
dyn

= {tp} (4.5)

The value of K to represent each trajectory can be adjusted on its length

and depending on additional knowledge about the moving object if avail-

able. The efficient representation discussed in this section is the key insight

that allows reconstruction of real-world dynamic scenes using bundle ad-

justment.
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4.4. Camera Representation

The camera position and orientation for each time step is part of the state

vector. They can be directly represented by 3 ⇥ F variables for an affine

camera model, or 6⇥ F for a perspective one. Since it is safe to assume that

a camera is a physical object with mass, it is possible to reduce the positions

to a trajectory in the same way as done for moving objects. For camera

orientations this is also possible, depending on the chosen parametrization.

Orientation can be parametrized by Euler angles, a 3D vector, a 3⇥3 rotation

matrix or quaternions.

Here we use an angle-axis representation of the orientation. This allows

efficient calculation of the rotation, and is sufficient since all scenarios evalu-

ated are recorded with cameras that move on the ground. Therefore rotation

is limited and special cases such as gimbal lock are unlikely to occur.

The number of bases K used to represent camera motion, specially its

orientation can be higher than the ones used to represent moving objects.

A higher number of bases is desireable because the effect of not being able

to exactly approximate a camera trajectory will lead to more severe effects

than for the observed object.

Given the same numbers used previously to illustrate the dimensionality

of the problem at hand (F = 150, P = 20, K

traj

= 12), we use a larger K of

20 to represent the camera pose. With that we can reduce the previous 6000

observations vs. 720+900 unknowns to 6000 vs. 720+120 for the affine case

and 720+240 for a perspective camera with known intrinsics (affine camera

2⇥ 3 camera matrix, perspective 3D pose + 3⇥ 3 for orientation).
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4.4.1. Multiple Cameras

Using observations from multiple cameras can benefit the reconstruction.

Generally depth reconstruction from a single camera is difficult and in some

scenarios not possible. Having two or more cameras looking at the same

scene at one time instance defines in theory the 3D structure of the scene in

relation to the camera positions up to a scale factor. [33]. The previously

discussed representation of a dynamic scene does not change in presence

of multiple cameras. Important to note is that correspondence between the

cameras is required, otherwise each camera defines its own independent

scene. A correspondence is the observation of one feature in multiple cam-

eras. For moving points the relative times at which the observation were

made are required, for static points they are not relevant.
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CHAPTER 5

Reconstructing Dynamic Scenes

AFTER introducing a compact efficient representation for dy-

namic scenes this chapter discusses how the representation

is used to actually reconstruct the scene and how additional

information about the scene can be included. Such priors

might be the information which points are static or moving, how they are

moving or if they belong to the same physical object. After that ways to

find reasonable starting conditions for the bundle adjustment step are in-

troduced. Next requirements for reconstructability are elaborated and dif-

ferent usage scenarios listed.

5.1. Error Function

First we define some terminology: obs(t) is a vector of all camera obser-

vations of trajectory t. obs(t, f, c) is a single observation (point on the image

plane) at frame f seen by camera c.

We aim to minimize the reprojection error. For each observation made

from each camera for each point along each trajectory the error is defined as
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the distance between the projection of the reconstructed 3D point with the

corresponding observation.

min

CX

c=1

 
PX

p=1

 
FpX

f=1

(proj(tp,C
pose

(c, f),C
int

(c))� obs(p, f, c))

!!

using Equation 4.4 we get

min

CX

c=1

 
PX

p=1

 
FpX

f=1

(proj(⇥

pAp

,C
pose

(c, f),C
int

(c))� obs(p, f, c))

!!
(5.1)

The parameters to be found are the trajectory coefficients Ap, the camera

poses C
pose

(c, f) and the intrinsic camera parameters C
int

(c).

5.2. Priors

This section introduces different priors that can help solve the Dynamic

Scene Bundle Adjustment problem. Exploiting the structure of the prob-

lem, or utilizing other information can aid in restricting the search space for

the optimization, leading to faster convergence and higher accuracy. These

priors can be included by additional terms in the error function or can be

included in the chosen representation.

min

 
CX

c=1

 
PX

p=1

 
FpX

f=1

(proj(⇥

pAp

,C
pose

(c, f),C
int

(c))� obs(p, f, c))

!!

+prior terms)
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5.2 PRIORS

5.2.1. Static Points

In general we do not assume knowledge of whether a feature is moving

or static. In case it is known that a feature is static, the proposed representa-

tion is, without any modification, able to benefit from that information. By

setting K to 1 for a feature it is defined as being static. To be able to do so,

the first trajectory basis in the chosen trajectory basis representation has to

be nonzero and linear, which is the case for the chosen DCTs.

Having the knowledge of static points in the scene strongly helps re-

constructing the camera orientation and position more accurately, which in

return also helps in reconstructing the trajectories of moving objects.

5.2.2. Planar Motion

Most things, like cars, bikes, ships or persons, moves on the ground –

which is often flat. The fact that the motion is bound to the ground is a

strong restriction to the movement of an object, efficiently giving it differ-

ent motion patterns along the two dimensions spanning the ground plane

and the one normal to that plane. Our approach represents each of the 3

dimensions of a trajectory by a separate linear combination of basis vectors.

The number of parameters used to reconstruct planar motion can be re-

duced by assuming that the dimension for height is changing less than other

dimensions and can therefore be represented by a lower value of K or by

K = 1 which assumes a fixed height above ground. Utilizing the fact of pla-

nar motion requires a coordinate system properly aligned with the ground
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plane, meaning one axis is parallel to the normal of the ground plane. This

can be achieved by properly aligning the initial camera trajectories.

5.2.3. Constant Distance

Moving objects are often rigid, or partially rigid objects such as cars,

scooters or bicycles. Each of these moving objects can generate several fea-

ture tracks leading to several reconstructed trajectories for one moving ob-

ject. In such cases the 3D distance of two trajectories belong to the same

moving rigid object can be assumed constant. For the every point in time

in which the two trajectories are reconstructed their 3D distance has to be

the same. Even the distance is not known, it can be modeled with a single

parameter in the Bundle Adjustment. Given multiple trajectories on one ob-

ject several constant distance priors can be introduced. The error term for

this prior can be written as follows

min

FX

f=1

 
dist(⇥

i

f

Ai

f

,⇥

j

f

Aj

f

� d

i,j

!2

. (5.2)

Where F here is the range of frames for which both trajectories are de-

fined.

Object detection or grouping of close, similar trajectories can create these

correspondences. In practice the benefit due to this prior is huge. The rea-

son for the benefit from this prior is twofold. First given observations of

two points from one camera at one frame restricts the 3D location of the

points only to lie along the beams thru camera center and the point on the

image planes. Knowing the 3D distance between the 3D points significantly
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reduces the possible 3D locations. Secondly in case of multiple trajectories

where some are noisy or inaccurate at portions of their length the constant

distance allows to correct for their errors. This is due to the fact that the

majority of the other trajectories will be more correct.

5.2.4. Other Priors

Other ways to restrict the optimization space is to add bounds on change

of point-point distance of camera or moving object trajectories. These priors

represent knowledge about the speed and/or acceleration of moving objects

allowing to determining these bounds. For road traffic scenes the maximum

speed of cars can be used as prior, together with a maximum acceleration.

These Priors require that a scale factor is determined first.

5.3. Initial Estimates

All discussed bundle adjustment approaches have in common that they

require a starting point for their optimization, an initial guess. In the hypo-

thetical ideal case in which no ambiguities are present, any starting point

will suffice. But commonly ambiguities exist, requiring that the starting

point is close enough to the solution, so the optimization will approach the

true value. For three different sets of unknown parameters initial condi-

tions are needed: the camera pose, camera intrinsics and the structure of

the scene. Several methods exist that can be used to generate these initial

estimates.
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The intrinsic camera parameters can be found by calibration using a well

defined physical object visible in one or multiple views. Several meth-

ods exist [81, 33] to perform this calibration. We have calibrated the cam-

eras used, and refine the parameters during optimization to compensate for

changes due to vibrations or temperature change.

Structure from Motion approaches can yield structure together with the

camera poses. Given that the scene contains enough static object this will

lead to good results. Multi-body SfM is an excellent candidate for creating

starting points in scenes with several large objects (objects that have a large

number of features on them). NRSfM, especially the trajectory based ver-

sion, can create starting conditions in scenarios with outlier free low noise

data.

Visual Odometry [6, 19] is a method to estimate a cameras trajectory based

on an image sequence. State of the art implementations [43] are fast, rea-

sonably accurate and are able to handle dynamic environments. Given the

estimated camera poses, trajectories can be initialized using triangulation.

Then trajectory basis parameters are estimated using Discrete Cosine Trans-

formation. Given there is enough camera motion, and that the camera mo-

tion is not correlated with the motion of the object, this method of gener-

ating a starting position for the BA procedure is sufficient. The triangu-

lation will not be highly accurate, especially not for moving objects since

the objects will change their position between the images. In the presented

scenarios starting points were generated this way.
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5.4. Reconstructability

Bundle adjustment for dynamic scenes suffers from the same reconstruct-

ability problems like all image based reconstruction approaches. When the

camera is not moving sufficiently, it is difficult to make reliable reconstruc-

tions. Also when the motion of dynamic objects is correlated to the cameras

movement, or an object is moving along the optical center of the camera, no

depth estimation is possible.

Since we deal with dynamic scenes the camera motion is of great impor-

tance. Park [55] defined a measure of reconstructability for NRSfM, that,

despite the different approaches of NRSfM and BA, still holds true to some

extent. It states that for a successful reconstruction the motion of the cam-

era has to be large compared to the objects motion (or deformation). To

which extent this will cause issues is one point that will be explored more.

Knowing these facts we want to state clearly that we are aware that recon-

struction of a dynamic scenes from a single moving camera is not possible

in all scenarios.
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CHAPTER 6

Experimental Results

THIS chapter presents experimental results. First an overview

over different scenarios evaluated and an discussion of the ap-

plicable priors is given. Then simulated data is used to elabo-

rate the effects of different scenario parameters such as num-

ber of moving objects, number of static objects, scene length, and different

starting conditions. The simulated data allows exact control of the scenario,

of noise levels and the motion of objects and comparison to NRSfM meth-

ods. After that several reconstructed real world scenarios will be presented

and analyzed.
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6.1. Categories

Three different scenario categories are established and differentiated. Each

requiring different conditions and priors to make them solvable.

6.1.1. Single Fast Moving Camera

Reconstruction of moving objects from a single camera generally requires

that the motion of the camera and that of the object are not correlated, and

that the camera is moving fast compared to the object. These types of sce-

nario are often evaluated in NRSfM research. The image data is regularly

synthesized from simulation.

We have successfully solved these types of scenario from simulated data

using affine and perspective camera models. Finding real world scenarios

that are not unrealistic ’toy-problems’ and satisfy the requirements are hard

to find and get.

6.1.2. Overlapping Field of View

In this scenario it is assumed to have two or more cameras present that

move independently, but have a overlapping field of view most time. Real

world examples would be cameras mounted on a scooter drivers helmet

and the scooter, or cameras in two cars driving beside each other for some

time. Also any form of stereo camera, specially when the calibration is not

exactly known or wrong falls in this category.
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The overlapping field of view allows to establish feature correspondences

for static as well as moving objects. Any additional prior helps to improve

reconstruction. This type of scenarios has been successfully reconstructed

and will be presented in the next section.

6.1.3. Independently Moving Cameras

Similar to the previous scenario, but the field of view is only expected

to overlap at short time intervals. Only feature correspondences for a few

static points are available that allow alignment of the camera trajectories,

but no correspondences are available for moving objects. This represents

any typical traffic scenario recorded by several cameras. To solve it in real

world conditions prior knowledge about static points and constant trajec-

tory distance priors are required. The last presented real-data scenario falls

in this category.

6.2. Simulated Data

A dynamic 3D scene is created with moving objects following randomly

generated realistic trajectories. Image data is derived from this 3D scene us-

ing affine and projective camera models. Image noise is added to features,

as well as outliers (wrong feature correspondences). The advantages of us-

ing simulated data initially is that exact ground truth data is available to

estimate the performance and that the camera/object motion can be exactly

controlled. This way completely observed scenes can be used which are

difficult to create in real scenarios and are necessary for comparison with

NRSfM methods.
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6.2.1. Simulated Scenarios

A series of experiments has been performed to verify the proposed ap-

proach. The synthetic dynamic environment is created from a number of

moving objects with random starting positions, moving according to a mo-

tion model that is steered by random inputs and a number of randomly

placed static points. The motion model used creates realistic motion pat-

terns – meaning that angular and directional accelerations are in the range

of what real world physics permit.

The images below show two sample scenarios. The first (Figure 6.1)

shows two typical scenarios used for evaluation. The two differ in the num-

ber of objects and the temporal length of the scene. The second (Figure 6.2)

is a similar scenario, but objects are restricted to move in two dimensions

only. This is an approximation of a typical traffic scene in which vehicles

drive on flat ground.

6.2.2. Evaluation

The reconstruction accuracy is evaluated after the the models are aligned.

To align the models Procrustes analysis [27, 22], a form of statistical shape

analysis, is employed. For a meaningful comparison of the reconstructed

scene to its ground truth the two need to be optimally superimposed first.

They need to be translated, rotated and scaled. This is due to the fact that

reconstruction is only accurate up to a scale factor, and the reconstruction

result can lie in a different coordinate system.
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FIGURE 6.1. Sample scenario of a dynamic scene. Lines represents
trajectories of moving objects, static objects are depicted with a cir-
cled x. On top a small scenario consisting of 12 moving objects and 6
static ones, 250 frames long. Below a scene consisting of 18 moving
objects and 12 static points, 500 frames long.
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FIGURE 6.2. Planar motion scenario. Lines represents trajectories
of moving objects, static points are visualized with a circled x. The
scene consists of 18 moving objects and 12 static ones and spans 500
frames. Below the scene can be seen from the side. In this scenario
motion is restricted to two dimensions.

The two shapes are normalized so that the root mean square distance

(RMSD) from points to the center is 1. The shape distance, which in this

case, we call reconstruction error E, is the sum of squared distances (SSD)

between corresponding points. Figures 6.3 and 6.4 show several reconstruc-

tions with their respective reconstruction error. They serve as a reference

point on the range of reconstruction error.

6.2.3. Reconstruction Results

The proposed approach has been evaluated using the scenarios just de-

scribed. Different values for K have been used to represent trajectories

60



6.3 ANALYSIS AND COMPARISON

and camera motions. Current evaluations use an affine projection camera

model, resulting in 3 parameters to estimate for each camera pose. No prior

information about the motion state of any object is used, meaning all objects

are treated moving, even though not all objects move. No priors whatsoever

are used, except the assumptions inherent in the trajectory based represen-

tation. The scene is fully observed and optimization is performed by solv-

ing the nonlinear least squares problem using the Levenberg-Marquardt

method.

Below in Figures 6.3 and 6.4 several reconstruction results are shown.

Scene lengths vary, as well as number of objects and the initial conditions

used to create them. Later we will detail the effect of several of the parame-

ters.

6.3. Analysis and Comparison

The proposed method is compared to the NRSfM method of Akhter et

al[4] and evaluated with various parameters. To do so 1000 scenes of dif-

ferent size have been created and reconstructed using the proposed Dy-

namic Scene Bundle Adjustment with different starting conditions and two

NRSfM methods.

6.3.1. Initial Estimates

Four different types of initial conditions have been evaluated. First the

ground truth was used with added noise, labeled GT+noise1 and GT+noise2.

The first referring to the use of ground truth trajectory coefficients with

small noise A · N (µ = 1, �

2
= 0.1), and the second to the same with more
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noise (N (µ = 1, �

2
= 0.25)). Lines refers to the use of a line as approx-

imation of the trajectory as initial guess. The motivation for this is, that

given an initial reconstruction of the camera path using visual odometry or

other methods as discussed in section 5.3, a few frames can be used to get

a rough triangulation of points along the trajectory. Between the points a

linear interpolation can be used leading to lines. Lines + noise1/2 stands

for different noise added to the two points defining the line. Figures 6.5 and

6.6 show examples for the initial estimates introduced. Random stands for

initializing A as N (0, 1).
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FIGURE 6.3. Successful Reconstructions for different simulated sce-
narios and parameters. Black lines represent the ground truth tra-
jectories of moving objects, black circles static points. The dotted
(red) lines are the reconstruction results.
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FIGURE 6.4. More reconstruction results. Black lines represent
the ground truth trajectories of moving objects, black circles static
points. The dotted (red) lines are the reconstruction results. Bot-
tom row are failure cases. Failure due to bad, randomly generated
starting conditions which the method can not handle.
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FIGURE 6.5. Examples of initial estimates used. Black lines repre-
sent ground truth, black circles static points. Dotted lines are the
created initial guesses. Left side represents GT+noise1 (A · N (µ =
1,�2 = 0.1)), right side GT+noise2 (A · N (µ = 1,�2 = 0.25)).

FIGURE 6.6. Examples of initial estimates used. Black lines repre-
sent ground truth, black circles static points. Dotted lines represent
the corresponding initial guess. Left side ground truth with small
added noise to the lines. Right side more noise added.
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FIGURE 6.7. Box plot for different methods and initial conditions.
Based on 1000 reconstructions of generated scenarios. The central
mark in the box is the median, the edges of the box are the 25th and
75th percentiles. Whiskers extend to the most extreme data points
not considered outliers (+/- 2.7�). Outliers are plotted individually
as crosses. GT+noise1/2 refers to ground truth with noise added as
referred to in the text, same for lines. Random indicates that A is
initialized with N (0, 1).
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6.3.2. Comparison to NRSfM

The proposed method is compared to the NRSfM approach of Akhter et

al. [4]. Another approach evaluated was using the NRSfM result as input to

the proposed Dynamic Scene Bundle Adjustment framework.

The comparison is based on 1000 trials. For each trial a scene with a

varying number of static and moving points and varying number of frames

was created. A camera path was created and from it affine images were

calculated. Image noise was added, and based on these images the scene

was reconstructed using the proposed method given the previously dis-

cussed starting conditions, as well as the NRSfM based methods. The re-

constructed scene was compared to the ground truth after aligning with

procrustes analysis. Figure 6.8 shows the results for the different methods

and initial conditions in a boxplot.

NRSfM is often not able to reconstruct the scene, and using its result as

input for the proposed method does not significantly improve results. An

analysis of the results gave the insight that in case the NRSfM fails, using

the wrong reconstruction as starting point for our method does not recover

the failed reconstruction, but a good reconstruction can be further improved

by our method, resulting in a better result for the combined methods.

Using a starting point for the Bundle Adjustment that is reasonably close

to the solution yields much better results than NRSfM, and as expected the

better the initial guess is, the better the final result gets. A completely ran-

domly picked starting point is not able to solve the problem, yielding results

worse then NRSfM.
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FIGURE 6.8. Box plot for different methods and initial conditions.
Based on 1000 reconstructions of generated scenarios. The central
mark in the box is the median, the edges of the box are the 25th and
75th percentiles. Whiskers extend to the most extreme data points
not considered outliers (+/- 2.7�). Outliers are plotted individually
as crosses. Lines + noise refers to using a line approximation of
the trajectories as initial guess, random fills A with random values.
nrsfm Akhter et al. refers to [4], NRSFM+BA takes the result of the
nrsfm factorization of Akhter et al. as initial guess to the Dynamic
Scene Bundle Adjustment.
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6.3 ANALYSIS AND COMPARISON

6.3.3. Effect of Multiple Cameras

The effect of multiple cameras was evaluated by generating three camera

paths, synthesizing images from them, and then reconstructing the scene

either using the images from one, two or three cameras. Figure 6.9 shows

the error for the evaluated cases. As expected does the error decrease with

added cameras.

FIGURE 6.9. Effect of multiple cameras. Vertical axis is the recon-
struction error. ig-GT refers to the use of ground truth with added
noise as initial guess, ig-lines to the use of linear trajectory approxi-
mations with added noise as starting point.
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6.3.4. Effect of Loss Functions

Loss functions were introduced in Section 3.4.3. Their goal is to robustify

the optimization in the presence of image noise and outliers. Therefore loss

functions were evaluated given different noise levels. Figure 6.10 shows the

mean error for different noise levels.

FIGURE 6.10. Effect of loss functions under different noise levels.
Vertical axis represents the mean reconstruction error, on the hori-
zontal axis increasing noise levels (noise level in pixels, normal dis-
tributed).

For the scenarios evaluated a Cauchy based loss function gives the best

results. Huber and linear loss function behave almost similar, which was

expected, given that for larger errors Huber is using the linear loss function.

atan based loss functions only give an advantage for large error levels.
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6.4. Real Data

All results shown before were based on simulated scenarios. The follow-

ing real world sequences are used to verify the effectiveness of the proposed

approach. Two different sets of cameras were used in different settings.

First a sequence from a stereo camera rig is presented, followed by scenar-

ios recorded from several wide angle action-cameras.

6.4.1. KITTI Stereo Sequence

The first real data sequence evaluated is from the KITTI vision bench-

mark suite [26]. This dataset was captured from a car with a roof mounted

wide-baseline stereo camera. The sequence picked is short (158 frames),

and includes two moving objects: a van and a person on a bicycle. Figure

6.11 shows the platform used to capture the data. The scenario fits to the

”Overlapping Field of View” category described before.

In Figure 6.12 several frames from the sequence are shown. Detected and

tracked features are displayed in the images. Coloring depends on their sta-

tus - static points are colored blue, moving ones red and orange where red

refers to single camera detection, and orange to detection in both cameras.
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FIGURE 6.11. Autonomous platform AnnieWay that was used to
capture KITTI dataset. Image from [26]
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FIGURE 6.12. Frames 1, 52, 104 and 158 from the used KITTI image
sequence. Blue points are static features, orange and red features
that are moving. Orange points are features that are visible in both
cameras.
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FIGURE 6.13. Reconstructed dynamic scene. Black points are static,
the blue lines represent the trajectories of the two cameras. Differ-
ently colored lines ending with red dots are trajectories of moving
objects. A clear grouping of the trajectories representing the two
moving objects can be seen.
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Figure 6.13 shows the reconstructed dynamic scene. The two blue lines

represent the position of the stereo cameras over time. Their paths were

reconstructed independently. Small black dots are static features, and col-

ored lines represent reconstructed moving objects. The red dots are the 3D

feature positions in the last frame. To show the reconstruction accuracy we

look at the 3D distance between the two cameras (Figure 6.14). The distance

is nearly constant. From this distance and the known true baseline a scale

factor can be computed to allow metric reconstruction.

FIGURE 6.14. 3D distance between the two cameras over the sequence.

In Figure 6.15 details of the reconstruction at timestep f = 20 is shown.

The reconstruction optimizes the whole scene as once, but in the figures the

trajectories until frame 20 for better clarity.
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FIGURE 6.15. Reconstruction details seen at f=20. Observations
made by camera 1 at the corresponding frame are overlayed.
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6.4.2. Campus Sequence 1

The next scenario evaluated was captured on NTU campus from a bike.

Two indenpendently moving cameras were used. One camera was mounted

on the head of the person riding the bike, the other one on the bikes han-

dlebars. The cameras used were wide-angle action-cameras (GoPro Hero

3). Figures 6.16 and 6.17 show frames from both cameras with detected fea-

tures.

FIGURE 6.16. Frames from the used image sequence (Part 1). Blue
points are static features, orange and red features that are moving.
Orange points are features that are visible in both cameras.
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FIGURE 6.17. Frames from the used image sequence (Part 2). Blue
points are static features, orange and red features that are moving.
Orange points are features that are visible in both cameras.
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FIGURE 6.18. Reconstructed dynamic scene. Black points are static,
the blue lines represent the trajectories of the two cameras. Differ-
ently colored lines ending with red dots are trajectories of moving
objects. A clear grouping of the trajectories representing the two
moving objects can be seen.
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FIGURE 6.19. Details and annotations for the reconstructed dy-
namic scene.
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6.4.3. Campus Sequence 2

This sequence is captured at the same area, but with 3 independent cam-

eras which only have an overlapping field of view at some points in time,

similar to the third mentioned category. Two persons on a bicycle with

head-mounted cameras and one person walking captured the sequence.

Figure 6.20 shows parts of the video with features marked.

For solving knowledge of static points was assumed, as well as the con-

stant trajectory distance prior - meaning that it is known that trajectories

belong to the same moving object. Some static feature correspondences are

found, but no correspondences between cameras for moving objects. Each

trajectory of a moving object is only visible from one camera. Figure 6.21

gives an overview over the reconstructed scene, Figure 6.22 shows details.
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FIGURE 6.20. Left row are images from the 3 cameras taken at f=1,
right at f=225. Blue points are static features, red features that are
moving.

82



6.4 REAL DATA

FIGURE 6.21. Reconstructed dynamic scene. Black points are static,
the blue lines represents the trajectories on one moving object. The
trajectories of the 3 cameras are red.
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FIGURE 6.22. Detail of the reconstructed dynamic scene at frame
225. Overlayed parts of the images observed by the 3 cameras at
this point. Red points mark detected features of moving points.
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CHAPTER 7

Conclusion

WE presented the extension of Bundle Adjustment to dy-

namic scenes. The image sequences of one or multi-

ple cameras moving through a dynamic environment

are used to reconstruct the path and orientation of the

camera, the 3D position of static features as well as the 3D trajectories of

moving ones. To make this possible, an efficient, low-dimensional repre-

sentation of scene and camera motion was introduced. Based on a linear

combination of predefined trajectory bases a compact formulation for fully

observed scenes has been derived, and extended to scenarios with incom-

plete observations. Also compact representations for the camera poses have

been introduced. Our method is, in difference to other approaches, able to

deal with incomplete and noisy data. We require no knowledge about the

objects, not even which are moving or static, although the inclusion of pri-

ors can improve reconstruction results. Static point priors can be seamlessly

included in the given representation, other priors have been introduced and

discussed and allow the reconstruction of challenging real world scenes.



CHAPTER 7. CONCLUSION

The proposed approach has been experimentally verified based on an

affine camera model with simulated complete measurement data to allow

comparison to other methods. The experiments emphasize the power of

our representation and outperform other methods. More experiments us-

ing real data have been performed using different perspective cameras in

various highly dynamic scenes. The successful reconstruction of these dy-

namic scenes shows the effectiveness of our method.
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