請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45677
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 周正俊(Cheng-Chun Chou) | |
dc.contributor.author | Shiu-Hui Fang | en |
dc.contributor.author | 房琇惠 | zh_TW |
dc.date.accessioned | 2021-06-15T04:44:32Z | - |
dc.date.available | 2015-08-20 | |
dc.date.copyright | 2010-08-20 | |
dc.date.issued | 2010 | |
dc.date.submitted | 2010-08-09 | |
dc.identifier.citation | 林璟。2001。冷震處理對腸炎弧菌在後續環境壓力下存活之影響。國立臺灣大學食品科技研究所碩士學位論文。台北市。
蕭婉琳。2009。熱震處理震處理阪崎腸桿菌在一些致死壓力下及乳酸發酵過程與產品貯存時之活性。國立臺灣大學食品科技研究所碩士學位論文。台北市。 Abee, T. and Wouters, J. A. Microbial stress response in minimal processing. Int. J. Food Microbiol. 1999, 50, 65-91. Adams, M. R.; Moss, M. O. Factors affecting the growth and survival of micro-organism in foods. In Food Microbiology, 2nd ed.; Adams, M. R.; Moss, M. O., Eds.; Publisher: Cambridge, UK, 2000; p 52. Adolfsson, O.; Meydani, S. N.; Russell, R. M. Yoghurt and gut function. Am. J. Clin. Nutr. 2004, 80, 245-256. Annous, B. A.; Becker, L. A.; Bayles, D. O.; Labbda, D. P.; Wilkinson, B. J. Critical role of anteiso-C15:0 fatty acid in the growth of Listeria monocytogenes at low temperatures. Appl. Environ. Microbiol. 1997, 63, 3887-3894. Auffray, Y.; Lecesne, E.; Hartke, A.; Boutibonnes, P. Basic features of the Streptococcus thermophilus heat shock response. Curr. Microbiol. 1995, 30, 87-91. Beal, C.; Fonseca, F.; Corrieut, G. Resistance to freezing and frozen storage of Streptococcus thermophilus is related to membrane fatty acid composition. J. Dairy Sci. 2001, 84, 2347-2356. Beaufils, S.; Sauvageot, N.; Mazé, A.; Laplace, J. M.; Auffray, Y; Deutscher, J.; Hartke, A. The cold shock response of Lactobacillus casei: Relation between HPr phosphorylation and resistance to freeze/thaw Cycles. J. Mol. Microbiol. Biotechnol. 2007, 13, 65-75. Begley, M.; Gahan, C. G. M.; Hill, C. The interaction between bacteria and bile. FEMS Microbiol. Rev. 2005, 29, 625-651. Bjornsdottir, K.; F. B., Jr.; McFeeters, R. F. Protective effects of organic acids on survival of Escherichia coli O157:H7 in acidic environments. Appl. Environ. Microbiol. 2006, 72, 660-664. Bogaert, J-C.; Naidu, A.S. Lactic acid. In Natural Food Antimicrobial systems, Naidu, A.S., Ed; CCC Press LLC: Florida, USA, 2000; pp 613-636. Botina, S. G.; Trenina, M.A.; Tsygankov, Y. D.; Sukhodolets, V. V. Comparison of Genotypic and biochemical characteristics of Streptococcus thermophilus strains isolated from sour milk products. Appl. Biochem. Microbiol. 2007, 43, 598–603. Breeuwer, P.; Lardeau, A.; Peterz, M.; Joosten, H. M. Desiccation and heat tolerance of Enterobacter sakazakii. J. Appl. Microbiol. 2003, 95, 967-973. Broadbent, J. R.; Lin, C. Effect of heat shock or cold shock treatment on the resistance of Lactococccus lactis to freezing and lyophilization. Cryobiology 1999, 39, 88-102. Bruno-Barcena, J. M.; Andrus, J. M.; Libby, S. L.; Klaenhammer, T. R.; Hassan, H. M. Expression of a heterologous manganese superoxide dismutase gene in intestinal lactobacilli provides protection against hydrogen peroxide toxicity Appl. Environ. Microbiol. 2004, 70, 4702–4710. Bryan, P. J.; Steffan, R. J.; DePaola, A.; Foster, J. W.; Bej, A. K. Adaptive response to cold temperatures in Vibrio vulnificus. Curr. Microbiol. 1999, 38, 168-175. Chang, C. H.; Chiang, M. L.; Chou, C. C. The effect of heat shock on the response of Cronobacter sakazakii to subsequent lethal stresses. Foodborne Pathog. Dis. 2010, 7, 71-76. Charteris, W. P.; Kelly, P. M.; Morelli, L.; Collins, J. K. Development and application of an in vitro methodology to determine the transit tolerance of potentially probiotic Lactobacillus and Bifodobacterium species in the upper human gastrointestinal tract. J. Appl. Microbiol. 1998, 84, 759-768. Chaves, A. C.; Fernandez, M.; Lerayer, A. L.; Mierau, I.; Kleerebezem, M.; Hugenholtz, J. Metabolic engineering of acetaldehyde production by Streptococcus thermophilus. Appl. Environ. Microbiol. 2002, 68, 5656-5662. Chiang, M. L.; Ho, W. L.; Chou, C. C. Ethanol shock changes the fatty acid profile and survival behavior of Vibrio parahaemolyticus in various stress conditions. Food Microbiol. 2008, 25, 359-365. Clark, P. A.; Martin, J. H. Selection of bifidobacteria for use as dietary adjuncts in cultured dairy foods: III. Tolerance to simulated bile concentrations of human small intestines. Cult. Dairy Prod. J. 1994, 29, 18-21. Davenport, H. W. Intestinal digestion and absorption of fat. In Physiology of the Digestive Tract 4th ed.; Davenport, H. W. Ed.; Year Book Medical Publishers Incorporated, London, 1977; pp 232. Delorme, C.. Safety assessment of dairy microorganisms: Streptococcus thermophilus. Int. J. Food Microbiol. 2008, 126, 274-277. Ewaschuk, J. B.; Dieleman, L. A. Probiotics and prebiotics in chronic inflammatory bowel diseases. World J. Gastroenterol. 2006, 12, 5941-5950. Frazier, W. C.; Westhoff, D. C. Microorganisms important in food microbiology. In Food Microbiology, 4th ed; Frazier, W. C.; Westhoff, D. C. Eds. McGraw-Hill Book Co.: New York, USA, 1988; pp 35-97. G-Alegría, E.; Lόpez, I.; Ruiz, J. I.; Sáenz, J.; Fernández, E.; Zarazaga, M.; Dizy, M.; Torres, C.; Ruiz-Larrea, F. High tolerance of wild Lactobacillus plantarum and Oenococcus oeni strains to lyophilisation and stress environmental conditions of acid pH and ethanol. FEMS Microbiol. Lett. 2004, 230, 53-61. García, S.; Limόn, J. C.; Heredia, N.L. Cross protection by heat and cold shock to lethal temperature in Clostridium perfringens. Brazilian J. Microbiol. 2001, 32, 110-112. Girgis, H. S.; Smith, J.; Luchansky, J. B.; Klaenhammer, T. R. Stress adaptations of lactic acid bacteria. In Microbial Stress Adaptation and Food Safety, Yousef, A. E.; Juneja, V. K., Eds.; CRC Press LLC: US, 2003; pp 159-211. González-Márquez, H.; Perrin, C.; Bracquart, P.; Guimont, C.; Linden, G. A 16 kDa protein family overexpressed by Streptococcus thermophilus PB18 in acid environments. Microbiology. 1997, 143, 1587-1594. Graumann, P.; Marahiel, M. A. Some like it cold: response of microorganisms to cold shock. Arch. Microbiol. 1996, 166, 293-300. Graumann, P. L., Schröder, K., Schmid, R. and Marahiel, M. Cold shock stress-induced proteins in Bacillus subtilis. J. Bacteriol. 1996, 178, 4611-4619. Guchte, M.; Serror, P.; Chervaux, C.; Smokvina, T.; Ehrlich, S. D.; Maguin, E. Stress responses in lactic acid bacteria. Antonie Van Leeuwenhoek 2002, 82, 187-216. Hartke, A.; Bouche, S.; Gansel, X.; Boutibonnes, P.; Auffray, Y. Starvation-induced stress resistance in Lactococcus lactis subsp. lactis IL1403. Appl. Environ. Microbiol. 1994, 60, 3474-3478. Hassan, A. N.; Frank, J. F. Starter cultures and their use. In Applied Dairy Microorganism, 2nd ed.; Marth, E. H.; Steele, J. L., Eds; Marcel Dekker Inc.: New York, USA, 2001; pp 151-201. Helinck, S.; Le Bars, D.; Moreau, D.; Yvon, M. Ability of thermophilic lactic acid bacteria to produce aroma compounds from amino acids. Appl. Environ. Microbiol. 2004, 70, 3855-3861. Jones, P. G., Cashel, M., Glaser, G. and Neidhardt, F. C. Function of a relaxed-like state following temperature downshifts in Escherichia coli. J. Bacteriol. 1992a, 174, 3903-3914. Jones, P. G., and Inouye, M. The cold-shock response-a hot topic. Mol. Microbiol. 1994, 11, 811-818. Jones, P. G.; VanBogelen, R. A.; Neidhardt, F. C. Induction of proteins in response to low temperature in Escherichia coli. J. Bacteriol. 1987, 169, 2092-2095. Khali, R. K. Evidence for probiotic potential of a capsular-producing Streptococcus thermophilus CHCC 3534 strain. Afr. J. Microbiol. Res. 2009, 3, 27-34. Kim, W. S.; Dunn, N. W. Identification of a cold shock gene in lactic acid bacteria and the effect of cold shock on cryotolerance. Curr. Microbiol. 1997, 35, 59-63. Kim, W. S.; Ren, J.; Dunn, N. W. Differentiation of Lactococcus lactis subspecies lactis and subspecies cremoris strains by their adaptive response to stresses. FFMS Microbiol. Lett. 1999, 171, 57-65. Lee, M. Cold shock response in Lactococcus lactis ssp. diacetylactis: A comparison of the protection generated by brief pre-treatment at less severe temperatures. Process Biochem. 2004, 39, 2233-2239. Lelivelt, M. J. and Kawula, T. H. Hsc66, an Hsp70 Homolog in Escherichia coli, is induced by cold shock but not by heat shock. J. Bacteriol. 1995, 177, 4900-4907. Lin, C.; Yu, R. C.; Chou, C. C. Susceptibility of Vibrio parahaemolyticus to various environmental stresses after cold shock treatment. Int. J. Food Microbiol. 2004, 92, 207-215. Lorca, G. L.; Valdez, G.F. Temperature adaptation and cryotolerance in Lactobacillus acidophilus. Biotechnol. Lett. 1998, 20, 847-849. Lorca, G. L.; Valdez, G.F. The effect of suboptimal temperature and growth phase on resistance of Lactobacillus acidophilus to environmental stress. Cryobiology 1999, 39, 144-149. Lyer, R.; Tomar, S. K.; Kapila, S.; Mani, J. Singh, R. Streptococcus thermophilus strains: Multifunctional lactic acid bacteria. Int. Dairy J. 2010a, 20, 133-141. Lyer, R.; Tomar, S. K.; Kapila, S.; Mani, J. Singh, R. Probiotic properties of folate producing Streptococcus thermophilus strains. Food Res. Int. 2010b, 63, 1252-1255. Mistry V. V. Fermentated milks and cream. In Applied Dairy Microorganism, 2nd ed.; Marth, E. H.; Steele, J. L., Eds; Marcel Dekker Inc.: New York, USA, 2001; pp 301-321. Palencia, P. F.; Lόpez, P.; Corbí, A. L.; Peláez, C.; Requena, T. Probiotic strains: Survival under simulated gastrointestinal conditions, in vitro adhesion to Caco-2 cells and effect on cytokine secretion. Eur. Food Res. Technol. 2008, 227, 1475-1484. Panoff, J.-M., Thammavongs, B.; Laplace, J.-M.; Hartke, A.; Boutibonnes, P.; Auffray, Y. Cryotolerance and cold adaptation in Lactococcus lactis subsp. lactis Ll1403. Cryobiology 1995, 32, 516-520. Parente, E.; Cogan, T. M. Starter cultures: General aspects. In Cheese: Chemistry, Physics and Microbiology, 3rd ed.; Fox, P. F.; McSweeney, P. L. H.; Cogan, T. M.; Guinee, T. P. Eds., Elsevier Academic Press: San Diego, CA, USA, 2004; pp 122-147. Penaud, S.; Fernandez, A.; Boudebbouze, S.; Ehrlich, S. D.; Maguin, E.; Guchte, M. Induction of heavy-metal-transporting CPX-type ATPases during acid adaptation in Lactobacillus bulgaricus. Appl. Environ. Microbiol. 2006, 72, 7445-7454. Perrin, C.; Guimont, C.; Bracquart, P.; Gaillard, J. L. Expression of a new cold shock protein of 21.5 kDa and of the major cold shock protein by Streptococcus thermophilus after cold shock. Curr. Microbiol. 1999, 39, 342-347. Perrin, C.; Guimont, C.; Gaillard, J. L.; Bracquart, P. Streptococcus thermophilus: Physiological responses to cold shock. Milchwissenschaft. 2001, 56, 433-436. Pool-Zobel, B. L.; Munzner, R.; Holzaapfel, H. Antigenotoxic properties of lactic acid bacteria in the S. typhimurium mutagenicity assay. Nutr. Cancer 1993, 20, 261-270. Ramos, M. S.; Harlander, S. K. DNA fingerprinting of lactococci and streptococci used in dairy fermentations. Appl. Microbiol. Biotechnol. 1990, 34, 368-374. Ray, B. Microorganisms used in food fermentation. In Fundamental Food Microbiology, 3rd ed.; Ray, B., Ed; CRC Press LLC: Florida, USA, 2004a; pp 128-129. Ray, B. Microbial stress response in the food environment. In Fundamental Food Microbiology, 3rd ed.; Ray, B., Ed; CRC Press LLC: Florida, USA, 2004b; pp 105-108. Ray, B. Genetics of some beneficial traits. In Fundamental Food Microbiology, 3rd ed.; Ray, B., Ed; CRC Press LLC: Florida, USA, 2004c; pp 140-148. Ray, B. Control by low pH and organic acids. In Fundamental Food Microbiology, 3rd ed.; Ray, B., Ed; CRC Press LLC: Florida, USA, 2004d; pp 484-486. Ray, B. Food biopreservatives of microbial origin. In Fundamental Food Microbiology, 3rd ed.; Ray, B., Ed; CRC Press LLC: Florida, USA, 2004e; pp 227-228. Ray, B. Factors influencing microbial growth in food. In Fundamental Food Microbiology, 3rd ed.; Ray, B., Ed; CRC Press LLC: Florida, USA, 2004f; pp 73-78. Rizkalla, S. J.; Luo,W.; Kabir, M.; Chevalier, A.; Pacher, N.; Slama, G. Chronic consumption of fresh but not heated yoghurt improves breath-hydrogen status and short-chain fatty acid profiles: A controlled study in healthy men with or without lactose maldigestion. Am. J. Clin. Nutr. 2000, 72, 1474-1479. Rockhill, R. C.; Basaca-Sevilla, V. Evaluation of nutrient agar bile salts medium to selectively culture Vibrio cholera. Phi.l J. Microbiol. Infect. Dis. 1981, 10, 18-20. Russell, N. Cold adaptation of microorganisms. Phil. Trans. R. Soc. Lond. 1990, 326, 595-611. Saarela, M.; Rantala, M.; Hallamaa, K.; Nohynek, L.; Virkajärvi, I.; Mättö, J. Stationary-phase acid and heat treatments for improvement of the viability of probiotic lactobacilli and bifidobacteria. J. Appl. Microbiol. 2004, 96, 1205-1214. Saklani-Jusforgues, H.; Fontan, E.; Goossens, P. L. Effect of acid-adaptation on Listeria monocytogenes survival and translocation in a murine intragastric infection model. FEMS. Microbiol. Lett. 2000, 193, 155-159. Salotra, P., Singh, D. K., Seal, K. P., Krishna, N., Jaffe, H. and Bhatnagar, R. Expression of DnaK and GroEL homologs in Leuconostoc esenteroides in response to heat shock, cold shock or chemical stress. FEMS Microbiol. Lett. 1995, 31, 57-62. Sanders, J. W.; Venema, G.; Kok, J. Environmental stress responses in Lactococcus lactis. FFMS Microbiol. Rev. 1999, 23, 483-501. SAS, 2001. SAS User’s Guide: Statistics, Version 8. SAS Institute Inc: Cary, NC. Smid, E. J.; Starrenburg, M. J. C.; Mierau, I.; Sybesma, W.; Hugenholtz, J. Increase of folate levels in fermented foods. Innovations in Food Technology, 2001, 10, 13-15. Varcamonti, M.; Arsenijevic, S.; Martirani, L.; Fusco, D.; Naclerio, G.; Felice, M. Expression of the heat shock gene clpL of Streptococcus thermophilus is induced by both heat and cold shock. Microbiol. Cell Fact. 2006, 5: 1-6. Waker, D. C.; Girgis, H. S.; Klaenhammer, T. R. The groESL chaperone operon of Lactobacillus johnsonii. Appl. Environ. Microbiol. 1999, 65, 3033-3041. Willimsky, G.; Bang, H.; Fischer, G.; Marahiel, M. A. Characterization of cspB, a Bacillus subtilis inducible cold shock gene affecting viability at low temperatures. J. Bacteriol. 1992, 174, 6326-6335. Wouters, J. A.; Rombouts, F. M.; Vos, W. M.; Kuipers, O. P.; Abee, T. Cold shock proteins and low-temperature response of Streptococcus thermophilus CNRZ302. Appl. Environ. Microbiol. 1999, 65, 4436-4442. Yousef, A. E.; Courtney, P. D. Basics of stress adaptation and implications in new-generation foods. In Microbial Stress Adaptation and Food Safety, Yousef, A. E.; Juneja, V. K., Eds.; CRC Press LLC: USA, 2003; pp 2-25. Zotta, T.; Asterinou, K.; Rossano, R.; Ricciardi, A.; Varcamonti, M.; Parente, E. Effect of inactivation of stress response regulators on the growth and survival of Streptococcus thermophilus Sfi39. Int. J. Food Microbiol. 2009, 129, 211-220. Zotta, T.; Ricciardi, A.; Ciocia, F.; Rossano, R.; Parente, E. Diversity of stress responses in dairy thermophilic streptococci. Int. J. Food Microbiol. 2008, 124, 34-42. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45677 | - |
dc.description.abstract | Streptococcus thermophilus為具耐熱性乳酸菌,常用於酸凝乳及一些起司之發酵上當作菌酛。本研究乃在探討S. thermophilus BCRC 14085於不同冷震條件 (10℃、15℃或20℃下經2或4 h) 處理後,在後續致死壓力環境下如在高溫 (58℃)、酸性 (pH 2.5)、高滲透壓 (75% sorbitol)、乙醇 (20、25%)、有機酸 (0.75 M丙酸、乳酸、醋酸、檸檬酸及酒石酸,pH 3.5)及模擬胃腸液下 (pH 2.0-3.0) 之存活情形。
結果顯示,S. thermophilus所呈現之冷震效應會因冷震條件及測試壓力種類之不同而有所差異。以10℃-2 h、10℃-4 h及15℃-2 h冷震處理可顯著 (p<0.05) 提高S. thermophilus於-20℃環境下之存活率,但20℃- 4 h冷震處理卻反而提高菌體於-20℃環境下之敏感性。S. thermophilus接受10℃-2 h及10℃-4 h冷震處理後顯著(p<0.05) 提高其於58℃、酸性 (pH 2.5) 及高滲透壓環境下菌體之耐受性,但以20℃- 2 h 及20℃- 4 h冷震處理者在58℃、酸性 (pH 2.5) 下之忍受性則降低。此外,10℃-2 h冷震處理菌體在25%乙醇環境耐受性比控制組高。惟在0.75 M乳酸或醋酸溶液 (pH 3.5) 中,其情形剛好相反。10℃-2 h冷震組及控制組在0.75 M檸檬酸或酒石酸溶液 (pH 3.5) 中之存活率卻沒有顯著性 (p>0.05) 差異。10℃-2 h冷震處理提升了S. thermophilus在模擬胃酸中 (pH 2.5、2.8) 之耐受性;但在2%膽鹽溶液中,10℃-2 h冷震菌體及控制組菌體之存活並未有顯著性 (p>0.05) 之差異。 | zh_TW |
dc.description.abstract | Streptococcus thermophilus is a thermophilic lactic acid bacteria which is used as the starter organism of yoghurt and some cheese. In the present study, S. thermophilus BCRC14085 was first subjected to different cold shock treatments (10℃, 15℃ or 20℃ for 2 h or 4 h). Their survivals in subsequent lethal stress environments such as high temperature (58℃), acidic pH (2.5), high osmotic pressure (75% sorbitol), ethanol (20, 25%), organic acid (0.75 M propionic acid, lactic acid, acetic acid, citric acid and tartaric acid, pH 3.5), simulated gastrointestinal juice (pH 2.0-3.0) were then examined.
It was found that cold shock response of S. thermophilus varied with the conditions of cold shock and types of tested lethal stresses. Cells of S. thermophilus BCRC 14085 subjected to cold shock at 10℃ for 2, 4 h or 15℃ for 2 h showed a significantly enhanced (p<0.05) survival at -20℃ when compare with the control cells. Whereas 20℃-4 h cold shocked-cells exhibited a reduced survival. Cold shock at 10℃ for 2 or 4 h enhanced while cold shock at 20℃ for 2 or 4 h reduced the tolerance of test organism at 58℃, in acidified MRS broth (pH 2.5) and under high osmotic pressure condition. Furthermore, the 10℃-2 h cold shocked-cells showed a higher tolerance in 25% ethanol and a reduced tolerance after exposure to 0.75 M lactic acid or acetic acid (pH 3.5) compared to the control cells. On the other hand, survivals of the 10℃-2 h cold shocked-cells and control cells in presence of 0.75 M citric acid or tartaric acid (pH 3.5) showed no significant difference (p>0.05). Additionally, cold shock at 20℃ for 2 h enhanced the tolerance of S. thermophilus in the simulated gastric juice (pH 2.5, 2.8), while did not significantly (p>0.05) affect ther survival in 2% bile solution. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T04:44:32Z (GMT). No. of bitstreams: 1 ntu-99-R97641025-1.pdf: 1214735 bytes, checksum: 4483da4bc699583886cb5452c427a5a6 (MD5) Previous issue date: 2010 | en |
dc.description.tableofcontents | 中文摘要 i
Abstract ii 目錄 iii 表目錄 vi 圖目錄 vii 壹、前言 1 貳、文獻整理 2 一、S. thermophilus 2 (一) S. thermophilus一般生理特性 2 (二) S. thermophilus之分布 2 (三) S. thermophilus對碳水化合物、蛋白質及脂質之代謝 3 (四) S. thermophilus在食品上之應用 4 (五) S. thermophilus對健康之影響 4 二、 冷震反應 6 (一) 冷震反應影響菌體在後續致死壓力環境下之存活 6 (二) 冷震影響菌體脂肪酸之組成 7 (三) 冷震影響蛋白質表現 9 一、實驗架構 11 二、實驗材料 11 (一) 菌種 11 (二) 培養基 11 (三) 試驗藥品 11 (四) 儀器設備 13 三、實驗方法 13 (一) 菌株之保存 13 (二) 實驗菌株接種源之製備 14 (三) S. thermophilus生長曲線之測定 14 (四) S. thermophilus之冷震處理 14 (五) 不同冷震處理影響S. thermophilus於低溫環境下之存活試驗 14 (六) 不同冷震處理影響S. thermophilus於高溫環境下之存活 15 (七) 不同冷震處理影響S. thermophilus於酸性環境中之存活 15 (八) 不同冷震處理影響S. thermophilus於高滲透壓環境中之存活 15 (九) 不同冷震處理影響S. thermophilus於乙醇環境之存活 15 (十) 冷震處理影響S. thermophilus於不同有機酸環境下之存活 16 (十一) 冷震處理影響S. thermophilus在模擬胃酸及膽鹽下之存活 16 (十二) 菌數測定 16 (十三) 統計分析 17 肆、結果與討論 18 一、S. thermophilus於37℃下在MRS broth中之生長曲線 18 二、不同冷震處理影響S. thermophilus於低溫環境下之存活 18 三、不同冷震處理影響S. thermophilus於58℃環境下之存活 20 四、不同冷震處理影響S. thermophilus在低酸環境 (pH 2.5) 下之存活 25 五、不同冷震處理影響S. thermophilus於高滲透壓環境之存活 31 六、不同冷震處理影響S. thermophilus在乙醇環境下之存活 34 七、冷震處理影響S. thermophilus對有機酸 (pH 3.5) 之敏感性 38 八、冷震處理影響S. thermophilus在模擬胃酸中之耐受性 42 九、 冷震影響S. thermophilus在模擬膽鹽中之耐受性 44 伍、結論 47 陸、參考文獻 48 | |
dc.language.iso | zh-TW | |
dc.title | 冷震處理影響Streptococcus thermophilus在後續一些致死壓力下之存活 | zh_TW |
dc.title | Effect of Cold-Shock Treatments on the Survival of Streptococcus thermophilus Under Subsequent Lethal Environmental Stresses | en |
dc.type | Thesis | |
dc.date.schoolyear | 98-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 游若?(Roch-Chui Yu),潘崇良(Chorng-Liang Pan),蔡國珍(G. J. Tsai),丘志威(C. P. Chiu) | |
dc.subject.keyword | Streptococcus thermophilus,冷震條件,後續致死壓力, | zh_TW |
dc.subject.keyword | Streptococcus thermophilus,cold shock conditions,subsequent lethal stresses, | en |
dc.relation.page | 56 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2010-08-09 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 食品科技研究所 | zh_TW |
顯示於系所單位: | 食品科技研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-99-1.pdf 目前未授權公開取用 | 1.19 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。