Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 食品科技研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45672
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor葉安義
dc.contributor.authorChung-Jen Chenen
dc.contributor.author陳仲仁zh_TW
dc.date.accessioned2021-06-15T04:44:29Z-
dc.date.available2015-08-16
dc.date.copyright2010-08-16
dc.date.issued2010
dc.date.submitted2010-08-09
dc.identifier.citation戈進杰,2003。生物降解高分子材料及其應用。化學工業出版社。中國大陸。
何映平,2001。奈米材料及其在食品工業中之應用實例。熱帶農業科學,八月:74-76。中國大陸。
李玲,2004。表面活性劑與納米技術發展概況。李玲編著。表面活性劑與納米技術(第一章)。化學工業出版社。中國大陸。
李華佳、辛志宏、胡秋輝,2006。食品納米技術與納米食品研究進展。食品科學,27(9):271-274。中國大陸。
吳斌、越昕、馬惠蕊,2003。納米食品及其重要意義。食品研究與開發,24(2):11-13。中國大陸。
吳俊、李斌、蘇喜生、謝筆鈞,2004。玉米澱粉的粒度效應與其微觀形貌和性能關係研究。中國糧油學報,19(5):23-26。中國大陸。
祝鈞、王彥斌、張頌培,2006。納米食品的製備與發展動態。食品科技,專題論述。中國大陸。
洪凰欽,2007。奈米粒子技術介紹。化工資訊與商情,43:50-55。
高濂、孫靜、劉陽橋,2003。納米粉體表面化學及其在液相介質中的性質表徵。高濂等編著。納米粉體的分散及表面改性。化學工業出版社。中國大陸。
徐敬添、張義和、簡維誼、蔡書雅,2001。奈米微分散技術與材料應用。2001材料奈米技術專刊,徐文泰編。經濟部技術處。
馬遠榮,2002。奈米科技。商周出版。台北、台灣。
黃仁毅,2007。纖維素於介質研磨下之破碎模式。國立台灣大學食品科技研究所碩士論文。
陳仁英,2004。奈米級粉體之研磨及其分散技術上之探討。工業材料雜誌,205:160-167。
葉安義,2004。奈米科技於食品之應用。科學發展,384:44-49。
越巍、黎錫流、陳玲、李冰,2005。應用超細粉體技術開發可食性資源。現代食品科技,21(2):213-216。中國大陸。
謝馥如,2008。奈米技術在食品工業之應用。食品工業,40(11):60-68。
劉樹立、王春艷、盛占武、王華,2006。超微粉碎技術在食品工業中的優勢及應用研究現狀。四川食品與發酵,42(6):5-7。中國大陸。
簡慧卿,2003。愛美也可以很高科技-奈米化妝品。生醫知識網2003/12/17。
簡國諭、陳志豪,2005。溼式奈米級粉體球磨技術及設備簡介。機械月刊,31(3):80-91。
關榮發、錢博、葉興乾、郝雲彬,2006。納米技術在食品科學的最新研究。食品科學,27(2):270-273。中國大陸。
Ahmad FB, Williams PA, Doublier JL, Durand S, Buleon A. 1999. Physico-chemical characterization of sago starch. Carbohydr Polym 38:361-370.
Ahmed J, Ramaswamy HS. 2003. Effect of high-hydrostatic pressure and temperature on rheological characteristics of glycomacropeptide. J Dairy Sci 86:1535-1540.
AACC. 1995. Approved methods of the American Association of Cereal Chemists. 9th ed. Method 76–31. St Paul, MN.:AACC.
AOAC. 1997. Official methods of analysis of the Association of Official Analytical Chemists. 16th ed. Washington D.C.:AOAC.
ASTM. 2002. D882-02 Standard test methods for tensile properties of thin plastic sheeting. ASTM International, West Conshohocken, PA, USA.
Baldwin PM, Adler J, Davies MC, Melia CD. 1994. Starch damage. Part 1: Characterisation of granule damage in ball-milled potato starch study by SEM. Starch/Stärke 46(7):246-251.
Barron C, Bouchet B, Della Valle G, Gallant, DJ, Planchot V. 2001. Microscopical study of the destructuring of waxy maize and smooth pea starches by shear and heat at low hydration. J Cereal Sci 33:289-300.
Bastioli C. 2001. Global Status of the production of biobased packaging materials. Starch/Stärke. 53:351-355.
Becker A, Hill SE, Mitchell JR. 2001. Relevance of amylose-lipid complexes to the behavior of thermally processed starches. Starch/Stärke 53:121-130.
Bello-Pérez LA, Paredes-López O, Roger P and Colonna P. 1996. Molecular characterization of some amylopectins. Cereal Chemi 73(1):12-17.
Benítez EI, Genovese DB, Lozano JE. 2007. Effect of pH and ionic strength on apple juice turbidity: application of the extended DLVO theory. Food Hydrocolloids 21:100-109.
Bertolini AC, Souza E, Nelson JE, Huber KC. 2003. Composition and reactivity of A- and B-type starch granules of normal, partial waxy, and waxy wheat. Cereal Chem 80:544-549.
Bhatnagar S, Hanna MA. 1994. Amylose-lipid complex formation during single-screw extrusion of various corn starches. Cereal Chem 71(6):582-587.
Biliaderis CG, Tonogai JR. 1991. Influence of lipids on the thermal and mechanical properties of concentrated starch gels. J Agric Food Chem 39:833-840.
Bogracheva, TY, Wang, YL, Hedley, CL. 2001. The effect of water content on the ordered/disordered structures in starches. Biopolymers 58:247-259.
Bugusu, B. 2008. Improving food through nanoscience. Food Technol 0908:34-39.
Brody AL, 2006. Nano and food packaging technologies converge. Food Technol 0603:92-94.
Castro JV, Dumas C, Chiou H, Fitzgerald MA, Gilbert RG. 2005. Mechanistic information from analysis of molecular weight distributions of starch. Biomacromolecules 6:2248-2259.
Chaiwanichsiri S, Ohnishi S, Suzuki T, Takai R, Miyawaki O. 2001. Measurement of electrical conductivity, differential scanning calorimetry and viscosity of starch and flour suspensions during gelatinisation process. J Sci Food Agric 81:1586-1591.
Cheetham NWH, Tao L. 1998. Variation in crystalline type with amylose content in maize starch granules: a X-ray powder diffraction study. Carbyhydr Polym 36:277-284.
Chen CJ, Yeh GSY. 1991. Radiation-induced crosslinking: III. Effect on the crystalline and amorphous density fluctuations of polyethylene. Colloid Poly Sci 269:353-363.
Chen Z, Huang J, Suurs P, Schols HA, Voragen AJ. 2005. Granule size affects the acetyl substitution on amylopectin populations in potato and sweet potato starches. Carbohydr Polym 62:333–337.
Chiou H, Fellows CM, Gilbert RG, Fitzgerald MA. 2005. Study of rice-starch structure by dynamic light scattering in aqueous solution. Carbohydr Polym 61:61-71.
Chung HJ, Woo KS, Lim ST. 2004. Glass transition and enthalpy relaxation of cross-linked corn starches. Carbohydr Polym 55:9-15.
Che LM, Wang LJ, Li D, Bhandari B, Özkan N, Chen XD, Mao ZH. 2009. Starch pastes thinning during high-pressure homogenization. Carbohydr Polym 75, 32-38.
Dang JMC, Copeland L. 2003. Imaging rice grains using atomic force microscopy. J Cereal Sci 37:165-170.
Daubert CR, Hudson HM, Foegeding EA, Prabhasankar P. 2006. Rheological characterization and electrokinetic phenomena of charged whey protein dispersion of defined size. LWT 39:206-215.
Devi AF, Fibrianto K, Torley PJ, Bhandari B. 2009. Physical properties of cryomilled rice starch. Cereal Chem 49: 278-284.
Dhital S, Shrestha AK, Gidley MJ. 2010. Effect of cryo-milling on starches: Functionality and digestibility. Food Hydrocolloids 24:152-163.
Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F. 1956. Colorimetric method for determination of sugars and related substances. Anal Chem 28:350-356.
Dunford N. 2005. Nanotechnology and opportunities for agriculture and food systems. FAPC-139. Oklahoma State University.
Eliasson AC. 1986. Viscoelastic behaviour during the gelatinization of starch II. Effects of emulsifier. J Texture Stud 17: 357-375.
Eliasson AC, Krog N. 1985. Physical properties of amylose-monoglyceride complexes. J Cereal Sci 3:239-248.
Eliasson AC, Larsson K, Miezis Y. 1981. On the possibility of modifying the gelatinization properties of starch by lipid surface coating. Starch/Stärke 33: 231-235.
Fischer H. 2003. Polymer nanocomposites: from fundamental research to specific application. Materials Sci Eng C23:763-772.
Fortuna T, Januszewska R, Juszczak L, Kielski A, Palasiñski M. 2000. The influence of starch pore characteristics on pasting behavior. Int J Food Sci Technol 35:285-291.
Fortuna T, Juszczak L, Palasinski M. 2001. Properties of corn and wheat starch phosphate obtained from granules segrgated according to their size. Electronic J Polish Agric U: Food Sci Technol 4(2).
Frances C, Laguerie C, Mazzarotta B, Veccia T. 1996. On the analysis of fine wet grinding in a batch ball mill. The Chem Eng J 63:141-147.
Gaborieau M, Gilbert RG, Gray-Weale A, Hernandez JM, Castignolles P. 2007. Theory of multiple-detection size-exclusion chromatography of complex branched polymers. Macromol Theoty Simul 16:13-28.
Gallant DJ, Bouchet B, Baldwin PM. 1997. Microscopy of starch: evidence of new level of granule organization. Carbohy Polym 32, 177-191.
Gao M, Forssberg E. 1995. Prediction of product size distributions for a stirred ball mill. Powder Technol 84:101-106.
Gibson TS, Solah V, McCleary BV. 1997. A procedure to measure amylose in cereal starches and flours with concanavalin A. J. Cereal Sci 25(2):111-119.
Glennie, CW, McDonald AML, Stark R. 1987. Some observation on damage in commercial starch preparations. Carbohy Res 170:263-268.
Gramera RE, Heerema J, Parrish FW. 1966. Distribution and structural form of phosphate ester groups in commercial starch phosphates. Cereal Chem 43(1):104.
Greenwood CT. 1964. Viscosity-molecular weight relations. Pages 179-188 in: Methods in Carbohydrate Chemistry Vol. IV. R.L. Whistler ed. Academic Press: New York.
Halley P, Rutgers R, Coombs S, Kettels J, Gralton J, Christie G, Jenkins M, Beh H, Griffin K, Jayasekara R, Lenergan G. 2001. Development biodegradable mulch films from starch-based polymers. Starch/Stärke 53:362-367.
Han SS, Yoon WS, Choi JH, Kim SY, Ji BC, Lyoo WS. 1997. Effect of zone drawing accompanied with crosslinked on the structure and properties of ultrahigh molecular weight polyethylene gel film. J Applied Poly Sci 66:1583-1590.
He M, Wang Y, Forssberg E. 2004. Slurry rheology in wet ultrafine grinding of industrial minerals: a review. Powder Technol 147:94-112.
He M, Wang Y, Forssberg E. 2006. Parameter effects on wet ultrafine grinding of limestone through slurry rheology in a stirred media mill. Powder Technol 161:10-21.
Hennart SLA, Wildeboer WJ, van Hee P, Meesters GHM. 2009. Identification of the grinding mechanisms and their origin in stirred ball milling using population balances. Chem Engin Sci 64:4123-4130.
Henrique dos Santos OD, Miotto JV, Moreira de Morais J, Pereira de Oliveiea W. 2005. Attainment of emulsions with liquid crystal from marigold oil using the required HLB Method. J. Dispersion Sci Technol 26:243-249.
Herald TJ, Obuz E, Twombly WE, Rausch KD. 2002. Tensile properties of extruded corn protein low-density polyethylene films. Cereal Chem 79(2):261–264.
Hirsch JB, Kokini JL. 2002. Understanding the mechanism of cross-linking agents (POCl3, STMP, and EPI) through swelling behavior and pasting properties of cross-linked waxy maize starches. Cereal Chem 79(1):102-107.
Hoek PV, Aristtidou A, Hahn JJ, Patist A. 2003. Fermentation goes large-scale. Biotechnology. CEP (Jan):37S-42S.
Hoang NL, Landdolfi A, Kravchuk A, Girard E, Peate J, Hernandez JM, Gaborieau M, Kravchuk O, Gilbert RG, Guillaneuf Y, Castignolles P. 2008. Toward a full characterization of native starch: separation and detection by size-exclusion chromatography. J. Chromatography A 1205:60-70.
Hood LF, Seifried AS, Meyer R. 1974. Microstructure of modified tapioca starch-milk gels. J. Food Sci 39:117-120.
Huber KC, BeMiller JN. 2001. Location of sites of reaction within starch granules. Cereal Chem 78:173-180.
Huang ZQ, Lu JP, Li XH, Tong ZF. 2007. Effect of mechanical activation on physic-chemical properties and structure of cassava starch. Carbohydr Polym 68: 128-135.
Huang B, Zhang J, Hou J, Chen C. 2003. Free radical scavenging efficiency of Nano-Se in vitro. Free Rad Bio Med 35:805-813.
Hung PV, Morita N. 2005. Effects of granule sizes on physicochemical properties of cross-linked and acetylated wheat starches. Starch/Stärke 57:413-420.
Hung PV, Morita N. 2005. Physicochemical properties of hydroxypropylated and cross-linked starches from A-type and B-type wheat starch granules. Carbohydr Polym 59:239-246.
Igura N, Hayakawa I, Fujio Y. 1997. Effect of longer heating time on depolymerization of low moistured starches. Starch/staerke 49(1):2-5.
Jafari SM, He Y, Bhandari B. 2006. Nano-emulsion production by sonication and microfluuiudization- a comparison. Int J Food Properties. 9:475-485.
Jane J, Shen L, Wang L, Maningat CC. 1992. Preparation and properties of small-particle corn starch. Cereal Chem 69(3):280-283.
Juhász R, Salgó A. 2008. Pasting behavior of amylose, amylopectin and their mixtures as determined by RVA curves and first derivatives. Starch/Stärke 60:70-78.
Kainuma K, Matasunaga A, Itagawa M, Kobayashi S. 1981. New enzyme system - b - amylase - pullulanase - to determine the degree of gelatinization and retrogradation of starch or starch products. J Jpn Soc Starch Sci 28(4):235-240.
Kim M, Lee SJ. 2002. Characteristics of crosslinked potato starch and starch-filled linear low-density polyethylene films. Carbohydr Polym 50:331-337.
Kim M. 2003. Evaluation of degradability of hydroxypropylated potato starch/polyethylene blend films. Carbohydr Polym 54:173-181.
Klimpel RR. 1999. The selection of wet grinding chemical additives based on slurry rheology control. Powder Technol 105:430-435.
Koch VH, Bommer HD, Kleve JK. 1982. Analytishe untersuchungen von phosphatuernezten stärken. Starch/Stärke 34:16-21.
Kotake N, Daibo K, Yamamoto T, Kanda Y. 2004. Experimental investigation on a grinding rate constant of solid materials by a ball mill-effect of ball diameter and feed size. Powder Technol 143-144:196-203.
Kwade A, Blecher L, Schwedes J. 1996. Motion and stress intensity of grinding beads in stirred media mill, Part II: stress intensity and its effect on comminution. Powder Technol 86(1):69-76.
Kwade A, Schwedes J. 2002. Breaking characteristics of different materials and their effect on stress intensity and stress number in stirred media mills. Powder Technol 122:109-121.
Lai HM, Padua GW. 1997. Properties and microstructure of plasticized zein films. Cereal Chem 74(6):771-775.
Langan RE. 1986. Food Industry. In OB Wurzburg (Ed.), Modified Starch: Properties and Uses (pp. 199-212). Boca Raton, Florida: CRC Press.
Lawrence RC, Creamer LK, Gilles J. 1987. Texture development during cheese ripening. J Dairy Sci 70:1748-1760.
Lawton JW. 1996. Effect of starch type on the properties of starch containing films. Carbohydr Polym 29:203-208.
Lawton JW. 2004. Plasticizers for zein: their effect on tensile properties and water absorption of zein films. Cereal Chem 81(1):1-5.
Leser ME, Michel M, Watzke HJ. 2003. ‘Food Goes Nano’ – New Horizons for Food Strcuture Research. Special Publication Royal Society of Chemistry 284:3-13.
Lin JH, Lee SY, Chang YH. 2003. Effect of acid-alcohol treatment on the molecular structure and physicochemical properties of maize and potato starchs. Carbohydr Polym 53(4):475-482.
Li JY, Yeh An-I. 2001. Relationships between thermal, rheological characteristics and swelling power for various starches. J Food Eng 50:141-148.
Liang GG, Hawkett BS, Tanner RI. 2005. The determination of the isoelectric point from measurements of dispersion viscosity as a function of pH. J Dispersion Sci Technol 26:469-472.
Liu D, Wu Q, Chen H, Chang PR. 2009. Transitional properties of starch colloid with particle size reduction from micro- to nanometer. J Colloid Interface Sci 339: 117-124.
Mahanta CL, Bhattacharya KR. 1989. Thermal degradation of starch in parboiled rice. Starch/Stärke 41:91-94.
Malhotra A, Coupland JN. 2004. The effect of surfactant on the solubility, zeta potential, and viscosity of soy protein isolates. Food Hydrocolloids 18:101-108.
Mali S, Grossmann MVE, Garcia MA, Martino MN, Zaritzky NE. 2002. Microstructural characterization of yam starch films. Carbohydr Polym 50:379-386.
Mali S, Grossmann MVE, Garcia MA, Martino MN, Zaritzky NE. 2004. Barrier, mechanical and optical properties of plasticized yam starch films. Carbohydr Polym 56-129-135.
Mali S, Sakanaka LS, Yamashita F, Grossmann MVE. 2005a. Water sorption and mechanical properties of cassava starch films and their relation to plasticizing effect. Carbohydr Polym 60:283-289.
Mali S, Grossmann MVE, Garcia MA, Martino MN, Zaritzky NE. 2005b. Mechanical and thermal properties of yam starch films. Food Hydrocolloids 19:157-164.
Matsunaga A and Kainuma K. Studies on the retrogradation of starch in starchy foods. 1986. Part 3. Effect of the addition of sucrose fatty acid ester on the retrogradation of corn starch. Starch/Stärke 38:1-6.
Mende S, Stenger F, Peukert W, Schwedes J. 2003. Menchanical production and stabilization of submicron particles in stirred media mills. Power Technol 132:64-73.
Moraru CI, Panchapakesan CP, Huang Q., Takhistov P, Liu S, Kokini JL. 2003. Nanotechnology: a new frontier in food science. Food Technol 57(12):24-29.
Mori H, Mio H, Kano J, Saito F. 2004. Ball mill simulation in wet grinding using a tumbling mill and its correlation to grinding rate. Powder Technol 143-144:230-239.
Morikawa K, Nishinari K. 2000. Effects of concentration dependence of retrogradation behaviour of dispersion for native and chemically modified potato starch. Food Hydrocolloids 14:395-401.
Morrison WR, Tester RF. 1994. Properties of damaged starch granules. IV. Composition of ball-milled wheat starches and of fractions obtained on hydration. J Cereal Sci 20:69-77.
Morrison WR, Tester RF, Gidley MJ. 1994. Properties of damaged starch granules. II. Crystallinity, molecular order and gelatinization of ball-milled starches. J Cereal Sci 19:209-217.
Paris M, Bizot H, Emery J, Buzaré R, Buléon, A. 1999. Crystallinity and structuring role of water in native and recrystallized starches by 13C CP-MAS NMR spectroscopy 1: spectral decomposition. Carbohydr Polym 39:327-229.
Park IM, Ibáňez AM, Zhong F, Shoemaker CF. 2007. Gelatinization and pasting properties of waxy and non-waxy rice starches. Starch/Stärke 59:388-396.
Petersen K, Nielsen PV, Bertelsen G, Lawther M, Olsen MB, Nilsson NH, Mortensen G. 1999. Potential of biobased materials for food packaging. Trends Food Sci Technol 10:52-68.
Popplewell LM, Campanella OH, Peleg M. 1989. Simulation of bimodal size distributions in aggregation and disintegration processes. Chem Engi. Progress 8:56-62.
Poutanen K, Forssell P. 1996. Modification of starch properties with plasticizers. TRIP. 4(4):128-132.
Qi L, Xu Z, Jiang X, Hu C, Zou X. 2004. Preparation and antibacterial activity of chitosan nanoparticles. Carbohydr Res 339:2693-2700.
Ratto JA, Stenhouse PJ, Auerbach M, Mitchell J, Farrell R. 1999. Processing, performance and biodegradability of a thermoplastic aliphatic polyester/starch system. Polymer 40:6777-6788.
Ren GY, Li D, Wang LJ, Ozkan N, Mao ZH. 2010. Morphological properties and thermoanalysis of micronized cassava starch. Carbohydr Polym 79:101-105.
Ren G, Mao Z, Li D, Zhou Y. 2006. Functional properties and microstructure of micronized potato starch. ASABE meeting presentation paper No. 066114.
Roach RR, Hoseney RC. 1995. Effect of certain surfactants on the swelling, solubility and Amylograph consistency of starch. Cereal Chem 72(6):571-577.
Rodríguez M, Osés J, Ziani K, Maté JI. 2006. Combined effect of plasticizers and surfactants on the physical properties of starch based edible films. Food Res Int 39:840-846.
Roger P, Bello-Perez LA, Colonna P. 1999. Contribution of amylose and amylopectin to the light scattering behaviour of starches in aqueous solution. Polymer 40:6897-6909.
Rudolph MJ. 2004. Cross-industry technology transfer. Food Technol. 58(1):32-34,41.
Rutenberg MW, Solarek D. 1984. Starch derivatives: production and uses. In RL Whistler, JN BeMiller and EF Paschall (Eds.), Starch: Chemistry and Technology (pp.312-388). Academic Press, London UK.
Sanguansri P, Augustin MA, 2006. Nanoscale materials development- a food industry perspective. Trends Food Sci Technol 17:547-556.
Sajilata MG, Singhal RS. 2005. Specialty starches for snack foods. Carbohydr Polym 59:131-151.
Sasaki T, Matsuki J. 1998. Effect of wheat starch structure on swelling power. Cereal Chem 75(4):525-529.
Servais C, Jones R, Roberts I. 2002. The influence of particle size distribution on the processing of food. J Food Eng 51:201-208.
Shekunov BY, Chattopadhyay P, Tong HHY, Chow AHL. 2007. Particle size analysis in pharmaceutics: principles, methods and applications. Pharmaceutical Res 24(2):203-227.
Shih FF. 1996. Edible films from rice protein concentrate and pullulan. Cereal Chem 73(3):406-409.
Shogren RL. 2003. Rapid preparation of starch esters by high temperature/pressure reaction. Carbohydr Polym 52:319-326.
Silvestre MPC, Decker EA, McClements DJ. 1999. Influence of copper on the stability of whey protein stabilized emulsions. Food Hydrocolloids 13:419-424.
Silva MC, Ibezim EC, Ribeiro TAA, Carvalho CWP, Andrade CT. 2006. Reactive processing and mechanical properties of cross-linked maize starch. Ind Crop Prod 24:46-51.
Singh J, Kaur L, McCarthy OJ. 2007. Factor influencing the physico-chemical, morphological, thermal and rheological properties of some chemically modified starches for food applications- a review. Food Hydrocolloids 21:1-22.
Smedberg A, Gustafsson B, Hjertberg T. 2004. What is crosslinked polyethylene? International Conference on Solid Dielectrics. Toulouse, France.
Sothornvit R, Krochta JM. 2005. Plasticizers in edible films and coatings. In Innovations in Food Packaging (Jung H. Han, ed.), pp.403-433, Academic Press, UK.
Stark JR, Lynn A. 1992. Starch granule large and small. Biochemical Society Transactions. 20: 7-12.
Stark JR, Yin XS. 1992. The physical damage on largeand small barley starch granules. Starch/Stärke 11:369-374.
Stapley JA, BeMiller JN. 2003. Hydroxypropylated starch: granule subpopulation reactivity. Cereal Chem 80(5): 550-552.
Stenger F, Mende S, Schwedes J, Peukert W. 2005. Nanomilling in stirred media mills. Chem. Eng. Sci 60:4557-4565.
Steven ES. 2003. Wheat makes green plastics green? BioCycle . March:24-27.
Takeda Y, Tomooka S, Hizukuri S. 1983. Structures of branched and linear moleculars of rice amylase. Carbohydr Res 246:267-272.
Tamaki S, Hisamatsu M, Teranishi K, Adachi T, Yamada, T. 1998. Structure change of maize starch granules by ball-mill treatment. Starch/Stärke 50(8):342-348.
Tan I, Flanagan BM, Halley P, Whittaker AK, Gidley MJ. 2007. A method for estimating the nature and relative proportions of amorphous, single, and double-helical components in starch granules by 13C CP/MAS NMR. Biomacromolecules 8:885-891.
Tang ESK, Huang M, Lim LY. 2003. Ultrasonication of chitosan and chitosan nanoparticles. International J. Pharmaceutices 265:103-144.
Tangsathitkulchai C. 2002. Acceleration of particle breakage rates in wet batch ball milling. Power Technol 124:67-75.
Tester RF, Karkalas, J. 1996. Swelling and gelatinization of oat starches. Cereal Chemistry 73(2):271-277.
Tester RF. 1997. Properties of damaged starch granules: composition and swelling properties of maize, rice, pea and potato starch fractions in water at various temperatures. Food Hydrocolloids 11(3):293-301.
Tester RF, Morrison WR. 1990. Swelling and gelatinization of cereal starches. I. effects of amylopectin, amylose and lipids. Cereal Chem 67(6):551-557.
Tharanathan RT. 2005. Starch-value addition by modification. Crit Rev Food Sci 45:371-384.
Thomas FD, Morse BB, Pendleton PC. 2004. Nanotechnology: the big picture. The Newsletter of the MIT Enterprise Forum of Cambridge. 22:8.
Tsai ML, Li CF, Lii CY. 1997. Effects of granular structure on the pasting behaviors of starches. Cereal Chem 74(6):750-757.
van den Einde RM, Akkermans C, van der Goot AJ, Boom RM. 2004. Molecular breakdown of corn starch by thermal and mechanical effects. Carbohydr Polym 56:415-422.
Varinot C, Hiltgun S, Pons M, Dodds J. 1997. Identification of the Fragmentation mechanisms in wet-phase fine grinding in stirred bead mill. Chemical Eng Sci 52(20):3605-3612.
Vergnes B, Villemaire JP, Colonna P and Taueb J. 1987. Interrelationships between thermomechanical treatment and macromolecular degradation of maize starch in a novel rheometer with preshearing. J Cereal Sci 5:189-202.
Weiss J, Takhistov P, McClements DJ. 2006. Functional materials in food nanotechnology. J. Food Sci 71(9):R107-R116.
Wongsagonsup R, Shobsngob S, Oonkhanond B, Varavinit S. 2005. Zeta potential and pasting properties of phosphorylated or crosslinked rice starches. Starch/Stärke 57:32-37.
Woo KS, Seib PA. 1997. Cross-linking of wheat starch and hydroxypropylated wheat starch in alkaline slurry with sodium trimetaphosphate. Carbohydr Polym 33:263-271.
Woo KS, Seib PA. 2002. Cross-linked resistant starch: preparation and properties Cereal Chem 79(6):819-825.
Wu Y, Seib PA. 1990. Acetylated and hydroxypropylated distarch phosphates from waxy barley: paste properties and freeze-thaw stability. Cereal Chem 67(2):202-208.
Wurzburtg OB. 1986. Cross-linked Starches. In OB Wurzburg (Ed.), Modified Starch: Properties and Uses (Chap. 3). Boca Raton, Florida: CRC Press.
Yekeler M, Ozkan A, Austin LG. 2001. Kinetics of fine wet grinding in a laboratory ball mill. Powder Technol 114:224-228.
Yeh AI, Yeh SL. 1993. Some characteristic of hydroxypropylated and cross-linked rice starch. Cereal Chem 70(5):596-601.
Yeh AI, Huang YC, Chen SH. 2010. Effect of particle size on the rate of enzymatic hydrolysis of cellulose. Carbohydr Polym 79:192-199.
Yoneya T, Ishibashi K, Hironaka K, Yamamoto K. 2003. Influence of cross-linked potato starch treat with POCl3 on DSC, rheological properties and granules size. Carbohydr Polym 53:447-457.
Youn KS, Rao MA. 2003. Rheology and relationship among rheological parameters of cross-linked waxy maize starch dispersions heated in fructose solutions. J. Food Sci 68(1):187-194.
Yoo D, Yoo B. 2005. Rheology of rice starch-sucrose composites. Starch/Stärke 57: 254-261.
You S, Fiedorowicz M, Lim ST. 1999. Molecular characterization of wheat amylopectins by multiangle laser light scattering analysis. Cereal Chem 76(1):116-121.
You S, Lim ST. 2000. Molecular characterization of corn starch using an aqueous HPSEC-MALLS-RI system under various dissolution and analytical conditions. Cereal Chem 77(3):303-308.
Yun SH, Matheson NK. 1990. Estimation of amylose content of starches after precipitation of amylopectin by concanavalin-A. Starch/Stärke 42:302-305.
Zhang J, Wang H, Yan X, Zhang L. 2005. Comparison of short-term toxicity between Nano-Se and selenite in mice. Life Sci 76:1099-1109.
Cientifica. 2006. Nanotechnologies in the food industry, publish August 2006. Available at www.cientifica.com/www/details.php?id=47.
ElAmin A. 2005. BASF launches biodegradable packaging plastic. Internet Dec. 6, 2005. Accessed Dec. 15, 2005. http://www.foodproductiondaily.com/news/ng.asp?n=64364andm=2IFPD14andidP=3andc=eybeiuwupqrrkgw
FAO and WHO. 2009. FAO/WHO expert meeting on the application of nanotechnologies in the food and agriculture sectors: potential food safety implications. Available at: http://www.fao.org/ag/agn/agns/files/ FAO_WHO_
Nano_Expert_Meeting_Report_Final.pdf
Jones R. 2005. Keeping the nanotech score. Soft Machines. http://www.softmachines.org/wordpress/?p=179. Accessed Nov. 22, 2005.
Megazyme. 2010. Starch damage assay kit: frequently asked questions (FAQ). http://www.megazyme.com/downloads/en/faq/K-SDAM.pdf
Wolfe, J. 2005. Safer and guilt-Free nano foods. Forbes/Wolfe Nanotech Report. http://www.forbes.com/investmentnewsletters/2005/08/09/nanotechnology-kraft-hershey-cz_jw_0810soapbox_inl.html?partner=rss, Accessed Nov. 10, 2005.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45672-
dc.description.abstract澱粉是天然量大且可再生之植物資源,由於其分子量大與結構的緊密使其不容易進行反應,造成利用其為原料所生產的生物可分解包材機械性能不佳,限制其應用與推廣。奈米化是增加澱粉表面積與修飾表面性質的好方法,可以增進反應活性提高交聯度,進而改善澱粉薄膜的機械性質。
為了證明此假說,本研究第一部份進行奈米/次微米澱粉粒子的製備與特性分析,使用介質研磨製備樣品,應用示差熱掃描分析儀與動態流變儀分析粒徑與分子量對相關物化特性之影響。粒徑分析結果顯示經過30分鐘研磨,數目平均粒徑會從9.61降低至0.26 μm,顯微觀察也證實奈米/次微米澱粉粒子的存在。介質研磨提供的機械能會導致澱粉顆粒破碎,而產生超過43.7%的澱粉損傷與55%的糊化度,並且重量平均分子量會從9.98 ×106降低至7.63 ×106 g/mole。經過研磨處理之澱粉,由於糊化度的提高造成糊化溫度與所需熱焓的降低,分子量降低表現對熱與剪切作用穩定之流變性質,而高度澱粉損傷也改變膨潤力與水溶性,顯示可以利用介質研磨修飾澱粉分子量進而改變其功能性。
第二部份進行奈米/次微米澱粉粒子的表面性質與顯微形態研究,利用表面元素分析儀、表面電位儀、核磁共振儀與X光粉末繞射儀來量測奈米化澱粉顆粒的表面性質與結晶構型。應用靜態雷射光粒徑儀與掃描式電子顯微鏡分析其粒徑分佈與顯微形態,進而探討可能之研磨機制。研磨120分鐘後,體積平均粒徑由17.3降低至0.7 μm且帶有-12 mV表面電位,表面積與顆粒數分別增加25與15,000倍,並且表面氧元素增加60%使碳氧比由1.04 降至0.84,雙股螺旋含量與相對結晶度分別降低70%與60%,並伴隨內生性黏度由181降低至98 mL/g。由粒徑分佈與顯微形態顯示研磨機制可能為先剝離再粉碎,粒徑降低與所造成的高度澱粉損傷可能使結構改變而增加表面羥基數目,顯示奈米/次微米澱粉應能增加澱粉反應活性。
第三部份進行奈米/次微米澱粉粒子的穩定化研究,以平均粒徑、表面電位、離心與濁度穩定性篩選適當乳化劑後,發現5% w/w脂肪酸甘油脂的添加有助於奈米/次微米澱粉懸浮液之穩定。根據顯微觀察、繞射圖譜等分析,顯示穩定之機制可能是因為複合物的形成產生靜電立體作用,因此研磨180分鐘後可得到體積平均粒徑0.3 μm表面帶-16 mv之研磨樣品。由粒徑分佈結果也顯示,乳化劑的添加可以提高研磨效率與奈米粒子產率,並且不會影響介質研磨之粒徑降低機制。研磨所造成之澱粉損傷(30分鐘研磨達33.8%)雖較未添加組低,但仍造成顆粒完整性喪失與相對結晶度的變化,同樣影響其糊化溫度與熱焓,雖然水溶性指標與膨潤力沒有顯著差異,但一樣也顯著影響澱粉成糊與流動性質。
第四部份進行奈米/次微米澱粉對交聯反應與澱粉薄膜機械性質影響研究,藉由示差熱掃描分析儀、動態流變儀來量測交聯後澱粉的熱與流變性質變化,以及電子顯微鏡觀察薄膜形態,質地分析儀量測機械強度,了解奈米/次微米澱粉可以增進反應活性(提高交聯度),進而改善澱粉薄膜的機械性質。結果顯示以三偏磷酸鈉作為交聯劑進行交聯反應,澱粉的交聯程度隨研磨與交聯時間的增加而增加(反應300分鐘後,研磨90分鐘的樣品較未研磨交聯程度提高約3.7倍),表示奈米化確實可以增進反應活性而提高交聯度,而粒徑對交聯反應速率的影響主要在前30分鐘。在熱性質方面,結果顯示尖峰溫度與熱焓値隨交聯程度的增加而增加,但粒徑越小交聯程度的影響越不顯著。在流變性質(流體流動與成糊特性)顯示,隨交聯程度的增加其糊化與回凝的黏度也隨之降低。交聯反應可提升澱粉薄膜的機械強度,但是延展性仍嫌不足。甘油的添加則可更強化澱粉薄膜的延展性,但是其機械強度則會些微下降。
以上數據顯示,透過介質研磨的物理修飾作用,可以降低分子量與結晶性,增加表面積與官能基,進而提高反應性與增進薄膜機械性質。
zh_TW
dc.description.abstractStarch is an abundant and renewable plant resource but it is quite inert to reaction due to its high molecular weight and granular crystallinity. Thus, starch films exhibit poor mechanical properties that limit the utilization of starch as biodegradable packaging. Nanonization would be beneficial for increasing reactivity of starch with increasing surface area and surface properties modification and thus enhancing the cross-linkages of starch molecules to improve the mechanical properties of starch films.
In order to prove the hypothesis, the first part of the research was to explore the feasibility for preparing nano/submicron starch particles and understanding the change of functionality after size reduction. Media milling was employed to prepare the sample with different operating parameters. The effects of particle size and molecular weight on the related physicochemical properties of milled starch were also studied. HPSEC-MALLS-RI, DSC and dynamic rheometer were utilized to determine the molecular weight, thermal and rheological properties of milled products. After 30-min milling, the number average diameter of starch particle was reduced from 9.61 to 0.26 μm. SEM/TEM observation confirmed the presence of nano/submicron starch particles. As starch granules being disintegrated, the mechanical energy imparted by media milling resulted in more than 43.7% starch damage and 55% degree of gelatinization. The weight average molecular weight was reduced from 9.98 ×106 to 7.63 ×106 g/mole. The milled starch exhibited lower gelatinization temperature and heat for gelatinization probably were due to an increase in degree of gelatinization. The reduction of molecular weight let the rheological properties of milled samples become more shearing and thermal stable, and it also affected the swelling power and water soluble index by increasing the degree of starch damage. The result showed that it was possible to manipulate the molecular by media milling and to modify the functional properties of starch.
The second part of the research was to study the surface properties and morphology of nano/submicron starch particles made by media milling. ESCA, Zetasizer, NMR and XRD were utilized to determine the surface properties and microstructure of milled starch. Particle size distribution and morphology were examined by SLS and SEM in order to explore the size reduction mechanism of starch products prepared by media milling. The volume average diameter was reduced to 0.7 μm with a surface charge of -12 mV after being milled for 120 min. The milling resulted in an increasing of surface area around 25 folds and number of particles about 15,000 times. On the surface, the oxygen content was increased 60% and the ratio of carbon to oxygen was decreased from 1.04 to 0.84. The milling also resulted in loss 70% of double helix content and 60% of relative crystallinity along with the reduction of intrinsic viscosity from 181 to 98 mL/g due to mechanical degradation. The mechanism of milling was associated with surface erosion/shattering and appeared to follow the concept of amylopectin cluster. Size reduction and starch damage lead to molecular dislocation would increase the hydroxyl group on surface that could enhance the reactivity of starch.
The third part of the research was to stabilize the nano/submicron starch particles. After screen the suitable emulsifier according to the average particle size, surface charge, centrifugation and turbidity stability, the addition of 5% w/w monoglyceride was found to give the best result. The volume average diameter was reduced to about 0.3 μm with a surface charge of -16 mV after being milled for 180 min. The change of transmission electron micrograph, XRD diffraction and DSC thermogram showed that the stabilized mechanism probabily was due to the formation of inclusion complex with electrosteric effect. The addition of emulsifier also can increase the efficiency of size reduction and the yield of nano particles without affecting the milling mechanism by examined the PSD. The starch damage was decreasing when compared with the milled starch without emulsifier addition (33.8% at 30 min) but the thermal and rheological properties changed with the same tendency, and the swelling powder and water soluble index didn’t show significantly difference between them.
The final part of the research was to evaluate the cross-linking and mechanical properties of starch films made of nano/submicron starch particles. The thermal and rheological of cross-linked starch, morphology and mechanical properties of starch films were studied with DSC, dynamic rheometer, SEM and texture analyzer. The results showed that the degree of cross-linkage was increased with the milling and reaction time by using SMTP as reagent (the degree of cross-linking for 90-min milling sample increased about 3.7 times when compared with native starch after 300-min reaction) that confirmed nanoization can enhance the reactivity, particularly significant for the first 30 min of milling. The increasing of cross-linkage will increase the peak temperature and enthalpy for thermal property but decrease the gelatinized viscosity and setback for flow and paste properties. Cross-linkage could improve the tensile strength and the elong at break, with the addition of glycerol can further increase the elong at break but would decrease the tensile strength.
The study confirmed that physical modification can be done by media milling with controlling of molecular weight and crystallinity. The reactivity of starch can be increasing by increasing the surface area and functional group to improve the mechanical properties of starch films.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T04:44:29Z (GMT). No. of bitstreams: 1
ntu-99-D93641002-1.pdf: 9542595 bytes, checksum: 3d3553e4322678d3081e5a766268cfab (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents摘要 Ⅰ
英文摘要 Ⅲ
目錄 Ⅶ
表目錄 Ⅷ
圖目錄 Ⅸ

壹、前言 1
貳、文獻回顧 3
2.1奈米科技的發展現況 3
2.2奈米科技於食品之應用 5
2.3奈米材料的製備 11
2.4 澱粉之修飾與物化分析 21
2.5生物可分解塑化材料 24
参、研究目的 28
肆、實驗設計與架構 29
伍、奈米/次微米澱粉粒子的製備與特性分析 35
5.1 摘要 35
5.2 材料與方法 35
5.3結果與討論 42
5.3.1 濃度與研磨珠尺寸對體積平均粒徑之影響 42
5.3.2 介質研磨樣品之粒徑與表面形貌 46
5.3.3 奈米/次微米澱粉之物理與熱性質 52
5.3.4 奈米/次微米澱粉之流變性質 56
5.3.5膨潤力與水溶性指標 60
5.4 結論 63
陸、奈米/次微米澱粉顆粒的表面性質與顯微形態 64
6.1 摘要 64
6.2 材料與方法 64
6.3結果與討論 69
6.3.1介質研磨對澱粉顆粒表面性質與微結構的影響 69
6.3.2介質研磨對澱粉顆粒顯微形態的影響 79
6.3.3介質研磨對澱粉顆粒鍵結之作用 85
6.4 結論 91
柒、奈米/次微米澱粉粒子的穩定化研究 92
7.1 摘要 92
7.2 材料與方法 92
7.3結果與討論 95
7.3.1 利用乳化劑種類的選擇、鹽類的添加與環境pH的控制穩定奈米/次微米澱粉粒子 95
7.3.2 添加乳化劑脂肪酸甘油脂對奈米/次微米澱粉顆粒穩定性之影響 101
7.3.3添加乳化劑對研磨後樣品物性的影響 108
7.4 結論 115
捌、奈米/次微米澱粉對交聯反應與澱粉薄膜機械性質之影響 116
8.1 摘要 116
8.2 材料與方法 116
8.3結果與討論 119
8.3.1交聯反應對奈米/次微米澱粉顆粒物化性質之影響 119
8.3.2奈米/次微米澱粉薄膜之形態與機械性質 126
8.4 結論 132
玖、建議研究 133
拾、參考文獻 134
dc.language.isozh-TW
dc.title奈米/次微米澱粉粒子的製備、特性、穩定與交聯反應之研究zh_TW
dc.titlePreparation, characterization, stabilization and cross-linking of nano/submicron starch particlesen
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree博士
dc.contributor.oralexamcommittee盧訓,張永和,馮臨惠,朱中亮,呂廷璋,賴鳳羲
dc.subject.keyword澱粉,介質研磨,奈米/次微米,物化性質,穩定化,交聯反應,zh_TW
dc.subject.keywordstarch,media milling,nano/submicron,physicochemical properties,stabilization,cross-linking,en
dc.relation.page150
dc.rights.note有償授權
dc.date.accepted2010-08-09
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept食品科技研究所zh_TW
顯示於系所單位:食品科技研究所

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  目前未授權公開取用
9.32 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved