請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45636完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 孔繁璐 | |
| dc.contributor.author | Tzu-Wei Tsai | en |
| dc.contributor.author | 蔡梓瑋 | zh_TW |
| dc.date.accessioned | 2021-06-15T04:31:51Z | - |
| dc.date.available | 2014-09-15 | |
| dc.date.copyright | 2009-09-15 | |
| dc.date.issued | 2009 | |
| dc.date.submitted | 2009-08-19 | |
| dc.identifier.citation | 1. Lee, C.H., J.J. Chen, and W.M. Liang, Attitudes and intentions of patients toward integrated Chinese and Western medicine in Taiwan. J Altern Complement Med, 2006. 12(3): p. 233-6.
2. Liu, C.T., Health care systems in transition. II. Taiwan, Part I. A general overview of the health care system in Taiwan. J Public Health Med, 1998. 20(1): p. 5-10. 3. Chang, C.H., et al., Rapidly progressive interstitial renal fibrosis associated with Chinese herbal medications. Am J Nephrol, 2001. 21(6): p. 441-8. 4. Yang, S.S., et al., Aristolochic acid-induced Fanconi's syndrome and nephropathy presenting as hypokalemic paralysis. Am J Kidney Dis, 2002. 39(3): p. E14. 5. Yang, H.Y., et al., Aristolochic acid-related nephropathy associated with the popular Chinese herb Xi Xin. J Nephrol, 2006. 19(1): p. 111-4. 6. Ioset, J.R., G.E. Raoelison, and K. Hostettmann, Detection of aristolochic acid in Chinese phytomedicines and dietary supplements used as slimming regimens. Food Chem Toxicol, 2003. 41(1): p. 29-36. 7. Chan, W. and Z. Cai, Aristolochic acid induced changes in the metabolic profile of rat urine. J Pharm Biomed Anal, 2008. 46(4): p. 757-62. 8. Stiborova, M., et al., Metabolic activation of carcinogenic aristolochic acid, a risk factor for Balkan endemic nephropathy. Mutat Res, 2008. 658(1-2): p. 55-67. 9. Xiao, Y., et al., Hepatic cytochrome P450s metabolize aristolochic acid and reduce its kidney toxicity. Kidney Int, 2008. 73(11): p. 1231-9. 10. Balachandran, P., et al., Structure activity relationships of aristolochic acid analogues: toxicity in cultured renal epithelial cells. Kidney Int, 2005. 67(5): p. 1797-805. 11. Schmeiser, H.H., K.B. Schoepe, and M. Wiessler, DNA adduct formation of aristolochic acid I and II in vitro and in vivo. Carcinogenesis, 1988. 9(2): p. 297-303. 12. Arlt, V.M., M. Stiborova, and H.H. Schmeiser, Aristolochic acid as a probable human cancer hazard in herbal remedies: a review. Mutagenesis, 2002. 17(4): p. 265-77. 13. Rucker, V.G. and B.S. Chung, [Aristolochic acids from Aristolochia manshuriensis (author's transl)]. Planta Med, 1975. 27(1): p. 68-71. 14. Mose, J.R., [Further studies on the effects of aristolochic acid]. Arzneimittelforschung, 1966. 16(2): p. 118-22. 15. Mose, J.R., [Further studies on aristolochia acid. 2]. Arzneimittelforschung, 1974. 24(2): p. 151-3. 16. Kluthe, R., A. Vogt, and S. Batsford, [Double blind study of the influence of aristolochic acid on granulocyte phagocytic activity]. Arzneimittelforschung, 1982. 32(4): p. 443-5. 17. Mengs, U., Tumour induction in mice following exposure to aristolochic acid. Arch Toxicol, 1988. 61(6): p. 504-5. 18. Mengs, U., On the histopathogenesis of rat forestomach carcinoma caused by aristolochic acid. Arch Toxicol, 1983. 52(3): p. 209-20. 19. Stiborova, M., et al., Human cytosolic enzymes involved in the metabolic activation of carcinogenic aristolochic acid: evidence for reductive activation by human NAD(P)H:quinone oxidoreductase. Carcinogenesis, 2003. 24(10): p. 1695-703. 20. Schmeiser, H.H., et al., Comparison of DNA adduct formation by aristolochic acids in various in vitro activation systems by 32P-post-labelling: evidence for reductive activation by peroxidases. Carcinogenesis, 1997. 18(5): p. 1055-62. 21. Stiborova, M., et al., Human enzymes involved in the metabolic activation of carcinogenic aristolochic acids: evidence for reductive activation by cytochromes P450 1A1 and 1A2. Chem Res Toxicol, 2001. 14(8): p. 1128-37. 22. Cosyns, J.P., et al., Urothelial malignancy in nephropathy due to Chinese herbs. Lancet, 1994. 344(8916): p. 188. 23. Cosyns, J.P., et al., Chronic aristolochic acid toxicity in rabbits: a model of Chinese herbs nephropathy? Kidney Int, 2001. 59(6): p. 2164-73. 24. Arlt, V.M., M. Wiessler, and H.H. Schmeiser, Using polymerase arrest to detect DNA binding specificity of aristolochic acid in the mouse H-ras gene. Carcinogenesis, 2000. 21(2): p. 235-42. 25. Grosse Y, B.R., Straif K, Secretan B, El Ghissassi F, Bouvard V, Benbrahim-Tallaa L, Guha N, Galichet L, Cogliano V, WHO International Agency for Research on Cancer Monograph Working Group. A review of human carcinogens-part A: pharmaceuticals. Lancet Oncol, 2009. 10: p. 13-4. 26. Pfau, W., H.H. Schmeiser, and M. Wiessler, 32P-postlabelling analysis of the DNA adducts formed by aristolochic acid I and II. Carcinogenesis, 1990. 11(9): p. 1627-33. 27. Lord, G.M., et al., DNA adducts and p53 mutations in a patient with aristolochic acid-associated nephropathy. Am J Kidney Dis, 2004. 43(4): p. e11-7. 28. Arlt, V.M., et al., Aristolochic acid mutagenesis: molecular clues to the aetiology of Balkan endemic nephropathy-associated urothelial cancer. Carcinogenesis, 2007. 28(11): p. 2253-61. 29. Schmeiser, H.H., et al., Aristolochic acid activates ras genes in rat tumors at deoxyadenosine residues. Cancer Res, 1990. 50(17): p. 5464-9. 30. Chen, W., Y. Chen, and A. Li, [The clinical and pathological manifestations of aristolochic acid nephropathy--the report of 58 cases]. Zhonghua Yi Xue Za Zhi, 2001. 81(18): p. 1101-5. 31. Martinez, M.C., et al., Progression rate of Chinese herb nephropathy: impact of Aristolochia fangchi ingested dose. Nephrol Dial Transplant, 2002. 17(3): p. 408-12. 32. Parkinson, A., Biotransformation of xenobiotics. Inc: Casarett & Doull's toxicology. The Basic Science of Poisons. 5th ed. (Klaassen CD ed.) Chapter 6, McGraw-Hill. Inc, 1996. 33. Krumbiegel, G., et al., Studies on the metabolism of aristolochic acids I and II. Xenobiotica, 1987. 17(8): p. 981-91. 34. Stiborova, M., et al., Carcinogenic and nephrotoxic alkaloids aristolochic acids upon activation by NADPH : cytochrome P450 reductase form adducts found in DNA of patients with Chinese herbs nephropathy. Gen Physiol Biophys, 2001. 20(4): p. 375-92. 35. Yan, Z. and G.W. Caldwell, Metabolism profiling, and cytochrome P450 inhibition & induction in drug discovery. Curr Top Med Chem, 2001. 1(5): p. 403-25. 36. Nelson, D.R., et al., Comparison of cytochrome P450 (CYP) genes from the mouse and human genomes, including nomenclature recommendations for genes, pseudogenes and alternative-splice variants. Pharmacogenetics, 2004. 14(1): p. 1-18. 37. Thummel, K.E. and G.R. Wilkinson, In vitro and in vivo drug interactions involving human CYP3A. Annu Rev Pharmacol Toxicol, 1998. 38: p. 389-430. 38. Brunori, M., Nitric oxide, cytochrome-c oxidase and myoglobin. Trends Biochem Sci, 2001. 26(1): p. 21-3. 39. Whitlock, D.M.a.J.J., Induction of cytochrome P450 enzymes that metabolize xenobiotics. Inc: Cytochrome P450: Structure, Metabolism, and Biochemistry. 2nd ed. (Ortiz de Montellano PR ed.) Chapter 10. Plenum Press, New York., 1995. 40. Kawajiri, K., J. Watanabe, and S. Hayashi, Identification of allelic variants of the human CYP1A1 gene. Methods Enzymol, 1996. 272: p. 226-32. 41. Stiborova, M., et al., The binding of aristolochic acid I to the active site of human cytochromes P450 1A1 and 1A2 explains their potential to reductively activate this human carcinogen. Cancer Lett, 2005. 229(2): p. 193-204. 42. Ernster, L., L. Danielson, and M. Ljunggren, DT diaphorase. I. Purification from the soluble fraction of rat-liver cytoplasm, and properties. Biochim Biophys Acta, 1962. 58: p. 171-88. 43. Ross, D., et al., Interaction of menadione (2-methyl-1,4-naphthoquinone) with glutathione. Chem Biol Interact, 1985. 55(1-2): p. 177-84. 44. Jaiswal, A.K., et al., Human dioxin-inducible cytosolic NAD(P)H:menadione oxidoreductase. cDNA sequence and localization of gene to chromosome 16. J Biol Chem, 1988. 263(27): p. 13572-8. 45. Chen, S., et al., Catalytic properties of NAD(P)H:quinone acceptor oxidoreductase: study involving mouse, rat, human, and mouse-rat chimeric enzymes. Mol Pharmacol, 1995. 47(5): p. 934-9. 46. Ross, D., et al., NAD(P)H:quinone oxidoreductase 1 (NQO1): chemoprotection, bioactivation, gene regulation and genetic polymorphisms. Chem Biol Interact, 2000. 129(1-2): p. 77-97. 47. Marchand, A., R. Barouki, and M. Garlatti, Regulation of NAD(P)H:quinone oxidoreductase 1 gene expression by CYP1A1 activity. Mol Pharmacol, 2004. 65(4): p. 1029-37. 48. Asher, G., et al., Regulation of p53 stability and p53-dependent apoptosis by NADH quinone oxidoreductase 1. Proc Natl Acad Sci U S A, 2001. 98(3): p. 1188-93. 49. M. Stiborova, E.F., H.H. Schmeiser, Metabolic activation of aristolochic acid , Coll. Antropol. 30 (Suppl. 1). 2006. 25. 50. Stiborova, M., et al., Carcinogenic aristolochic acids upon activation by DT-diaphorase form adducts found in DNA of patients with Chinese herbs nephropathy. Carcinogenesis, 2002. 23(4): p. 617-25. 51. Stiborova, M., et al., Characterization of DNA adducts formed by aristolochic acids in the target organ (forestomach) of rats by 32P-postlabelling analysis using different chromatographic procedures. Carcinogenesis, 1994. 15(6): p. 1187-92. 52. Chan, W., et al., Investigation of the metabolism and reductive activation of carcinogenic aristolochic acids in rats. Drug Metab Dispos, 2007. 35(6): p. 866-74. 53. Pfau, W., H.H. Schmeiser, and M. Wiessler, Aristolochic acid binds covalently to the exocyclic amino group of purine nucleotides in DNA. Carcinogenesis, 1990. 11(2): p. 313-9. 54. Mannel, M., Drug interactions with St John's wort : mechanisms and clinical implications. Drug Saf, 2004. 27(11): p. 773-97. 55. Chan, W., et al., Study of the phase I and phase II metabolism of nephrotoxin aristolochic acid by liquid chromatography/tandem mass spectrometry. Rapid Commun Mass Spectrom, 2006. 20(11): p. 1755-60. 56. Dong, H., et al., Quantitative determination of aristolochic acid-derived DNA adducts in rats using 32P-postlabeling/polyacrylamide gel electrophoresis analysis. Drug Metab Dispos, 2006. 34(7): p. 1122-7. 57. Rendic, S. and F.J. Di Carlo, Human cytochrome P450 enzymes: a status report summarizing their reactions, substrates, inducers, and inhibitors. Drug Metab Rev, 1997. 29(1-2): p. 413-580. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45636 | - |
| dc.description.abstract | 馬兜鈴酸 (aristolochic acid, 簡稱AA) 為馬兜鈴屬植物中,所萃取出能引發腎毒性的主要成分,與馬兜鈴酸腎病變 (Aristolochic acid nephropathy) 亦稱中草藥腎病變 (Chinese herb nephropathy) 有其關聯性。在in vivo的實驗中發現有 AAⅠ-DNA 加成物的形成,這種加成物可能與細胞毒性 (cytotoxicity) 有所關聯。因此推測馬兜鈴酸可能藉由還原代謝機制,使馬兜鈴酸之代謝物與 DNA 形成 AA-DNA 加成物。參與前述活化反應的酵素可能包括細胞色素P450中的 CYP1A1和 CYP 1A2、NADPH:CYP reductases 和 cytosolic nitroreductases 中的 NAD(P)H:quinone oxidoreducyase (NQO1) 。為了更進一步釐清這些酵素在前述所提及的代謝過程中之角色,我們對餵食純品馬兜鈴酸或單方馬兜鈴粉末與複方馬兜鈴粉末 (補肺阿膠湯) 小鼠的肝、腎 CYP1A1、CYP1A2 和 NQO1 酵素的表現量進行分析。我們的觀察結果顯示,餵食馬兜鈴酸之小鼠,其肝或腎之 CYP1A1、CYP1A2 或 NQO1 酵素表現量並無隨著馬兜鈴酸劑量增加而有明顯的變化,且與馬兜鈴酸誘發之細胞毒性無相關性。 | zh_TW |
| dc.description.abstract | Aristolochic acids (AA), naturally occurring nephrotoxins extracted from plants of the Aristolochiaceae family, have been associated with aristolochic acid nephropathy, which is also known as Chinese herbs nephropathy. AAⅠ-DNA adduct formation, likely to be correlated with AAs cytotoxicity, has been observed from in vivo studies. It has been suggested that AA needs reductive metabolic activation to be able to react with DNA to form AA-DNA adducts. Several enzymes, including CYP450 isozymes such as CYP1A1, CYP1A2, NADPH:CYP reductases, and cytosolic nitroreductases, for example, the NAD(P)H dehydrogenase, quinone 1 (NQO1), have all been proposed to be participated in the aforementioned activation pathway. To further clarify the roles of these enzymes in the activation process, we analyzed the expression levels of CYP1A1, CYP1A2, and NQO1 in liver and kidney of the experimental animals treated with either aristolochic acid mixture or grounded Aristolochia contorta or bu-fei-a-jiau-tang powder . Our results indicated that there is no significant changes in the expression levels of CYP1A1, CYP1A2, and NQO1 in the livers and kidneys of mice treated with varying doses of aristolochic acid, and is not correlated with the observed nephropathy. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T04:31:51Z (GMT). No. of bitstreams: 1 ntu-98-R96423013-1.pdf: 636788 bytes, checksum: ca7480cf91ef84d276ee8ed76aff036c (MD5) Previous issue date: 2009 | en |
| dc.description.tableofcontents | 致謝-----------------------------------------------------------------------------------------------II
中文摘要----------------------------------------------------------------------------------------III 英文摘要----------------------------------------------------------------------------------------IV 英文縮寫表--------------------------------------------------------------------------------------V 緒論-----------------------------------------------------------------------------------------------1 1. 馬兜鈴酸-----------------------------------------------------------------------------------1 2. 馬兜鈴酸腎病變 (AAN) 的特徵-----------------------------------------------------3 3. 代謝酵素系統-----------------------------------------------------------------------------4 4. 細胞色素 P450 (cytochrome P450)---------------------------------------------------5 5. 細胞色素 P4501A1/2 (CYP1A1;CYP1A2)----------------------------------------5 6. NAD(P)H:Quinone Oxidoreductase 1 (NQO1)------------------------------------6 7. 馬兜鈴酸之代謝機制--------------------------------------------------------------------7 研究目的-------------------------------------------------------------------------------9 材料與方法-------------------------------------------------------------------------10 實驗結果-------------------------------------------------------------------------------16 結果討論------------------------------------------------------------------------------------------22 附圖--------------------------------------------------------------------------------------23 圖表--------------------------------------------------------------------------------------28 參考文獻-------------------------------------------------------------------------------------35 | |
| dc.language.iso | zh-TW | |
| dc.subject | 馬兜鈴酸 | zh_TW |
| dc.subject | 馬兜鈴酸腎病變 | zh_TW |
| dc.subject | AAⅠ-DNA 加成物 | zh_TW |
| dc.subject | 細胞毒性 | zh_TW |
| dc.subject | cytotoxicity | en |
| dc.subject | AAⅠ-DNA adducts | en |
| dc.subject | aristolochic acid | en |
| dc.subject | Aristolochic acid nephropathy | en |
| dc.title | 口服馬兜鈴酸對小鼠肝腎 CYP1A1、CYP1A2 和 NQO1 蛋白表現量變化之分析 | zh_TW |
| dc.title | Analysis of Changes in the Liver and Kidney CYP1A1, CYP1A2, and NQO1 Protein Levels in Mice Treated Orally with Aristolochic Acid | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 97-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 忻凌偉,康照洲,郭錦樺 | |
| dc.subject.keyword | 馬兜鈴酸,馬兜鈴酸腎病變,AAⅠ-DNA 加成物,細胞毒性, | zh_TW |
| dc.subject.keyword | aristolochic acid,Aristolochic acid nephropathy,AAⅠ-DNA adducts,cytotoxicity, | en |
| dc.relation.page | 42 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2009-08-19 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 藥學研究所 | zh_TW |
| 顯示於系所單位: | 藥學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-98-1.pdf 未授權公開取用 | 621.86 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
