請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/4526完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 孟子青(Tzu-Ching Meng) | |
| dc.contributor.author | Shu-Fang Hsu | en |
| dc.contributor.author | 許淑芳 | zh_TW |
| dc.date.accessioned | 2021-05-14T17:43:00Z | - |
| dc.date.available | 2018-08-28 | |
| dc.date.available | 2021-05-14T17:43:00Z | - |
| dc.date.copyright | 2015-08-28 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-08-12 | |
| dc.identifier.citation | 1. Jaffe EA. Cell biology of endothelial cells. Hum Pathol. 1987;18:234-239
2. Davignon J, Ganz P. Role of endothelial dysfunction in atherosclerosis. Circulation. 2004;109:III27-32 3. Ley K, Laudanna C, Cybulsky MI, Nourshargh S. Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nat Rev Immunol. 2007;7:678-689 4. Hickey MJ, Kubes P. Intravascular immunity: the host-pathogen encounter in blood vessels. Nat Rev Immunol. 2009;9:364-375 5. Rittirsch D, Flierl MA, Ward PA. Harmful molecular mechanisms in sepsis. Nat Rev Immunol. 2008;8:776-787 6. Hotchkiss RS, Karl IE. The pathophysiology and treatment of sepsis. N Engl J Med. 2003;348:138-150 7. Aird WC. The role of the endothelium in severe sepsis and multiple organ dysfunction syndrome. Blood. 2003;101:3765-3777 8. Waters JP, Pober JS, Bradley JR. Tumour necrosis factor in infectious disease. J Pathol. 2013;230:132-147 9. Zhang H, Park Y, Wu J, Chen X, Lee S, Yang J, Dellsperger KC, Zhang C. Role of TNF-alpha in vascular dysfunction. Clin Sci (Lond). 2009;116:219-230 10. Bradley JR. TNF-mediated inflammatory disease. J Pathol. 2008;214:149-160 11. Smith CW, Rothlein R, Hughes BJ, Mariscalco MM, Rudloff HE, Schmalstieg FC, Anderson DC. Recognition of an endothelial determinant for CD 18-dependent human neutrophil adherence and transendothelial migration. J Clin Invest. 1988;82:1746-1756 12. Smith CW, Marlin SD, Rothlein R, Toman C, Anderson DC. Cooperative interactions of LFA-1 and Mac-1 with intercellular adhesion molecule-1 in facilitating adherence and transendothelial migration of human neutrophils in vitro. J Clin Invest. 1989;83:2008-2017 13. Burns AR, Takei F, Doerschuk CM. Quantitation of ICAM-1 expression in mouse lung during pneumonia. J Immunol. 1994;153:3189-3198 14. Burns AR, Smith CW, Walker DC. Unique structural features that influence neutrophil emigration into the lung. Physiol Rev. 2003;83:309-336 15. Springer TA. Adhesion receptors of the immune system. Nature. 1990;346:425-434 16. Staunton DE, Marlin SD, Stratowa C, Dustin ML, Springer TA. Primary structure of ICAM-1 demonstrates interaction between members of the immunoglobulin and integrin supergene families. Cell. 1988;52:925-933 17. Staunton DE, Merluzzi VJ, Rothlein R, Barton R, Marlin SD, Springer TA. A cell adhesion molecule, ICAM-1, is the major surface receptor for rhinoviruses. Cell. 1989;56:849-853 18. Diamond MS, Staunton DE, de Fougerolles AR, Stacker SA, Garcia-Aguilar J, Hibbs ML, Springer TA. ICAM-1 (CD54): A counter-receptor for Mac-1 (CD11b/CD18). J Cell Biol. 1990;111:3129-3139 19. Diamond MS, Staunton DE, Marlin SD, Springer TA. Binding of the integrin Mac-1 (CD11b/CD18) to the third immunoglobulin-like domain of ICAM-1 (CD54) and its regulation by glycosylation. Cell. 1991;65:961-971 20. Rao RM, Yang L, Garcia-Cardena G, Luscinskas FW. Endothelial-dependent mechanisms of leukocyte recruitment to the vascular wall. Circ Res. 2007;101:234-247 21. Rahman A, Fazal F. Hug tightly and say goodbye: Role of endothelial ICAM-1 in leukocyte transmigration. Antioxid Redox Signal. 2009;11:823-839 22. Scheidereit C. I kappa B kinase complexes: Gateways to NF-kappa B activation and transcription. Oncogene. 2006;25:6685-6705 23. Voraberger G, Schafer R, Stratowa C. Cloning of the human gene for intercellular adhesion molecule 1 and analysis of its 5'-regulatory region. Induction by cytokines and phorbol ester. J Immunol. 1991;147:2777-2786 24. Ledebur HC, Parks TP. Transcriptional regulation of the intercellular adhesion molecule-1 gene by inflammatory cytokines in human endothelial cells. Essential roles of a variant NF-kappa B site and p65 homodimers. J Biol Chem. 1995;270:933-943 25. Rahman A, Anwar KN, True AL, Malik AB. Thrombin-induced p65 homodimer binding to downstream NF-kappa B site of the promoter mediates endothelial ICAM-1 expression and neutrophil adhesion. J Immunol. 1999;162:5466-5476 26. Xue J, Thippegowda PB, Hu G, Bachmaier K, Christman JW, Malik AB, Tiruppathi C. NF-kappa B regulates thrombin-induced ICAM-1 gene expression in cooperation with NFAT by binding to the intronic NF-kappa B site in the ICAM-1 gene. Physiol Genomics. 2009;38:42-53 27. MacEwan DJ. TNF receptor subtype signalling: Differences and cellular consequences. Cell Signal. 2002;14:477-492 28. Schmitz ML, Bacher S, Kracht M. I kappa B-independent control of NF-kappa B activity by modulatory phosphorylations. Trends Biochem Sci. 2001;26:186-190 29. Jersmann HP, Hii CS, Ferrante JV, Ferrante A. Bacterial lipopolysaccharide and tumor necrosis factor alpha synergistically increase expression of human endothelial adhesion molecules through activation of NF-kappa B and p38 mitogen-activated protein kinase signaling pathways. Infect Immun. 2001;69:1273-1279 30. Lin SJ, Shyue SK, Hung YY, Chen YH, Ku HH, Chen JW, Tam KB, Chen YL. Superoxide dismutase inhibits the expression of vascular cell adhesion molecule-1 and intracellular cell adhesion molecule-1 induced by tumor necrosis factor-alpha in human endothelial cells through the JNK/p38 pathways. Arterioscler Thromb Vasc Biol. 2005;25:334-340 31. Yoshizumi M, Fujita Y, Izawa Y, Suzaki Y, Kyaw M, Ali N, Tsuchiya K, Kagami S, Yano S, Sone S, Tamaki T. Ebselen inhibits tumor necrosis factor-alpha-induced c-Jun N-terminal kinase activation and adhesion molecule expression in endothelial cells. Exp Cell Res. 2004;292:1-10 32. Carter AB, Hunninghake GW. A constitutive active MEK --> ERK pathway negatively regulates NF-kappa B-dependent gene expression by modulating TATA-binding protein phosphorylation. J Biol Chem. 2000;275:27858-27864 33. Yeh PY, Yeh KH, Chuang SE, Song YC, Cheng AL. Suppression of MEK/ERK signaling pathway enhances cisplatin-induced NF-kappa B activation by protein phosphatase 4-mediated NF-kappa B p65 thr dephosphorylation. J Biol Chem. 2004;279:26143-26148 34. Maeng YS, Min JK, Kim JH, Yamagishi A, Mochizuki N, Kwon JY, Park YW, Kim YM, Kwon YG. ERK is an anti-inflammatory signal that suppresses expression of NF-kappa B-dependent inflammatory genes by inhibiting IKK activity in endothelial cells. Cell Signal. 2006;18:994-1005 35. Tonks NK. Protein tyrosine phosphatases: From genes, to function, to disease. Nat Rev Mol Cell Biol. 2006;7:833-846 36. Owens DM, Keyse SM. Differential regulation of MAP kinase signalling by dual-specificity protein phosphatases. Oncogene. 2007;26:3203-3213 37. Camps M, Nichols A, Arkinstall S. Dual specificity phosphatases: a gene family for control of MAP kinase function. FASEB J. 2000;14:6-16 38. Caunt CJ, Keyse SM. Dual-specificity MAP kinase phosphatases (MKPs): Shaping the outcome of MAP kinase signalling. FEBS J. 2013;280:489-504 39. Zhang Y, Blattman JN, Kennedy NJ, Duong J, Nguyen T, Wang Y, Davis RJ, Greenberg PD, Flavell RA, Dong C. Regulation of innate and adaptive immune responses by MAP kinase phosphatase 5. Nature. 2004;430:793-797 40. Masuda K, Shima H, Watanabe M, Kikuchi K. MKP-7, a novel mitogen-activated protein kinase phosphatase, functions as a shuttle protein. J Biol Chem. 2001;276:39002-39011 41. Karlsson M, Mathers J, Dickinson RJ, Mandl M, Keyse SM. Both nuclear-cytoplasmic shuttling of the dual specificity phosphatase MKP-3 and its ability to anchor MAP kinase in the cytoplasm are mediated by a conserved nuclear export signal. J Biol Chem. 2004;279:41882-41891 42. Wang X, Meng X, Kuhlman JR, Nelin LD, Nicol KK, English BK, Liu Y. Knockout of MKP-1 enhances the host inflammatory responses to gram-positive bacteria. J Immunol. 2007;178:5312-5320 43. Frazier WJ, Wang X, Wancket LM, Li XA, Meng X, Nelin LD, Cato AC, Liu Y. Increased inflammation, impaired bacterial clearance, and metabolic disruption after gram-negative sepsis in MKP-1-deficient mice. J Immunol. 2009;183:7411-7419 44. Jeffrey KL, Brummer T, Rolph MS, Liu SM, Callejas NA, Grumont RJ, Gillieron C, Mackay F, Grey S, Camps M, Rommel C, Gerondakis SD, Mackay CR. Positive regulation of immune cell function and inflammatory responses by phosphatase PAC-1. Nat Immunol. 2006;7:274-283 45. Al-Mutairi M, Al-Harthi S, Cadalbert L, Plevin R. Over-expression of mitogen-activated protein kinase phosphatase-2 enhances adhesion molecule expression and protects against apoptosis in human endothelial cells. Br J Pharmacol. 2010;161:782-798 46. Cornell TT, Rodenhouse P, Cai Q, Sun L, Shanley TP. Mitogen-activated protein kinase phosphatase 2 regulates the inflammatory response in sepsis. Infect Immun. 2010;78:2868-2876 47. Qian F, Deng J, Gantner BN, Flavell RA, Dong C, Christman JW, Ye RD. MAP kinase phosphatase 5 protects against sepsis-induced acute lung injury. Am J Physiol Lung Cell Mol Physiol. 2012;302:L866-874 48. Jeffrey KL, Camps M, Rommel C, Mackay CR. Targeting dual-specificity phosphatases: Manipulating MAP kinase signalling and immune responses. Nat Rev Drug Discov. 2007;6:391-403 49. Zhou Z, Connell MC, MacEwan DJ. TNFR1-induced NF-kappa B, but not ERK, p38MAPK or JNK activation, mediates TNF-induced ICAM-1 and VCAM-1 expression on endothelial cells. Cell Signal. 2007;19:1238-1248 50. Lee SE, Chung WJ, Kwak HB, Chung CH, Kwack KB, Lee ZH, Kim HH. Tumor necrosis factor-alpha supports the survival of osteoclasts through the activation of Akt and ERK. J Biol Chem. 2001;276:49343-49349 51. Lenormand P, Sardet C, Pages G, L'Allemain G, Brunet A, Pouyssegur J. Growth factors induce nuclear translocation of MAP kinases (p42mapk and p44mapk) but not of their activator MAP kinase kinase (p45mapkk) in fibroblasts. J Cell Biol. 1993;122:1079-1088 52. Moreland JG, Fuhrman RM, Pruessner JA, Schwartz DA. CD11b and intercellular adhesion molecule-1 are involved in pulmonary neutrophil recruitment in lipopolysaccharide-induced airway disease. Am J Respir Cell Mol Biol. 2002;27:474-480 53. Basit A, Reutershan J, Morris MA, Solga M, Rose CE, Jr., Ley K. ICAM-1 and LFA-1 play critical roles in LPS-induced neutrophil recruitment into the alveolar space. Am J Physiol Lung Cell Mol Physiol. 2006;291:L200-207 54. Ekerot M, Stavridis MP, Delavaine L, Mitchell MP, Staples C, Owens DM, Keenan ID, Dickinson RJ, Storey KG, Keyse SM. Negative-feedback regulation of FGF signalling by DUSP6/MKP-3 is driven by ERK1/2 and mediated by ets factor binding to a conserved site within the DUSP6/MKP-3 gene promoter. Biochem J. 2008;412:287-298 55. Teng CH, Huang WN, Meng TC. Several dual specificity phosphatases coordinate to control the magnitude and duration of JNK activation in signaling response to oxidative stress. J Biol Chem. 2007;282:28395-28407 56. Hung CF, Huang TF, Chen BH, Shieh JM, Wu PH, Wu WB. Lycopene inhibits TNF-alpha-induced endothelial ICAM-1 expression and monocyte-endothelial adhesion. Eur J Pharmacol. 2008;586:275-282 57. Maillet M, Purcell NH, Sargent MA, York AJ, Bueno OF, Molkentin JD. DUSP6 (MKP3) null mice show enhanced ERK1/2 phosphorylation at baseline and increased myocyte proliferation in the heart affecting disease susceptibility. J Biol Chem. 2008;283:31246-31255 58. Marchi L, Sesti-Costa R, Chedraoui-Silva S, Mantovani B. Comparison of four methods for the isolation of murine blood neutrophils with respect to the release of reactive oxygen and nitrogen species and the expression of immunological receptors. Comparative Clinical Pathology. 2014;23:1469-1476 59. Camps M, Chabert C, Muda M, Boschert U, Gillieron C, Arkinstall S. Induction of the mitogen-activated protein kinase phosphatase MKP3 by nerve growth factor in differentiating PC12. FEBS Lett. 1998;425:271-276 60. Springer TA. Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell. 1994;76:301-314 61. Sun SC, Ganchi PA, Ballard DW, Greene WC. NF-kappa B controls expression of inhibitor I kappa B alpha: Evidence for an inducible autoregulatory pathway. Science. 1993;259:1912-1915 62. Nichols A, Camps M, Gillieron C, Chabert C, Brunet A, Wilsbacher J, Cobb M, Pouyssegur J, Shaw JP, Arkinstall S. Substrate recognition domains within extracellular signal-regulated kinase mediate binding and catalytic activation of mitogen-activated protein kinase phosphatase-3. J Biol Chem. 2000;275:24613-24621 63. Cohen J. The immunopathogenesis of sepsis. Nature. 2002;420:885-891 64. Scott DW, Vallejo MO, Patel RP. Heterogenic endothelial responses to inflammation: role for differential N-glycosylation and vascular bed of origin. J Am Heart Assoc. 2013;2:e000263 65. Horgan MJ, Palace GP, Everitt JE, Malik AB. TNF-alpha release in endotoxemia contributes to neutrophil-dependent pulmonary edema. Am J Physiol. 1993;264:H1161-1165 66. Privratsky JR, Newman PJ. PECAM-1: Regulator of endothelial junctional integrity. Cell Tissue Res. 2014;355:607-619 67. Solan JL, Marquez-Rosado L, Sorgen PL, Thornton PJ, Gafken PR, Lampe PD. Phosphorylation at S365 is a gatekeeper event that changes the structure of Cx43 and prevents down-regulation by PKC. J Cell Biol. 2007;179:1301-1309 68. Ilan N, Cheung L, Pinter E, Madri JA. Platelet-endothelial cell adhesion molecule-1 (CD31), a scaffolding molecule for selected catenin family members whose binding is mediated by different tyrosine and serine/threonine phosphorylation. J Biol Chem. 2000;275:21435-21443 69. Marquez-Rosado L, Solan JL, Dunn CA, Norris RP, Lampe PD. Connexin43 phosphorylation in brain, cardiac, endothelial and epithelial tissues. Biochim Biophys Acta. 2012;1818:1985-1992 70. Tsang H, Leiper J, Hou Lao K, Dowsett L, Delahaye MW, Barnes G, Wharton J, Howard L, Iannone L, Lang NN, Wilkins MR, Wojciak-Stothard B. Role of asymmetric methylarginine and connexin 43 in the regulation of pulmonary endothelial function. Pulm Circ. 2013;3:675-691 71. Chang SF, Chen LJ, Lee PL, Lee DY, Chien S, Chiu JJ. Different modes of endothelial-smooth muscle cell interaction elicit differential beta-catenin phosphorylations and endothelial functions. Proc Natl Acad Sci U S A. 2014;111:1855-1860 72. Eblaghie MC, Lunn JS, Dickinson RJ, Munsterberg AE, Sanz-Ezquerro JJ, Farrell ER, Mathers J, Keyse SM, Storey K, Tickle C. Negative feedback regulation of FGF signaling levels by Pyst1/MKP3 in chick embryos. Curr Biol. 2003;13:1009-1018 73. Kawakami Y, Rodriguez-Leon J, Koth CM, Buscher D, Itoh T, Raya A, Ng JK, Esteban CR, Takahashi S, Henrique D, Schwarz MF, Asahara H, Izpisua Belmonte JC. MKP3 mediates the cellular response to FGF8 signalling in the vertebrate limb. Nat Cell Biol. 2003;5:513-519 74. Van Lint J, Agostinis P, Vandevoorde V, Haegeman G, Fiers W, Merlevede W, Vandenheede JR. Tumor necrosis factor stimulates multiple serine/threonine protein kinases in swiss 3T3 and L929 cells. Implication of casein kinase-2 and extracellular signal-regulated kinases in the tumor necrosis factor signal transduction pathway. J Biol Chem. 1992;267:25916-25921 75. Hu MC, Tang-Oxley Q, Qiu WR, Wang YP, Mihindukulasuriya KA, Afshar R, Tan TH. Protein phosphatase X interacts with c-Rel and stimulates c-Rel/nuclear factor kappa B activity. J Biol Chem. 1998;273:33561-33565 76. Zhou G, Mihindukulasuriya KA, MacCorkle-Chosnek RA, Van Hooser A, Hu MC, Brinkley BR, Tan TH. Protein phosphatase 4 is involved in tumor necrosis factor-alpha-induced activation of c-Jun N-terminal kinase. J Biol Chem. 2002;277:6391-6398 77. Wang Q, Chiang ET, Lim M, Lai J, Rogers R, Janmey PA, Shepro D, Doerschuk CM. Changes in the biomechanical properties of neutrophils and endothelial cells during adhesion. Blood. 2001;97:660-668 78. Wang Q, Doerschuk CM. Neutrophil-induced changes in the biomechanical properties of endothelial cells: Roles of ICAM-1 and reactive oxygen species. J Immunol. 2000;164:6487-6494 79. Doerschuk CM, Winn RK, Coxson HO, Harlan JM. CD18-dependent and -independent mechanisms of neutrophil emigration in the pulmonary and systemic microcirculation of rabbits. J Immunol. 1990;144:2327-2333 80. Qin L, Quinlan WM, Doyle NA, Graham L, Sligh JE, Takei F, Beaudet AL, Doerschuk CM. The roles of CD11/CD18 and ICAM-1 in acute pseudomonas aeruginosa-induced pneumonia in mice. J Immunol. 1996;157:5016-5021 81. Doerschuk CM, Mizgerd JP, Kubo H, Qin L, Kumasaka T. Adhesion molecules and cellular biomechanical changes in acute lung injury: Giles F. Filley lecture. Chest. 1999;116:37S-43S 82. Fraser CC. Exploring the positive and negative consequences of NF-kappa B inhibition for the treatment of human disease. Cell Cycle. 2006;5:1160-1163 83. Egan LJ, Toruner M. NF-kappa B signaling: Pros and cons of altering NF-kappa B as a therapeutic approach. Ann N Y Acad Sci. 2006;1072:114-122 84. Vogt A, Cooley KA, Brisson M, Tarpley MG, Wipf P, Lazo JS. Cell-active dual specificity phosphatase inhibitors identified by high-content screening. Chemistry & Biology. 2003;10:733-742 85. Molina G, Vogt A, Bakan A, Dai W, Queiroz de Oliveira P, Znosko W, Smithgall TE, Bahar I, Lazo JS, Day BW, Tsang M. Zebrafish chemical screening reveals an inhibitor of Dusp6 that expands cardiac cell lineages. Nat Chem Biol. 2009;5:680-687 86. Newman PJ, Newman DK. Signal transduction pathways mediated by PECAM-1: New roles for an old molecule in platelet and vascular cell biology. Arterioscler Thromb Vasc Biol. 2003;23:953-964 87. TenBroek EM, Lampe PD, Solan JL, Reynhout JK, Johnson RG. Ser364 of connexin43 and the upregulation of gap junction assembly by cAMP. J Cell Biol. 2001;155:1307-1318 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/4526 | - |
| dc.description.abstract | 腫瘤壞死因子alpha (Tumor necrosis factor-alpha, TNF-alpha)是一種多功能性的促進炎症細胞激素,在感染所造成的細胞損傷中對於先天免疫系統(innate immune system)有著重要的調控作用。同時TNF-alpha刺激血管內皮細胞(vascular endothelial cell)會藉由複雜的細胞內信息調控造成細胞發炎反應甚至是動脈粥狀硬化(atherothrombosis)以及發炎性疾病(inflammatory disease)的發生。在發炎反應過程中,TNF-alpha啟動一連串細胞激酶(kinase)的訊息傳遞,活化核轉錄因子(nuclear factor kappa B, NF-kappaB),促進細胞表面黏著分子(adhesion molecule)的表現以及後續白血球細胞(leukocyte)的附著。在此過程中,人們對於細胞激酶的功能有相對的了解,目前我們並不清楚蛋白質磷酸水解酶(protein phosphatase)是否同樣參與調控TNF-alpha造成的訊息傳遞。在本論文中,我們探討雙專一性磷酸水解酶(dual specificity phosphatases, DUSPs)在TNF-alpha調控內皮細胞發炎反應中的角色扮演。藉由偵測基因表現的mRNA含量,在人類內皮細胞株EAhy926中我們找到一群經TNF-alpha誘導表現的DUSPs。我們也發現TNF-alpha誘導表現的細胞黏著分子(intercellular adhesion molecule-1, ICAM-1)在經微小RNA干擾(RNAi)造成的DUSP6基因剔除實驗中,表現量明顯下降;後續單核球(monocyte)在內皮細胞表面附著的數量也隨之下降,顯示DUSP6在調控發炎反應有正向的作用。我們接著利用人類初代臍靜脈內皮細胞(human umbilical vein endothelial cells, HUVECs)來研究調控機制。結果顯示,在TNF-alpha刺激的HUVEC細胞中,DUSP6藉由抑制細胞外訊號調節激酶(extracellular signaling-regulated kinase, ERK)的活性而促進NF-kappaB的轉錄活性以及其下游ICAM-1的表現。在小鼠的血管組織切片染色(immunohistochemistry, IHC)中,我們也觀察到ICAM-1的表現量在DUSP6基因剔除(Dusp6-/-)小鼠低於野生型小鼠,證實DUSP6確實扮演促進血管內皮發炎的角色。此外,相較於野生型小鼠的敏感,DUSP6基因剔除小鼠對於脂多醣內毒素(lipopolysaccharide, LPS)所造成的敗血性肺部損傷有較佳的抵禦能力。這些結果證實了DUSP6有促進內皮細胞發炎反應及發炎相關病理過程的新穎角色,顯示其作為治療發炎性疾病藥物開發的新契機。 | zh_TW |
| dc.description.abstract | Tumor necrosis factor alpha (TNF-alpha) is a proinflammatory cytokine that directs multiple events of the innate immune system during infection of cell injury. Meanwhile, TNF-alpha activates a diverse array of signaling pathways in vascular endothelial cells (ECs), leading to the inflammatory phenotype that contributes to the pathogenesis of atherothrombosis and inflammatory diseases. In a typical inflammatory response, TNF-alpha initiates a kinase-dependent signaling cascade, which activates nuclear factor (NF)-kappa B, leading to inducible expression of adhesion molecules and recruitment of leukocytes. In contrast to the known function of kinases in this context, it is not clear whether protein phosphatases participate in the regulation of TNF-alpha signaling. In the present study, we have investigated the role of dual specificity phosphatases (DUSPs) in TNF-alpha-induced inflammatory response. Using human endothelia, EAhy926, for screening of mRNA levels, we identified a group of DUSPs to be inducibly expressed under the TNF-alpha stimulation. Among them, DUSP6 functioned as a prominent positive regulator of the inflammatory response, evidenced by a clear decrease of TNF-alpha-induced expression of intercellular adhesion molecule-1 (ICAM-1) and a drastic reduction of monocyte adhesion on the surface of endothelia when DUSP6 was ablated via RNAi. We further examined the underlying mechanism controlled by DUSP6 using primary human umbilical vein endothelial cells (HUVECs). Our data showed that inducible DUSP6 promoted canonical NF-kappaB-dependent increase of adhesion molecules exclusively through inhibition of extracellular signaling-regulated kinase (ERK) in TNF-alpha-stimulated human ECs. The role that DUSP6 plays in facilitating endothelial inflammation in aorta and vein was confirmed by in vivo experiments using Dusp6-/- mice. Furthermore, genetic deletion of Dusp6 significantly reduced the susceptibility to inflammatory responses in a mouse model of lung sepsis. These results are the first to demonstrate a novel function of DUSP6 in the regulation of vascular inflammatory response and the underlying mechanism through which DUSP6 promotes endothelial inflammation-mediated pathological process. Our findings suggest that inhibition of DUSP6 holds great potential for the treatment of inflammatory diseases. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-14T17:43:00Z (GMT). No. of bitstreams: 1 ntu-104-D93b46015-1.pdf: 8151667 bytes, checksum: 0ba4c0f3e33a091785249c1467004fc0 (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | TABLE OF CONTENTS
誌謝 i 摘要 ii ABSTRACT iii ABBREVIATION iv TABLE OF CONTENTS v LIST OF FIGURES ix LIST OF SCHEMES xii LIST OF TABLES xii CHAPTER 1: INTRODUCTION 1 1.1 The endothelium function and endothelial inflammation 2 1.2 TNF-alpha signaling in regulating endothelial inflammation 3 1.2.1 TNF-alpha induces cell adhesion molecules expression on endothelium 3 1.2.2 TNF-alpha activates canonical NF-kappa B pathway to regulate ICAM-1 expression 5 1.2.3 TNF-alpha-induced MAPKs activation in endothelial inflammation 5 1.3 Role of DUSPs in regulating MAP kinase and cell inflammation 7 1.4 Study the role of DUSPs targeting on ERK to regulate endothelial inflammation 9 CHAPTER 2: MATERIALS AND METHODS 11 2.1 Reagents 12 2.2 Cell culture and transient transfection 12 2.2.1 Culture conditions for each cell line 12 2.2.2 Transient cell transfection 13 2.3 Immunoblotting and antibodies 14 2.4 RNA extraction and quantitative real-time PCR 15 2.5 Monocyte adhesion assay 16 2.6 DUSP6 expression plasmids and luciferase reporter constructs 16 2.7 NF-kappa B reporter assay 17 2.8 RNA extraction and Gene expression profiling 18 2.9 Animal studies 18 2.9.1 Mice housing 18 2.9.2 Genotyping 19 2.9.3 Tail vein injection with TNF-alpha 20 2.9.4 Immunohistochemstry staining and image quantification 20 2.9.5 LPS-induced experimental sepsis and neutronphil adoptive transfer 21 2.9.6 Neutrophil isolation from mouse blood 22 2.9.7 Flow cytometry analysis 22 2.10 Exploring DUSP6-mediated phosphorylation network in TNF-alpha-activated HUVECs by MS analyss 23 2.10.1 Sample preparation for MS/MS analysis 23 2.10.2 In-solution protein digestion 23 2.10.3 TiO2 beads enrichment 24 2.10.4 Immunoprecipitation for phosphotyrsine peptide enrichment 24 2.10.5 Shotgun proteomic identifications 25 2.10.6 Data analysis 26 2.11 Statistical analysis 26 CHAPTER 3: RESULTS 27 3.1 TNF-alpha treatment triggers MAPKs transient activation rather than cell apoptosis in endothelial EAhy926 cells 28 3.2 DUSPs are inducibly expressed in endothelial cell exposed to TNF-alpha and function as MKPs 29 3.3 DUSP6 involves in TNF-alpha-induced endothelial inflammation by regulating intercellular adhesion molecules 1 (ICAM-1) expression 31 3.4 Inducible DUSP6 regulates TNF-alpha-directed inflammatory responses in primary endothelial HUVECs 32 3.5 DUSP6-mediated termination of ERK activity is essential for TNF-alpha-induced inflammatory response in endothelium 34 3.6 Inhibition of ERK by DUSP6 promotes NF-kappa B transcriptional activation in endothelium exposed to TNF-alpha 36 3.7 TNF-alpha-induced ICAM-1expression on the endothelial layer of aorta and vein is attenuated in Dusp6-/- mice 39 3.8 Deficiency of DUSP6 protects mice from acute lung injuries during experimental sepsis 41 3.9 Pulmonary endothelial DUSP6 is essential for LPS-induced neutrophil recruitment in mice 42 3.10 Exploring DUSP6-mediated phosphorylation network in TNF-alpha-activated HUVECs by MS analysis 44 CHAPTER 4: DISCUSSION 48 CHAPTER 5: FUTURE PERPECTIVES 55 CHAPTER 6: FIGURES 59 CHAPTER 7: REFERENCES 96 APPENDIX 104 List of identified phosphoproteins altered in DUSP6-ablated HUVECs | |
| dc.language.iso | en | |
| dc.subject | 肺部損傷 | zh_TW |
| dc.subject | 腫瘤壞死因子alpha | zh_TW |
| dc.subject | 內皮細胞發炎反應 | zh_TW |
| dc.subject | 雙專一性磷酸水解? | zh_TW |
| dc.subject | 細胞表面黏著分子 | zh_TW |
| dc.subject | 白血球 | zh_TW |
| dc.subject | 敗血症 | zh_TW |
| dc.subject | intercellular adhesion molecule-1 (ICAM-1) | en |
| dc.subject | lung injury | en |
| dc.subject | sepsis | en |
| dc.subject | tumor necrosis factor-alpha (TNF-alpha) | en |
| dc.subject | endothelial inflammation | en |
| dc.subject | dual specificity phosphatases 6 (DUSP6) | en |
| dc.subject | neutrophil | en |
| dc.title | 雙專一性磷酸水解酶對於血管內皮細胞發炎反應的調控 | zh_TW |
| dc.title | The Role of Inducible Dual-Specificity Phosphatases in Vascular Endothelial Inflammation | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 王寧,裘正健,張震東,邱繼輝 | |
| dc.subject.keyword | 腫瘤壞死因子alpha,內皮細胞發炎反應,雙專一性磷酸水解?,細胞表面黏著分子,白血球,敗血症,肺部損傷, | zh_TW |
| dc.subject.keyword | tumor necrosis factor-alpha (TNF-alpha),endothelial inflammation,dual specificity phosphatases 6 (DUSP6),intercellular adhesion molecule-1 (ICAM-1),neutrophil,sepsis,lung injury, | en |
| dc.relation.page | 108 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2015-08-13 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 生化科學研究所 | zh_TW |
| 顯示於系所單位: | 生化科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf | 7.96 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
