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ABSTRACT

Tumor necrosis factor alpha (TNF-a) is a proinflammatory cytokine that directs
multiple events of the innate immune system during infection of cell injury. Meanwhile,
TNF-a activates a diverse array of signaling pathways in vascular endothelial cells
(ECs), leading to the inflammatory phenotype that contributes to the pathogenesis of
atherothrombosis and inflammatory diseases. In a typical inflammatory response,
TNF-a initiates a kinase-dependent signaling cascade, which activates nuclear factor
(NF)-xB, leading to inducible expression of adhesion molecules and recruitment of
leukocytes. In contrast to the known function of kinases in this context, it is not clear
whether protein phosphatases participate in the regulation of TNF-a signaling. In the
present study, we have investigated the role of dual specificity phosphatases (DUSPS) in
TNF-a-induced inflammatory response. Using human endothelia, EAhy926, for
screening of mMRNA levels, we identified a group of DUSPs to be inducibly expressed
under the TNF-a stimulation. Among them, DUSP6 functioned as a prominent positive
regulator of the inflammatory response, evidenced by a clear decrease of
TNF-a-induced expression of intercellular adhesion molecule-1 (ICAM-1) and a drastic
reduction of monocyte adhesion on the surface of endothelia when DUSP6 was ablated
via RNAI. We further examined the underlying mechanism controlled by DUSP6 using
primary human umbilical vein endothelial cells (HUVECs). Our data showed that
inducible DUSP6 promoted canonical NF-kB-dependent increase of adhesion molecules
exclusively through inhibition of extracellular signaling-regulated kinase (ERK) in
TNF-a-stimulated human ECs. The role that DUSP6 plays in facilitating endothelial
inflammation in aorta and vein was confirmed by in vivo experiments using Dusp6"'
mice. Furthermore, genetic deletion of Dusp6 significantly reduced the susceptibility to
inflammatory responses in a mouse model of lung sepsis. These results are the first to
demonstrate a novel function of DUSP6 in the regulation of vascular inflammatory
response and the underlying mechanism through which DUSP6 promotes endothelial
inflammation-mediated pathological process. Our findings suggest that inhibition of
DUSP6 holds great potential for the treatment of inflammatory diseases.

Keywords: tumor necrosis factor-a. (TNF-a), endothelial inflammation, dual specificity

phosphatases 6 (DUSP®6), intercellular adhesion molecule-1 (ICAM-1), neutrophil,
sepsis, lung injury
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CHAPTER 1: INTRODUCTION



1.1 The endothelium function and endothelial inflammation

As a semipermeable barrier lining on the internal surface of blood vessels, the
endothelium regulates vascular tone as well as the exchange of fluids and solutes
between the blood and interstitial space, thus maintaining physiological homeostasis.*
Vascular endothelium also exerts anticoagulant, antiplatelet, antiproliferation of smooth
muscle cells and fibrinolytic properties. Therefore, a healthy endothelium not only
controls vasodilation, but also suppresses vascular inflammation, thrombosis, and
hypertrophy.?

In addition, the endothelium is an integral component of host innate immune
response. Vascular endothelia are uniquely situated to detect the presence of pathogens
within the vasculature as they are in direct and constant contact with the circulating
blood.* * When microbial infections or tissue injury occurs, a large amount of
damage-associated molecular patterns (DAMPSs) are released and they stimulate the
pattern-recognition receptors (PRRs) on immune cells. The activated immune cells
release excessive amount of pro-inflammatory cytokines to induce nearby endothelial
cells inflammation, causing the up regulation of cell adhesion molecules on endothelial
cell surface to recruit and activate leukocytes at sites of inflammation.”> Although the
leukocyte adhesion cascade ultimately helps to clear the infectious agents and to repair

damaged tissues, during disseminated infections or inflammatory disorders the
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activation of the endothelium at sites remote from the inciting source can lead to the
dysregulation of a variety of microvascular functions, causing organ failure and
subsequent death.®

Tumor necrosis factor (TNF)-o is a pro-inflammatory cytokine, which is
synthesized primarily by immune cells such as macrophages, dendritic cells, monocytes
and T lymphocytes, to induce endothelial inflammation.? Accumulating evidence
suggests that TNF-a plays a pivotal role in disrupting macrovascular and microvascular
circulation both in vivo and in vitro, which causes endothelial inflammation and
vascular dysfunction and eventually contributes to pathogenesis of many chronic
inflammatory disease.” Anti-TNF-o. treatment has been applied to a range of
inflammatory conditions, including rheumatoid arthritis, ankylosing spondylitis,
inflammatory bowel disease and psoriasis, highlighted the role of TNF-a in infectious
diseases.'® Understanding the molecular machine in how TNF-a regulates endothelial

inflammatory response may provide further opportunity to treat inflammatory diseases.

1.2 TNF-a signaling in regulating endothelial inflammation
1.2.1 TNF-a induces cell adhesion molecules expression on endothelium
TNF-a is a pleiotropic cytokine which initiates a wide range of diverse cellular

responses including cell survival, activation, differentiation and proliferation, and cell

3



death.® Upon interaction with receptors on the endothelium, TNF-o induced signal
transduction initiates pro-inflammatory changes, including expression of adhesion
molecules and increase of leukocyte adhesion for transendothelial migration.® *°
Endothelial cells respond to TNF by releasing chemokines and displaying in a distinct
temporal, spatial and anatomical pattern adhesion molecules, including E-selectin,
intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1
(VCAM-1). It has been well-characterized that endothelial ICAM-1 plays an essential
role in neutrophil recruitment at the site of acute inflammation."*™** ICAM-1 is a cell
surface glycoprotein of 505 amino acids with a molecular weight ranging from 76 to
114 kDa, depending upon extent of tissue-specific glycosylation.” *® It belongs to
immunoglobulin superfamily and is characterized by the presence of five extracellular
Ig-like domains, a hydrophobic transmembrane domain and a short cytoplasmic domain
of 28 amino acids."” ICAM-1 functions as a ligand for 2 (CD11/CD18)-integrin and
associates with lymphocyte function-associated antigen 1 (LFA-1, CD11a/CD18) and
macrophage-1 antigen (Mac-1, CD11b/CD18) on neutrophils through Ig-like domainl
and 3 respectively.’® *° Due to a strong bond between ICAM-1 and [2-integrin,

TNF-a-induced ICAM-1 facilitates neutrophil forming firm adhesion to the

endothelium and further migrate across the endothelial barrier.?



1.2.2 TNF-a activates canonical NF-kB pathway to regulate ICAM-1 expression
TNF-a regulates ICAM-1 expression mainly through activating canonical nuclear
factor (NF)-kB-dependent transcriptional pathway.?! The NF-kB family of transcription
factors consists of RelA (p65), c-Rel, RelB, NF-xB1, and NF-«xB2. Activation of the
canonical NF-xB pathway results in the degradation of bound inhibitor of NF-xB
(IxB)-a, IkB-B, or IkB-¢ in the cytoplasm, which leads to the translocation of NF-kB to
the nucleus to mediate transcriptional events.”? Analysis of the 5’ flanking region of
ICAM-1 gene revealed two NF-«B binding sites (upstream, -533 bp and downstream,
-223 bp).”® Site-directed mutagenesis and gel supershift assays demonstrated that
ICAM-1 expression requires NF-kB p65 (RelA) binding to the downstream NF-«xB site
of the ICAM-1 promoter.?* ?® These findings were further supported by the identification
of consensus motifs on the promoter regions of ICAM-1 gene that is specifically

targeted by the NF-kB dimers.?

1.2.3 TNF-a-induced MAPKSs activation in endothelial inflammation

Except activating of NF-«B pathway, TNF-o stimulation also activates
mitogen-activated protein kinases (MAPKSs) pathway in vascular endothelium.” The
MAPKSs family includes the p38 MAPK, c-Jun N-terminal kinase (JNK) and the

extracellular signaling-regulated kinase (ERK). It has been proposed that crosstalk
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between individual MAPK and NF-xB pathways may play a key role in
TNF-a-dependent pro-inflammatory responses.?” #* Some studies have implicated a role
of p38 MAPK and JNK in regulating TNF-a-induced ICAM-1 expression.?**! However,
ERK seems to function as negative regulator in NF-kB mediated ICAM-1 expression.
One report showed that constitutively active ERK pathway inhibited NF-xB-driven
transcription, suggesting a negative role of ERK in regulating NF-xB activity.** A
subsequent study demonstrated that suppression of ERK signaling enhanced
NF-kB-dependent transcription,® further suggesting that ERK inactivates NF-xB
pathway. Importantly, experiments using human endothelium have identified an
anti-inflammatory function of ERK, one in which it suppresses the expression of
ICAM-1 by inhibiting NF-«B activity in TNF-a signaling.®* Collectively, these findings
indicate that inhibitory effect of ERK on NF-kB-directed transcriptional activation
would be essential in the context of TNF-a-mediated endothelial inflammation, as
evidenced by inducible ICAM-1 expression and neutrophil recruitment. Therefore, we
assume that under TNF-a signaling there should have some phosphatases activate to

inhibit ERK activity, thus promoting TNF-a-induced endothelial inflammation.



1.3 Role of DUSPs in regulating MAP kinase and cell inflammation

MAP Kkinases activation requires phosphorylation on a threonine and tyrosine
residue at TXY motif located on the activation loop of kinase domain. Dual specificity
phosphatases (DUSPs) is a subclass of the protein tyrosine phosphatase (PTP)
superfamily,®  which  dephosphorylate  the critical phosphotyrosine  and
phosphothreonine residues within MAP kinase.*® The expression of DUSPs is induced
by growth factors and cellular stress, and is restricted to a subset of tissue types and
localized to different subcellular compartments.®” Due to the catalytic activation of
DUSPs after tight binding of its amino-terminal to the target MAP kinase, some DUSPs
have high selective for inactivating distinct MAP kinase isoforms and hence are also
referred to as MAP kinase phosphatase (MKPs).%® DUSPs regulate activity of MAPK
through TXY motif dephosphorylation as well as represent particularly important
negative regulators.® In addition to their dephosphorylating capacity, DUSPs serve to
anchor or shuttle MAP Kinases and control their subcellular localization.***!

Some members of DUSPs have been reported to regulate MAP kinase as well as
cell inflammatory response. In study of macrophages, DUSP1/MKP1 serves to limit the
inflammatory reaction by inactivating JNK and p38, thus preventing multiorgan failure

caused by exaggerated inflammatory responses.** ** DUSP2 is a positive regulator of

inflammatory cell signaling and cytokines functions. DUSP2 deficiency in macrophages
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leads to increased JNK activity but impairment of ERK and p38 activity.*
Overexpression of DUSP4/MKP2 enhances TNF-a-induced adhesion molecules
expression (ICAM-1 and VCAM-1) and protects against apoptosis in HUVECs.* Mice
lacking the DUSP4/MKP2 gene had a survival advantage over wild-type mice when
challenged with intraperitoneal lipopolysaccharide (LPS) or a polymicrobial infection
via cecal ligation and puncture.*® DUSP10/MKP5 protects mice from sepsis-induced
acute lung injury.*’ Mice lacking DUSP10/MKP5 displayed severe lung tissue damage
following LPS challenge, characterized with increased neutrophil infiltration and edema
compared with wild-type (WT) controls. Phosphorylation of p38 MAPK, JNK, and
ERK were enhanced in DUSP10/MKP5-deficient macrophages upon LPS stimulation.
Collectively, above findings suggest that DUSPs may participate in regulating cell
inflammation and immune response by controlling MAP kinase intensity and duration.
Therefore, DUSPs are promising drug targets for manipulating MAPK-dependent
immune response, to suppress infectious diseases or inflammatory disorders.*® However,
except DUSP4 (MKP2) which was performed in HUVECs, most of functional
characterizations were performed in macrophages not in endothelium. We need further

studies to know the function of DUSPs in regulating endothelial inflammation.



1.4 Study the role of DUSPs targeting on ERK to regulate endothelial

inflammation

It was found that transiently activated ERK is down-regulated before the start of a
relatively slow process of NF-kB-dependent ICAM-1 expression in endothelium
stimulated with TNF-o..*® These results suggest that the immediate response of ERK
signaling must be switched off in order to promote vascular inflammation through the
canonical NF-xB pathway. We hypothesize that DUSPs, in particular ERK-specific
cytoplasmic phosphatase DUSP6/MKP-3,* might target the TEY motif in the activation
loop of ERK and dephosphorylate both Thr and Tyr residues, hence down-regulating
ERK activity in endothelium undergoing pro-inflammatory reaction. In fact, DUSP6 has
been identified as an early response gene whose expression is rapidly induced by
various extracellular stimuli or stresses.”® °* Therefore, it is likely that DUSP6 is
transiently expressed in endothelium exposed to TNF-a. If the initial ERK activity
could be terminated by endothelial DUSP6, NF-kB-dependent transcription for ICAM-1
expression could be switched on, allowing TNF-a-induced neutrophil adhesion to
commence.

This study investigated whether and how DUSP6 might promote expression of
ICAM-1 on the surface of endothelium under pro-inflammatory stimulation. We

examined the mechanism through which DUSP6 controls the crosstalk between ERK
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and NF-«B signaling pathways in primary human endothelial cells treated with TNF-o.
Using knockout mice, we inspected further the in vivo function of DUSP6 in vascular
inflammation, and explored the regulatory role that endothelial DUSP6 plays in
pulmonary neutrophil recruitment during experimental sepsis induced by LPS, a process

depending on the interaction between ICAM-1 and B2 (CD11/CD18)-integrin.?* 3
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CHAPTER 2: MATERIALS AND METHODS
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2.1 Reagents

Collagenase, Low glucose Dulbecco’s modified Eagle’s medium (DMEM), M199
medium, RPMI-1640 medium, fetal bovine serum (FBS), glutamine, penicillin and
streptomycin were purchased from Gibco. Endothelial cell growth supplements (ECGS)
and Neon Transfection System was purchased from Invitrogen. Heparin, gelatin,
actinomycin D, cycloheximide and LPS (from E. coli serotype O55:B5) were purchased
from Sigma. TNF-a was purchased from R&D system. PD184352 was purchased from
Biovision. PD98059 and U0126 were purchased from Cell signaling. BAY-117082 was
purchased from Calbiochem. Small interfering RNA oligonucleotides (SiIRNA) were
purchased from Dharmacon Thermo Scientific.

For stable isotope labeling by amino acids in cell culture (SILAC): SILAC DMEM
medium was from Gibico. Sequence grade trypsin and Lys-C protease were from
Promega. TiO, bead was from GL Sciences, Japen. L-"*C¢"°N,-arginine (Arg10),
L-'*Ce-lysine (Lys6), iodoacetamide (IAM) and PT66 antibody were from sigma. 4G10

agarose bead was from Millipore. C1gStageTip was from PROXEON.

2.2 Cell culture and transient transfection
2.2.1 Culture conditions for each cell line

The EAhy926 endothelial cells (ATCC) were maintained in low glucose DMEM,
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supplemented with 10% FBS, 2 mM glutamine, 100 U/ml penicillin and 100 pg/ml
streptomycin. Human umbilical vein endothelial cells (HUVECSs) were obtained from
collagenase-digested umbilical veins as described previously’ and subsequently
maintained in M199 medium, supplemented with 20% FBS, 25 U/ml heparin and 30
ug/ml ECGS, 2 mM glutamine, 100 U/ml penicillin and 100 pg/ml streptomycin in
gelatin-coated plates. HUVECs between the third and the fifth passage were used for
experiments. U937 cells (ATCC) were cultured in RPMI-1640 medium, supplemented

with 10% FBS.

2.2.2 Transient cell transfection

For direct exposure to TNF-a or co-treatment with chemical inhibitors (actinomycin
D, cycloheximide, PD184352, PD98059, U0126, BAY-117082), ECs were plated in
medium containing FBS for 16 hours and then serum-starved for 6 hours before
treatment. Small interfering RNA oligonucleotides (SiRNA) or expression plasmids
were delivered to ECs by electroporation using Neon Transfection System (Invitrogen)
according to manufacturer’s instructions. Briefly, ECs (2x10° cells per reaction for
siRNA transfection or 3.5x10° cells per reaction for expression vector transfection) were
suspended in the Resuspension Buffer R (included with Neon Kits) together with the

SiIRNA duplexes targeting DUSPs (siRAN oligonucleotides obtained from Dharmacon,
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and their sequences are shown in Table 2) or DUSP6 expression vectors. After
electroporation, cells were seeded in a single well of 12-well culture plate and then
incubated in normal culture condition without antibiotics for 16 hours, followed by
serum deprivation for an additional 6 hours prior to stimulation with inhibitor and/or
TNF-a. For re-expression of the wild type form, C/S mutant form or KIM mutant form
of DUSP6 in HUVECs in which endogenous DUSP6 was ablated, sShRNA constructs
bearing 3’-UTR sequence of DUSP6 (from the National RNAi Core Facility, Academia
Sinica, Taiwan) were tested initially by lentivirus-mediated infection. According to the
knockdown efficiency of DUSP6 by shRNA constructs, a specific clone
(TRCNO0000355536) was chosen. Due to the poor viability of virus-infected HUVECS,
an alternative approach of transfection was established. The sequence of selected
shRNA clone targeting the DUSP6 3’-UTR was used as a template for synthesis of
SiRNA  duplexes  (Dharmacon), which  were ultimately applied to
electroporation-mediated transient transfection for knocking down only endogenous

DUSP6 but not re-expressed DUSP6.

2.3 Immunoblotting and antibodies
Aliquots of total lysates (15-20 ug) were subjected to SDS-PAGE and transferred to

nitrocellulose membranes, and then incubated with antibodies recognizing caspase8

14



(9746), caspase3 (9662), phospho-p38 MAPK (9211), p38 MAPK (9212),
phospho-JNK (9251), JNK (9525), phospho-ERK (9101), ERK (9102), human ICAM-1
(4915), phospho-NF-kB (3033), NF-kB (3034), IkB-o (9242) above all from Cell
Signaling; VCAM-1 (sc-13160) and ERKS5 (sc-1284) from Santa Cruz; Tubulin (T5168),
Flag (F3165) both from Sigma and DUSP6 (a gift from Stephen Keyse and described

previously>®). The specific signals were visualized by ECL Reagents (GE Healthcare).

2.4 RNA extraction and quantitative real-time PCR

Total RNA was isolated from EAhy926 cells or HUVECs using High Pure RNA
Isolation Kit (Roche) according to manufacturer’s instructions. The cDNA was
synthesized from total RNA with Transcriptor reverse transcriptase (Roche) using
oligo(dT)15 primer (Promega) according to manufacturer’s instructions. The mRNA
expression levels were quantified by real-time PCR using a LightCycler instrument
(Roche) with the SYBR Green PCR Master Mix (Qiagen) in a one-step reaction
according to manufacturer’s instructions. Primers (sequences are shown in Table 1)
were designed as described previously.® The sequences for the house keeping gene,
hydroxymethylbilane synthase (HMBS), were 5-AGTATTCGGGGAAACCT-3’
(forward) and, 5’-AAGCAGAGTCTCGGGA-3’ (reverse). The mRNA levels of target

genes were normalized to the relative amounts of HMBS.
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2.5 Monocyte adhesion assay

Endothelial-monocyte adhesion assay was performed following the protocol
described previously.® HUVECs (2x10° cells per reaction for siRNA transfection or
3.5x10° cells per reaction for expression vector transfection) were transiently
transfected with sSIRNA or expression vectors by electroporation, and then subsequently
seeded on a 24-well plate for overnight. Once reaching to confluence, cells were treated
with TNF-a (10 ng/ml) for 4 hours. At the meantime, monocytic U937 (4.5x10°) were
labeled with 10 ug/ml of BCECF-AM (Invitrogen) at 37 °C for 30 minutes in dark,
subsequently washed twice with PBS to remove free dye, and then suspended in
HUVEC culture medium ready for use. Fluorescence dye-labeled U937 cells were
added onto a monolayer of TNF-a-treated HUVECs and then incubated for 1 hour.
Non-adherent U937 cells were removed by two gentle washes with penol-red free M199
medium (Gibco). The fraction of HUVEC-associated U937 cells was quantified by a
fluorescence analyzer (Infinite F200, Tecan) using excitation and emission wavelength
at 485 and 535 nm, respectively. The images of adherent U937 cells on HUVEC

monolayer were captured using a fluorescence microscope (BX50, Olympus).

2.6 DUSP6 expression plasmids and luciferase reporter constructs

The full-length DUSP6 cDNA was obtained by reverse transcription of total mMRNA
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isolated from HUVECSs and subcloned into an N-terminal pFlag-CMV2 vector (Sigma).
The phosphatase dead C293S mutant of DUSP6 was generated by site-directed
mutagenesis according to the standard procedure. The DUSP6 KIM mutant construct (a
gift from Stephen Keyse) was generated as described previously** and then subcloned
into an N-terminal pFlag-CMV?2 vector. The ICAM-1 and VCAM-1-luciferase reporter
construct were generated by insertion of NF-«B binding element to a pGL4.27
[luc2P/minP/Hygro] firefly luciferase vector (Promega), which contains a multiple
cloning region for insertion of a response element of interest upstream of a minimal
promoter and the luciferase reporter gene luc2P. The DNA duplex sequences
5-TGGAAATTCC-3’ located at -187 bp of the ICAM-1 promoter, and
5’-GGGTTTCCCCTTGAAGGGATTTCCC-3’ located at -72 bp of the VCAM-1
promoter, were synthesized with a flanking restriction enzyme site Kpnl/Bglll. The
Kpnl/Bglll digested-DNA duplex was then inserted into Kpnl/Bglll digested-pGL4.27

vector. All expression clones were verified by sequencing.

2.7 NF-xB reporter assay
HUVECs (3.5x10° cells per reaction in a single well of 12-well culture plate) were
transiently transfected with 0.5 ug of the reporter plasmid and 0.025 ug of the pRL-null

vector (Renilla internal control reporter vector, Promega) by electroporation using the
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Neon Transfection System (Invitrogen) according to manufacturer’s instructions. Cells
were seeded on a 12-well plate for overnight and then treated with TNF-a (10 ng/ml)
for 4 hours. An aliquot of total lysates was subjected to specific luciferase activity and
was analyzed using the Dual-Luciferase Reporter Assay System (Promega) with a

luminometer (Luminoskan Ascent, Thermo Scientific).

2.8 RNA extraction and Gene expression profiling

Total RNA was isolated from HUVECSs using High Pure RNA Isolation Kit (Roche)
according to manufacturer’s instructions. 300 ng total RNA were used for cDNA
synthesis, labeled by in vitro transcription followed by fragmentation according to the
manufacturer’s suggestion (GeneChip Expression Analysis Technical Manual rev5,
Affymetrix). 11 pg labeled samples were hybridized to Human Genome U133 Plus 2.0
Array (Affymetrix) at 45°C for 16.5 hours. The wash and staining were performed by

Fluidic Station-450 and the array were scanned with Affymetrix GeneChip Scanner 7G.

2.9 Animal studies
2.9.1 Mice housing
DUSP6-null mice (B6;129X1-Dusp6™'™35" stock number 009069, backcrosses

number=1) and their appropriate control mice (B6129SF2/J, stock number 101045,
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recommended by the manufacture http://jaxmice.jax.org/strain/009069.html) were
purchased from The Jackson Laboratory (Bar Harbor, ME). Mice were bred and
maintained in a specific pathogen-free (SPF) animal facility in a roum subjected to a
12-hours light/dark cycle and maintained at constant temperature (22°C) and humidity
(55%). Mice received normal rodent chow and water ad libitum. All experimental
procedures were performed in accordance with the guidelines of the Institutional

Animal Care and Utilization Committee (IACUC) of Academia Sinica.

2.9.2 Genotyping

The genomic DNA was extracted from the tail tissue of mouse by the KAPA Express
Extract kit (KAPK Biosystem) according to the manufacturer’s instructions. A common
forward primer A (5’-CCT TCT CCT GCA GCT CGA C-3’, #12227), the wild type
mouse reverse primer B (5’-ATG GCA GAT TCG ATG TGT GA-3’, #12226) and
Dusp6"' mouse reverse primer C (5’-CCG CTT CAG TGA CAA CGT C-3’, #12228,
catalog numbers provided by The Jackson Laboratory) were used for standard PCR in a
mixture of the KAPA2G Robust HotStart reagent (KAPK Biosystem) according to

manufacturer’s instruction.
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2.9.3 Tail vein injection with TNF-a

In order to induce endothelium inflammatory response, male mice (10-12 weeks old)

were injected with 5 pg/kg of TNF-a (diluted in PBS (Sigma) to a total volume of 100

ul) into the lateral tail vein. Control mice were injected with an equal volume of PBS.

After 16 hours, mice were sacrificed. Vessels (containing aorta and inferior vena cava

(1IVC)) were removed and processed for immunohistochemical staining.

2.9.4 Immunohistochemstry staining and image quantification

Organs from TNF-a-, LPS- or PBS-treated mice were harvested, rinsed in ice-cold

PBS, fixed in 4% paraformaldehyde and then embedded in paraffin. For

immnunohistochemistry staining, tissue sections were blocked with 10% goat serum

(005-000-001, Jackson Immunoresearch) for 2 hours and then incubated for overnight

with anti-mouse ICAM-1 antibodies (14-0542) or isotype control (14-4321, both from

eBioscience) at a dilution of 1:50. After three washes in PBS, the samples were treated

with goat anti-rat 1gG secondary antibody (A9037, Sigma) at a dilution of 1:200 for 1.5

hours at room temperature. Bound antibody was detected using a DAB kit (Vector

Laboratories). Sections were counterstained with hematoxylin and eosin (H & E, both

from Sigma-Aldrich), dehydrated, treated with xylene substitute (Fluka) and

subsequently mounted with entellan (Merck). Images of the whole aorta and IVC were
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captured using a microscope (BX50, Olympus) with 60x magnification, and images of
lung were captured with 40x magnification. For quantification, images were processed

and analyzed using software Image-Pro Plus 6.0 (Media Cybernetics).

2.9.5 LPS-induced experimental sepsis and neutrophil adoptive transfer

For induction of the experimental sepsis, male mice (5-8 weeks old) were injected
intraperitoneally with 0.1 mg/kg of TNF-a or 10 mg/kg of LPS in a total volume of 200
ul. After 24 hours, mice were sacrificed. Lung were isolated and processed for
myeloperoxidase  (MPQ) determination by  MPO-specific  enzyme-linked
immunosorbent assay (ELISA; HyCult Biotechnology) according to manufacturer’s
instruction. For neutrophil adoptive transfer, male mice (10-12 weeks old) were utilized.
The endogenous polymorphonuclear leukocytes (PMNs, mainly neutrophils) of
recipient mice were removed by irradiation (9 Gy) exposure. After recovery for 24
hours, 1x10" purified neutrophils in PBS (total volume 200 ul) were adoptively
transferred to recipient mice by intravenous injection, followed by intraperitoneal
injection with 10 mg/kg of LPS in a total volume of 200 ul. After 4 hours, mice were
sacrificed. Lung were isolated and processed for H&E staining, immunohistochemistry

staining with anti-ICAM-1 antibody and MPO assay.
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2.9.6 Neutrophil isolation from mouse blood

The procedure of neutrophil isolation was performed according to the protocol
described previously.®® In brief, whole blood from adult donor mouse was collected in
tubes containing EDTA and then mixed with an equal volume of PBS. The cells were
separated onto a three-layer Percoll gradient of 78, 69, and 52% Percoll diluted in PBS
through centrifugation at 1500x g for 35 min at room temperature. The fraction of
neutrophils at the 69/78% interface were harvested and washed with PBS containing 1%
BSA once. The residual red blood cells were then eliminated by RBC Lysis Buffer
(Becton Dickinson) at 37°C for 3 min. After two times of wash with PBS containing
1% BSA, the purified neutrophils were suspended in PBS and used immediately. The
purity and viability of purified neutrophils was confirmed by Ly6G/CD11b double

staining and trypan blue (Sigma) exclusion, respectively.

2.9.7 Flow cytometry analysis

Cells were incubated with Ly6G-FITC (11-5931), CD11b-PerCP-Cyanine5.5
(45-0112) or isotype control antibodies (11-4031 and 45-4031, all from eBioscience)
against cell surface antigens in the dark for one hour on ice. Cytofluorimetry was
performed with a BD Calibur cytometer (Becton Dickinson) equipped with FL1

(533/30), FL3 (650LP) filters. Neutrophils were identified by characteristic forward/side
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scatter and Ly6G/CD11b positivity. Data were analyzed and presented using the BD

CellQuest Pro software (Becton Dickinson).

2.10 Exploring DUSP6-mediated phosphorylation network in
TNF-a-activated HUVECs by MS analysis
2.10.1 Sample preparation for MS/MS analysis

HUVECs were cultured in ready-to-use SILAC DMEM medium containing *C
labeled arginine (L-**Cg"°Ng4-arginine, Arg10) and lysine (L-*3Ce-lysine, Lys6) amino
acids for five cell division cycles before performing DUSP6 knockdown. 24 hours after
knocking down, cells were treated with TNF-a for 1.5 hours then harvested and lysed in

1% NP40 buffer.

2.10.2 In-solution protein digestion

Equal amount (3 mg) of total cell lysates from normal (light) and DUSP6-KD (heavy)
HUVECs were combined into one pool. Lysate mixture was reduced with 1 mM
dithiothreitol (DTT) for 1 hour at room temperature (RT) and alkylated with 5.5 mM
iodoacetamide (IAM) for 1 hour at RT in the dark. Excess detergent, DTT, and 1AM
were removed by Amicon Ultra-4 10K centrifugal filter unit, and buffer was exchanged

to 8 M urea. Proteins were digested for 3 hours with the protease Lys-C (1:100
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enzyme/substrate) at 37°C. Sample was diluted with 50 mM ammonium bicarbonate to

reduce urea concentration less than 2 M, and trypsin (1:100) was added for further

digestion at 37°C overnight. The peptide mixture was acidified by adding trifluoroacetic

acid (TFA) to a final concentration of 2.5%.

2.10.3 TiO, beads enrichment

Twenty percent of digested peptide pool was mixed with loading buffer (1:6 v/v, 30

mg/ml 2,5 dihydrobenzoic acid and 80% acetonitrile in water) and incubated with 5 mg

TiO, beads for 30 minutes at RT for twice. TiO, beads were washed with washing

solution 1 (30% acetonitrile/3% TFA) and Il (80% acetonitrile/0.1% TFA).

Phosphopeptides were eluted 2 times with 100 ul elution solution I (1% of NH4;OH in

20% acetonitrile) and 1 time with 100 pl elution solution 11 (1% of NH4;OH in 40%

acetonitrile). Eluates were dried and then resuspended in 1% acetonitrile/0.5% TFA.

2.10.4 Immunoprecipitation for phosphotyrsine peptide enrichment

Eighty percent of digested peptide pool was dried and resuspended in IP buffer (50

mM MOPS pH 7.2, 10 mM sodium phosphate, 50 mM NacCl). Peptide mixture was

incubated with PT66 and 4G10 agarose beads at 4°C overnight. Beads were washed 3

times with IP buffer, followed by 2 washes with water. Phosphotyrsine peptides were
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eluted by adding two times 50 ul of 0.15% TFA for 10 min at room temperature. Eluted
peptides were then desalted and concentrated on CigStageTip and resuspended in 1%

acetonitrile/0.5% TFA.

2.10.5 Shotgun proteomic identifications

NanoLC—nanoESi-MS/MS analysis was performed on a nanoAcquity system (Waters,
Milford, MA) connected to an LTQ-Orbitrap XL hybrid mass spectrometer (Thermo
Fisher Scientific, Bremen, Germany) equipped with a nanospray interface (Proxeon,
Odense, Denmark). Peptide mixtures were loaded onto a 75 um ID, 25 cm length C18
BEH column (Waters, Milford, MA) packed with 1.7 um particles with a pore width of
130 A and were separated using a segmented gradient in 120 min from 5% to 40%
solvent B (acetonitrile with 0.1% formic acid) at a flow rate of 300 nl/min and a column
temperature of 35°C. Solvent A was 0.1% formic acid in water. The mass spectrometer
was operated in the data-dependent mode. Briefly, survey full scan MS spectra were
acquired in the orbitrap (m/z 350-1600) with the resolution set to 60,000 at m/z 400 and
automatic gain control (AGC) target at 10°. The 10 most intense ions were sequentially
isolated for CID MS/MS fragmentation and detection in the linear ion trap (AGC target
at 7000) with previously selected ions dynamically excluded for 90 s. lons with singly

and unrecognized charge state were also excluded. For TiO, enriched samples,
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“multistage activation” at 97.97, 48.99, and 32.66 Thomson (Th) relative to the
precursor ion was enabled in all MS/MS events to improve the fragmentation spectra of
the phosphopeptides. All the measurements in the orbitrap were performed with the lock

mass option for internal calibration.

2.10.6 Data analysis

Phosphopeptides with false discovery rate under 1% were identified and quantified
by MaxQuant (version 1.2.2.5). Only high confident phosphopeptides with the
localization probability of phosphorylation (pSTY) greater than 0.75 from the two
enrichment methods were retained and a list of phosphoproteins from the
phosphopeptide results was generated for functional annotation. The proteomics data
analyzed by LTQ-Orbitrap XL hybrid mass spectrometer were performed by the
Academia Sinica Common Mass Spectrometry Facilities located at the Institute of

Biological Chemistry.

2.11 Statistical analysis
Values were expressed as means = SD. Statistical significance was determined using

a Student’s t-test. A P-value <0.05 was considered significant.
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CHAPTER 3: RESULTS
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3.1 TNF-a treatment triggers MAPKS transient activation rather than
cell apoptosis in endothelial EAhy926 cells

Before studying the signaling pathway between DUSPs and MAPKSs in TNF-a
stimulated endothelium, we first eliminated cell apoptosis as the consequence of TNF-a
stimulation in endothelial EAhy926 cells, which were established by fusing primary
human umbilical vein endothelial cells (HUVECs) with a thioguanine-resistant clone of
A549 epithelia. We first checked caspase 8 (initiator caspase) and caspase3 (effector
caspase) activation in EAhy926 cells exposed to TNF-a. The protein level of
pro-caspase 8 and 3 maintained intact and no cleaved form of caspases has been
observed in 13 hours of TNF-a treatment (Fig. 1A). We also performed flow cytometry
analysis to check the cell cycle in TNF-a-treated EAhy926 cells and there was no
obvious apoptotic cells appeared in sub-G1 group (Fig. 1B). These preliminary tests
removed the possibility that TNF-a triggers the cell death signaling in endothelial
EAhy926 cells.

Then we checked mitogen-activated protein kinases (MAPKS) activity changes by
monitoring phosphorylation levels of MAPKs in TNF-a-treated EAhy926 cells.
Exposed to TNF-a, p38 MAPK and JNK were transiently activated whereas the activity
of ERK activity was not significantly changed in EAhy926 cells (Fig. 2). At resting

state, p38 MAPK and JNK were not activated whereas ERK has basal level activity.
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Upon stimulation with TNF-a, p38 MAPK was activated at 5 minutes and then the
phosphorylation level of p38 decreased gradually with the time course. JNK activity
was peaked at 15 minutes and then diminished to basal level.

In order to know the mechanism by which TNF-a regulates MAPKS activity, we next
applied actinomycin D (transcription inhibitor) and cycloheximide (translation inhibitor)
to investigate the underling mechanism of MAPKS inactivation. As shown in Fig. 3,
actinomycin D and cycloheximide pretreatment sustained the phosphorylation level of
all MAPKs in TNF-a-treated EAhy926 cells, indicating that TNF-o regulates the

activity of MAPKSs through transcriptional and translational regulation mechanisms.

3.2 DUSPs are inducibly expressed in endothelial cells exposed to
TNF-a and function as MKPs

In order to know whether some DUSPs were inducibly expressed as negative
feedback regulators to down regulate MAPKSs signaling in endothelial cell exposed to
TNF-a, the mRNA levels of 12 DUSP genes, characterized as MKPs, were measured by
quantitative real-time PCR over a course of five hours after TNF-a stimulation. These
12 DUSPs were assigned to three groups based upon the magnitude and pattern of
inducible mRNA expression. Phosphatases in the first group, including DUSP6, DUSP8

and DUSP16, were rapidly induced in a transient manner and peaked at 1-2 hours of
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TNF-a exposure (Fig. 4A). DUSP10 was the only phosphatase in the second group

whose mMRNA levels gradually accumulated and remained at high levels for 5 hours

after stimulation (Fig. 4B). The DUSPs in these two groups showed at least a 5-fold

induction after treatment, and were, therefore, classified as genes with significant

up-regulation in response to TNF-a. In contrast, the mRNA levels of the remaining

eight DUSPs, which were listed in the third group, did not change or were only

marginally increased (<3.5-fold) after treatment (Fig. 4C). Additional runs of real-time

PCR further confirmed the induction of four DUSPs (DUSP6, 8, 10 and 16) in cells

exposed to TNF-a. (Fig. 4D).

Next we investigated whether these four TNF-a-induced DUSPs function as MKP.

So we examined the phosphorylation levels of MAPKSs in response to RNAi-mediated

knockdown of each DUSP separately. Sufficient knockdown effect of specific SIRNA

targeting on DUSP6, 10 and 16 were confirmed by quantitative real-time PCR to check

the residual mMRNA level of each DUSP (Fig. 5A). Although DUSP8 knockdown by

RNAI was not complete, the effect on regulating JNK and ERK dephosphorylation by

DUSP8 was confirmed (Fig. 5C). Through RNA interference technique, DUSP6 and

DUSP8 were identified as JNK and ERK phosphatases in EAhy926 cells stimulated

with TNF-a, while DUSP16 showed a marginal effect and DUSP10 was not involved in

MAPKS regulation (Fig. 5B-5E).
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3.3 DUSP6 is involved in TNF-a-induced endothelial inflammation by
regulating intercellular adhesion molecules 1 (ICAM-1) expression
Inflammation is a dominant physiological consequence of endothelia exposed to
TNF-a. TNF-a induces endothelial inflammatory response by regulating cell adhesion
molecules, such as ICAM-1, VCAM-1 and E-selectin, expression on cell surface
through NF-xB pathway. Previous studies reported that ERK may function as a negative
regulator in cell adhesion molecules expression by inactivating NF-xB pathway. We
next examined whether TNF-a-induced DUSPs may also participate in regulation of
endothelial inflammation through targeting ERK activity. For this, ICAM-1 expression
in TNF-a-treated EAhy926 cell has been checked by immunoblotting (Fig. 6A). In
EAhy926 cells, ICAM-1 expression was induced at 2 hours post TNF-a stimulation and
the protein was gradually accumulated with the time progression. In order to investigate
the role of inducible DUSPs in regulating inflammatory response, we examined the
levels of TNF-a-induced ICAM-1 in response to RNAi-mediated knockdown of each
DUSP separately. Interestingly, ablation of DUSP6 led to a decrease of ICAM-1 (Figure
6B), whereas knockdowns of DUSP8, 10, or 16 did not (Figure 6C-6E). These results
suggest DUSP6 may regulate ICAM-1 expression through down-regulating ERK
activity. Although DUSP8 can function as ERK phosphatase (Figure 5C), knockdown of

DUSP8 did not affect ICAM-1 expression. The different regulation of ICAM-1 maybe
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due to the different subcellular localization of phosphatase, DUSP6 is a cytoplasmic
phosphatase and DUSP8 is found in both the cell nucleus and cytoplasm,®’ therefore
DUSP8 may regulate different population of ERK which is not overlapped with DUSP6

regulated ERK population.

3.4 Inducible DUSP6 regulates TNF-a-directed inflammatory
responses in primary endothelial HUVECs

Focusing on the potential role of inducible DUSP6 in TNF-a-induced inflammation,
we used primary human umbilical vein endothelial cells (HUVECS) as a physiologically
relevant model for further investigations. The induction of DUSP6 was first confirmed
with quantitative real-time PCR by monitoring mRNA level of Dusp6 gene in
TNF-a-stimulated HUVECs (Fig. 7A). We observed that the mRNA level of Dusp6 was
increased and peaked at 1 hour of TNF-a exposure. The protein levels of DUSP6 and
ICAM-1 were also checked in parallel by immunoblotting. Upon stimulation, DUSP6
was obviously increased in 1 hour after TNF-a treatment and then ICAM-1 started to
express at 2 hours of TNF-o exposure (Fig. 7B).

To evaluate the role of DUSP6 in regulating inflammatory response, we next
examined the levels of TNF-a-induced ICAM-1 in HUVECs transfected with DUSP6

siRNA. Interestingly, ablation of DUSP6 led to significant suppression of ICAM-1,

32



which was otherwise robustly expressed between 4 and 6 hours of TNF-a treatment
(Figure 8A). To validate the specific function of DUSP6 in TNF-a signaling, we
performed a rescue experiment by ectopically expressing a phosphatase-active, wild
type (WT) form of DUSP6 in HUVECs, in which endogenous DUSP6 had been
knocked down. As depicted in Figure 8B, when the WT form of DUSP6 was
re-expressed in RNAi-ablated HUVECs, there was a significant increase in the level of
ICAM-1 in response to TNF-a stimulation. Previously, phosphatase activity of DUSP6
has been found to be required for inhibition of ERK.>® To further investigate the
importance of DUSP6 enzymatic activity in regulating TNF-a-induced ICAM-1
expression, we re-expressed the phosphatase-dead mutant form of DUSP6 (catalytic
Cys293 replaced by Ser, the C/S mutant) in DUSP6 ablated HUVECs and checked
ICAM-1 level. As shown in Fig. 9, in contrast to restoration of TNF-a signaling by the
WT form of DUSP6, the C/S mutant form of DUSP6, which was robustly accumulated
in cells leading to increased activity of endogenous ERK, did not promote the
expression of ICAM-1. These results suggest that DUSP6-promoted inflammatory
response in HUVECSs depends on its catalytic activity.

We further examined whether endothelial leukocyte interaction, which is primarily
mediated by the accumulation of adhesion molecules on the surface of endothelium,® is

regulated by DUSP6. Clearly, the binding of U937 monocytes to TNF-a-exposed
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HUVECs was inhibited when DUSP6 in HUVECs was knocked down (Fig. 10A),
presumably due to the decreased levels of endothelial ICAM-1 (Fig. 8A).
Consistently, a loss of endothelial leukocyte interaction in response to DUSP6 ablation
was restored by re-expression of the WT form of DUSP6 (Fig. 10B). Together these
findings suggested that inducible DUSP6 might play a key role in TNF-a-induced

endothelial inflammation.

3.5 DUSP6-mediated termination of ERK activity is essential for
TNF-a-induced inflammatory response in endothelium

Having demonstrated the involvement of DUSP6 in TNF-a-stimulated ICAM-1
expression, we next investigated whether down-regulation of ERK, the primary function
of DUSP6 thus far identified,*® is essential for this process. We first examined the
detailed time-dependent regulation of ERK by DUSP6 in HUVECs exposed to TNF-a.
As shown in Fig. 11A, the immediate activation of ERK was terminated at 1 hour post
stimulation in control cells. However, ERK activation was sustained over the duration
of 1-6 hours after TNF-a treatment in DUSP6-ablated cells (Fig. 11A). We further
evaluated whether DUSP6 also regulates JNK or p38 MAPKSs in HUVECs exposed to
TNF-o. Surprisingly, unlike in TNF-a-treated EAhy926 that DUSP6 may also regulate

JNK activity. In contrast to the knockdown effect on ERK phosphorylation, ablation of
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DUSP6 did not cause a detectable change of TNF-a-dependent transient activation of

either JINK (Fig. 11B) or p38 (Fig. 11C), consistent with the current knowledge that

DUSP6 is a specific ERK phosphatase. These results suggested that termination of ERK

activity by inducible DUSP6 might promote the subsequent signaling essential for

ICAM-1 expression.

To test this hypothesis, we first elucidated the natural instincts of ERK to suppress

the expression of ICAM-1 in HUVECs stimulated with TNF-a.. The conventional ERK

inhibitors, PD184352, U0126 and PD98059 were used to pretreat cells before exposure

to TNF-a. As shown in Fig. 12, all three chemical inhibitor pretreatment increased

TNF-a-induced ICAM-1 expression. We also performed another approach by knocking

down ERK with siRNA to verify this result. Data shown in Fig. 13 demonstrated that

ablation of ERK leads to enhanced ICAM-1 expression in HUVECSs response to TNF-a.

stimulation. Furthermore, forced inhibition of ERK via treatment with the chemical

inhibitors led to restoration of ICAM-1 levels in DUSP6 RNAi-ablated HUVECs (Fig.

14). Such findings supported the notion that ERK-caused negative constraint on

ICAM-1 expression may be lifted by inducible DUSP6. We tested this hypothesis by

examining the knockdown effect of ERK on TNF-a-promoted ICAM-1 levels in

DUSP6 RNAi-ablated HUVECs. Clearly, DUSP6 deficiency-caused low levels of

ICAM-1 were partially restored when ERK expression was suppressed by the siRNA
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specifically targeting ERK1 and ERK2 (Fig. 15). These results together suggest a
functional role in termination of ERK activity that DUSP6 plays during promotion of

endothelial inflammation.

3.6 Inhibition of ERK by DUSP6 promotes NF-kB transcriptional
activation in endothelium exposed to TNF-a

In order to figure out the underlining mechanism that DUSP6 increased ICAM-1
expression, mMRNA level of ICAM-1 was checked by quantitative real-time PCR in
DUSP6 ablated HUVECs. As shown in Fig. 16, Dusp6 knockdown by siRNA decreased
ICAM-1 mRNA level, indicting Dudp6 regulate ICAM-1 in a transcriptional-dependent
manner. It was suggested previously that activation of NF-«B is essential for expression
of adhesion molecules in endothelium under inflammatory response.** Upon TNF-a
treatment, upstream kinase activation mediates inhibitor of NF-xB (IxB)
phosphorylation and proteasome-dependent degradation, therefore releases free form of
NF-kB to direct downstream inflammatory gene expression. We first examined NF-xB
signaling in HUVECs exposed to TNF-a stimulation. As shown in Fig. 17A,
degradation of IkxB-a happened in 5 minutes of TNF-a treatment and newly synthesized
IxB-o appeared at 45 minutes of stimulation. Meanwhile the increased phosphorylation

level of NF-kB indicates TNF-a-induced activation. We further elucidate the role of
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NF-kB in regulating ICAM-1 expression in TNF-a-treated HUVECS. Using a specific
inhibitor BAY-117082 to pretreat cells, we showed intact IxB-a level in TNF-a treated
sample which demonstrates sufficient inhibition of NF-xB signaling, and
TNF-a-induced ICAM-1 expression was blocked completely (Fig. 17B). This result
suggests a critical role of NF-xB in TNF-a-mediated induction of ICAM-1 protein in
HUVECs. We wonder whether inducible DUSP6 would promote the expression of
ICAM-1 through its up-regulation of NF-xB signaling. To test this hypothesis, we first
examined the dynamic change of IkB-a levels over the duration of TNF-a stimulation
and investigated whether ablation of DUSP6 could affect this process. Interestingly, the
immediate degradation of IkB within the first 15 minutes post treatment occurred
independent of endogenous levels of DUSP6 (Fig. 17C), indicating that release of
NF-kB from its inhibitor 1kxB was not influenced by DUSP6. Consistently, NF-«xB was
rapidly phosphorylated soon after TNF-o treatment even though DUSP6 was knocked
down (Fig.17C), further eliminating the possible involvement of DUSP6 at the initial
phase of NF-kB pathway. In contrast, during the course of IkxB re-synthesis, a
NF-kB-dependent process® that became evident between 1-6 hours after TNF-a
stimulation (Fig. 17C); we observed that DUSP6 played a clear role. Specifically, the
accumulated levels of re-synthesized IkB at 4-6 hours post treatment were significantly

suppressed when endogenous DUSP6 was ablated (Fig. 17C). Together, these results
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suggest that transcriptional activation of NF-xB, which is essential for re-synthesis of
IxB and also inducible expression of ICAM-1, might be regulated by DUSP6 in

endothelium under TNF-a stimulation.

This finding led us to wonder whether inducible DUSP6 would promote the
expression of ICAM-1 through its up-regulation of NF-kB transcriptional activity; and
if this is the case, whether the underlying mechanism of such process is determined by
DUSP6-dependent inactivation of ERK. To test this hypothesis, we examined the role of
DUSP6 in NF-kB-directed transcription of ICAM-1 gene. For this, luciferase reporter
assay was conducted in TNF-a-treated HUVECs. One unique NF-«B binding element
in the promoter region of ICAM-1 gene®® was selected for characterization (Fig. 18A).
The pilot test demonstrated that NF-xB-mediated transcription of ICAM-1 gradually
increased after TNF-a treatment, and that the robust enhancement of luciferase activity
occurred at 4 hours post stimulation (Fig. 18A). This led us to examine a role that
DUSP6 plays in regulating NF-xB at this time. Clearly, upon the ablation of DUSPS,
NF-xB-mediated transcription of ICAM-1 promoter was significantly suppressed (Fig.
18B). We further investigated whether inactivation of ERK is essential for
DUSP6-mediated activation of NF-kB. To do this, a mutant form of DUSP6 in which

the kinase interacting motif (KIM) was disrupted thereby losing its interaction with
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ERK (termed KIM mutant thereafter),®” and the WT form of DUSPS, were ectopically
expressed in HUVECs treated with siRNA to ablate endogenous DUSP6. We found that,
unlike the WT form of DUSP6 that restored the NF-xB activity significantly, the KIM
mutant form of DUSP6 was unable to do so (Fig. 18C). In addition, the KIM mutant
form of DUSP6 was incapable of restoring TNF-o-induced expression of ICAM-1
protein (Fig. 19). We thus concluded that DUSP6 promotes canonical NF-kB signaling
through its inactivation of ERK for inducible expression of ICAM-1 during endothelial

inflammation.

3.7 TNF-a-induced ICAM-lexpression on the endothelial layer of
aorta and vein is attenuated in Dusp6” mice

Having demonstrated the mechanism that illustrates how DUSP6 promotes inducible
expression of ICAM-1 during initial six hours of TNF-a exposure, we further examined
the role of DUSP6 in endothelium with prolonged inflammatory response. As shown in
Fig. 20, the induction of ICAM-1 in HUVECs peaked at 12-hour of TNF-a treatment,
and then sustained up to 24 hours. Importantly, RNAI ablation of DUSP6 led to a
significant decrease of ICAM-1 levels during the period of 12 to 24 hours after
stimulation (Fig. 20), suggesting that the maximal expression of ICAM-1 in the

inflamed endothelium is DUSP6-dependent. This hypothesis was subsequently tested in
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vivo. For this, we used DUSP6 null mice (Dusp6™ strain B6;129-Dusp6™™'/3)*" to
study whether DUSP6 regulates endothelial inflammation in aorta and inferior vena
cava (IVC). The degree of inflammatory response in animal tissues was measured by
the immunohistochemistry (IHC) staining with anti-ICAM-1 antibody. First, we
checked the mice knockout background by genotyping and the absence of DUSP6
expression in tissues also shown in Fig. 21. Then we challenged mice with TNF-a (5
ug/kg) to examine ICAM-1 level on vascular endothelia of aorta and IVC. After
injection with TNF-a for 16 hours, there was significant increase in levels of ICAM-1
on the endothelial layer of both aorta and IVC isolated from the WT control mice
(B6129SF2/J) (Fig. 22A). Pairs of WT and Dusp6” mice were then examined under
various conditions. Basal expression of endothelial ICAM-1 was low regardless of the
presence or absence of Dusp6 gene (Fig. 22B). Furthermore, TNF-a-induced ICAM-1
expression on the surface of aorta and 1VC was visualized by the specific anti-ICAM-1
antibody but not by the isotype IgG (Fig. 22C). This data confirmed the reliability of
IHC staining. Interestingly, although endothelial ICAM-1 expression on the surface of
aorta and IVVC was robustly enhanced in the WT mice exposed to TNF-q, its level in the
Dusp6™ mice remained low (Fig. 23). Quantitative results from multiple animals
revealed a significant difference in ICAM-1 levels on endothelial layer of aorta (Fig.

23A) and IVC (Fig. 23B) between the WT and Dusp6™ mice under TNF-a stimulation.
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3.8 Deficiency of DUSP6 protects mice from acute lung injuries during
experimental sepsis

We investigated whether DUSP6 regulates the pathological process of sepsis, which
is a severe medical condition characterized by a systemic inflammatory response to
infection.”® We particularly focused on the potential role of DUSP6 involved in
inflammatory consequence of sepsis within the pulmonary circulation, as the lung is
continuously exposed to circulating pathogen-associated molecular patterns such as
endotoxin lipopolysaccharide (LPS).** ® In addition, human pulmonary microvascular
endothelial cells and HUVECs respond to TNF-a and LPS similarly in terms of NF-«xB
activation and surface ICAM-1 expression,®* suggesting that a DUSP6-dependent
regulatory mechanism might be adopted by two types of endothelia. This hypothesis
was tested by intraperitoneal injection of WT and Dusp6” mice with TNF-a (0.1 mg/kg)
or LPS (10 mg/kg); the latter stimulates the expression of ICAM-1 and thus promoting
neutrophil infiltration-dependent pulmonary injury through release of TNF-a.%® After 24
hours of treatment, lung sections taken from the mice were subjected to staining with
hematoxylin and eosin (H&E) or anti-ICAM-1 antibody. As shown in Fig. 24A, a
significant degree of histologic lung injury, as indicated by notable inflammatory cells
infiltration and inter-alveolar septal thickening, was observed in the WT mice exposed

to TNF-a or LPS. Interestingly, these tissue damages were attenuated in TNF-a or
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LPS-treated Dusp6™ mice (Fig. 24A). Moreover, ICAM-1 staining on the surface of
alveolar walls was increased in the WT mice exposed to TNF-o or LPS, whereas such
stimulation-induced ICAM-1 expression was alleviated in the Dusp6”" mice (Fig. 24B).
We further assessed pulmonary neutrophil infiltration by measuring myeloperoxidase
(MPO) activity in the lung tissues. As expected, the basal levels of lung MPO activity
were low and comparable between the WT and Dusp6” mice (Fig. 24C). Importantly,
although the MPO activity was increased 3-fold or 5-fold in the WT mice receiving
TNF-a. or LPS treatment respectively, such change was significantly lower in the
Dusp6” mice (Fig. 24C). These results collectively suggest that Dusp6” mice were
protected from pulmonary neutrophil infiltration and subsequent lung injury in the

mouse model of experimental sepsis.

3.9 Pulmonary endothelial DUSP6 is essential for LPS-induced
neutrophil recruitment in mice

To confirm that the decreased susceptibility to lung injury in the knockout mice (Fig.
24) is caused by the deficiency of endothelial DUSP6, we adoptively transferred
neutrophils from the WT mice into the irradiated WT or Dusp6” recipient mice, and
subsequently induced experimental sepsis in the recipient mice (Fig. 27A). For

experimental condition setting, both WT and Dusp6™ mice were exposed to whole body
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irradiation (9 Gy). After 24 hours recovery, the leukocytes in peripheral blood of mice

were collected and analyzed by flow cytometry. We noticed that, due the effect of

irradiation, the number of total leukocytes in peripheral blood of mice with either

genotype was diminished significantly (Fig. 25), indicating an effective removal of

intrinsic neutrophils in recipient mice by this treatment. We next established neutrophil

adoptive transfer condition in WT mice. The whole blood from the WT donor mice was

drawn by submandibular-bleeding, and polymorphonuclear leukocytes (PMNs) were

isolated from total leukocytes by density gradient centrifugation in Percoll. Purified

PMNs were subjected to flow cytometry analysis and the enriched fraction of

neutrophils was confirmed by double staining with specific markers Ly-6G and CD11b

(Fig. 26A). Purified PMNs were adoptively transferred to the irradiated recipient WT

mice, followed by intraperitoneal injection with LPS (10 mg/kg) into the recipient mice

for 4 hours. The neutrophil infiltration into lung was analyzed by the ELISA-based

detection of myeloperoxidase (MPO) activity. Compare to control mice without

neutrophil transfer, recipient mice with adopted transfer developed higher degrees of

neutrophil infiltration into lung (Fig. 26B). These pilot studies suggested that the

experimental design illustrated in Fig. 27A is suitable for examining the potential role of

pulmonary endothelial DUSP6 in the neutrophil recruitment response to LPS

stimulation. Following this protocol, we measured the MPO activity in lung tissues
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harvested from the WT or Dusp6” recipient mice upon the completion of LPS exposure.
As shown in Fig. 27B, the increased level of neutrophil infiltration into the lung tissues
by the adoptive transfer of PMNs was observed only in the WT, but not in the Dusp6™
recipient mice. Data collectively suggested that endothelial DUSP6 plays a key role in

neutrophil recruitment during acute pulmonary inflammation.

3.10 Exploring DUSP6-mediated phosphorylation network in
TNF-a-activated HUVECs by MS analysis

In this study we found that Dusp6 up regulated ICAM-1 expression through
inhibition of ERK activity therefore activating NF-kB transcriptional activity in
TNF-a-treated HUVECs. However suppression of ERK activity by either chemical drug
inhibition or by siRNA influence could not fully restore ICAM-1 expression as well as
NF-kB transcriptional activity under DUSP6 knockdown background (Fig. 14, 15 and
18C). These results let us wonder whether other proteins, except ERK, also affected by
DUSP6 to coordinate endothelial inflammation. And we also want to know whether
DUSP6 may regulate other potential functions involved in endothelial inflammation.
For this purpose, we adopted stable isotope labeling by amino acids in cell culture
(SILAC) of control and DUSP6-ablated cells to explore DUSP6-mediated

phosphorylation network in TNF-a-activated HUVECs. The workflow of SILAC
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experiment was outlined in Schemel. Briefly, HUVECs for DUSP6 ablation were
cultured in SILAC DMEM medium containing *C labeled arginine (Arg10) and lysine
(Lys6) amino acids for five cell division cycles and then DUSP6 knockdown was
performed. Cell lysates from normal (light) HUVECs without isotope labeling and
DUSP6-KD (heavy) HUVECS labeled with **C were harvested and mixed by 1:1 ratio
and then digested by Lys-C and Trypsin proteases. Phosphorylated peptides enriched by
TiO2 and anti-phoshotyrsine antibody were analyzed by MS/MS and quantified by
MaxQuant.

From the two repeats of SILAC analysis, we identified total 183 phosphopeptides
(145 phosphoproteins) which have altered ratio between heavy and light samples (as
shown in appendix). In which, 47 proteins showed increased phosphorylation level
(Table 3) and 103 proteins showed decreased phosphorylation level. 5 out of 145
phoshoproteins have both up and down phosphorylation levels in different residues. For
exploring DUSP6-mediated phosphorylation networks, we first focused on the
up-regulated proteins. In which, we found several proteins function in cell junctions or
focal adhesion complex, including PECAM-1 (pY663, pY686), connexin 43 (pS365),
p120 catenin (pS269), caveolin-1 (pY14), paxillin (pS340) and vimentin (pS144). As
shown in Fig. 31, we analyzed these up-regulated proteins by ingenuity pathway

analysis (IPA) software with connection and growth algorithm. The result indicates
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these proteins forming connected network with VE-cadherin complex and may
functioning in regulating endothelial junctional integrity. According to literatures, the
enhanced phosphorylation of PECAM-1%® and connexin 43% at sites we identified
showed correlation with enhanced cell junction integrity, therefore we speculate they
may be targeted by DUSP6 to regulate endothelial inflammation.

PECAM-1 is a cellular adhesion and signaling receptor and functions as a regulator
in maintenance of endothelial cell junctional integrity.?® It has been published, the
phosphorylation on Y663 and Y686 of PECAM-1 help to recruit SHP-2 phosphatase.
PECAM-1/SHP-2 complexes have been proposed to dephosphorylate B-catenin and
thereby stabilize p-catenin/VE-cadherin complexes.®® In SILAC analysis, both pY663
and pY686 of PECAM-1 were increased clearly (refer to Table 3) in DUSP6-ablated
HUVECSs, this make the hypothesis that DUSP6 may target on PECAM-1 tyrosine
dephosphorylation to perturb B-catenin be dephosphorylated by SHP-2 and increase
HUVECs permeability through dissociation of VE-cadherin complex under TNF-a
stimulation. Eventually the DUSP6-mediated increasing of permeability facilitates
leukocyte transmigration and endothelial inflammation.

Connexin 43 is a gap junction proteins forms hydrophilic membrane channels that
allow direct communication between neighboring cells via diffusion of ions, metabolites,

and small cell signaling molecules.® The phosphorylation on Ser365 of connexin 43
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functions in maintaining protein structure and represents a mechanism to protect cells
from down-regulation of channel conductance.®” It has been reported that loss of
connexin 43 destabilizes intercellular junctions, contributing to the breakdown of
endothelial barrier function and inhibition of angiogenesis.”” In endothelial-smooth
muscle interaction mold, connexin 43 mediates B-catenin Tyrl42-phosphorylation and
the Tyrl42-phosphorylated p-catenin stimulates VCAM-1 expression to increase
EC-monocytic adhesion.”* Our SILAC analysis observed enhanced phosphorylation on
Ser365 of connexin 43, suggesting another possibility that DUSP6 through
dephosphorylating connexin 43 Ser365 to influence gap junction as well as adherens
junction, disrupt vascular integrity therefor promoting endothelial inflammation.
Although the proteins list above from SILAC analysis all have increased
phosphorylation level, not every phosphorylation site has been reported as regulating
site in maintain cell junction integrity. Maybe they are yet-to-be-identified critical sites
targeted by DUSP6. Whether these phosphoproteins are direct or indirect inferenced by
DUSP6 needs further validations. These results suggest that DUSP6 promoting
endothelial inflammation and leukocyte transmigration not only dependent on
regulating ICAM-1 expression but also increasing endothelial permeability by down
regulating cell junction integrity. This direction of study will promisingly unravel the

other roles of DUSP6 which is critical for further investigations.
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CHAPTER 4: DISCUSSION
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The present work discovered that DUSP6 promotes endothelial inflammatory
response and delineated the underlying molecular mechanism (Fig. 30). DUSP6 has
been identified as a MKP that specifically inactivates ERK in signaling response to
physiological stimuli.”* " However, it has remained unclear whether DUSP6
participates in the progression of disease conditions. The present study highlights the
role of DUSP6 as an ERK phosphatase, one that is not only critical for correct cell
specification and differentiation during ligand-guided embryonic development as
proposed previously,”> ® but also one that is important for cytokine-stimulated
endothelial inflammation in adult animals.

TNF-a-induced ERK activation peaked at 15 minutes and was then brought back to a
sub-basal level by inducible DUSP6 one hour later in HUVECs (Fig. 11A). Once ERK
activity was terminated, transcriptional initiation of NF-kB became obvious on the
ICAM-1 promoter (Fig. 18). These findings reveal the stepwise signaling events that
coordinate to achieve TNF-a-induced inflammatory response in endothelium. It was
shown more than two decades ago that ERK could be activated by TNF-a stimulation.”

1,°° to date the exact function

Although such an event might be important for cell surviva
of immediately activated ERK in the context of TNF-a signaling remained elusive. On

the other hand it was known that subsequent NF-xB-dependent inflammatory response

required inhibition of ERK.*® Therefore, identification of the DUSP6-ERK signaling
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axis to activate NF-kB by the present study is critical. We demonstrated clearly that
NF-kB cannot drive functional transcription on ICAM-1gene unless the activity of
cellular ERK has been terminated by inducible DUSP6 (Fig. 18, and summarized in Fig.
30).

We observed a residual level of ICAM-1 in DUSP6-ablated HUVECs when exposed
to TNF-a (Fig. 8, 15 and 20). Similarly, mice with DUSP6 deficiency still showed
response to TNF-a or LPS treatment, although the degree of neutrophil recruitment by
lung in Dusp6"' mice was much lower than the WT counterparts (Fig. 24 and 27). These
results suggest that, in addition to DUSP6, other ERK phosphatases might be involved
in the promotion of endothelial inflammation. Focusing on members within the DUSP
family, we analyzed microarray data obtained from HUVECs exposed to TNF-a.
Interestingly, among four ERK-specific DUSPs detected in this assay (DUSP1, 4, 6 and
9),%® DUSP6 was the only one that showed TNF-o-dependent mRNA expression (Fig.
28). This finding suggests that inducible DUSP6 might be the primary MKP responsible
for down-regulation of ERK activity, thus highlighting an indispensable role of DUSP6
in endothelium under inflammatory stimulation. Further studies are required to define
whether and how other types of phosphatases, including atypical DUSPs, classical
Tyr-specific and Ser/Thr-specific phosphatases, might coordinate with DUSP6 to

terminate ERK signaling for a robust inflammatory response in endothelial cells.
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Because the active form of ERK can shuttle between cytosol and nucleus,” it is
possible that once activated by TNF-a stimulation, ERK or its downstream Kinases may
phosphorylate Ser/Thr residues of the NF-kB dimer either in cytosol or in nucleus. If
this is the case, ERK-mediated phosphorylation may ensure that NF-xB stays in the
“switch-off” mode. Subsequently, upon accumulation of inducible DUSP6 in cells,
ERK is dephosphorylated and inactivated, rendering NF-xB susceptible to Ser/Thr
phosphatase-mediated activation. One such candidate may be protein phosphatase 4
(PP4), a nuclear Ser/Thr phosphatase that directly interacts with and activates NF-xB.">
’® 1t has been recently shown that pharmacological inhibition of MEK-ERK pathway
enhances the cellular level of PP4, leading to dephosphorylation and activation of
NF-kB.** Considering these studies and our findings together, we propose that inducible
DUSP6-mediated inhibition of ERK might promote NF-xB activity via a
PP4-dependent process in endothelium response to TNF-a stimulation. In addition, a
recent investigation proposed that the active form of ERK might suppress endothelial
inflammation through inhibition of 1kB kinase (IKK), a key upstream kinase to enhance
NF-xB transcriptional activity.** Although experimental evidence is unavailable, we
cannot rule out the possibility that inducible DUSP6 might activate IKK indirectly via
inhibiting ERK. More studies are required to clarify whether DUSP6 coordinates with

PP4 or other yet-to-be-confirmed regulators to promote NF-kB-dependent expression of
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ICAM-1 during TNF-a-induced inflammatory response in endothelium.
In addition to ICAM-1, the expression of vascular cell adhesion molecule-1
(VCAM-1) on endothelial surface is also under the control of NF-xB in response to

TNF-o. stimulation.*

We investigated whether NF-kB-dependent transcription of
VCAM-1 gene is regulated by the signaling axis of DUSP6-ERK in HUVECs.
Interestingly, inducible DUSP6 appeared to be critical for TNF-a-driven expression of
endothelial VCAM-1 (Fig 29). Moreover, inactivation of ERK was a key step in
DUSP6-promoted NF-kB transcription on the VCAM-1 promoter in endothelium
exposed to TNF-a (Fig. 29). Together, our results illustrated an important role that
DUSP6 plays in robust transcriptional activation NF-xB-targeted genes, including
ICAM-1 and VCAM-1, involved in vascular inflammation. Nonetheless, we propose that
inducible expression of ICAM-1 is the primary downstream effector of endothelial
DUSP6 during the pulmonary neutrophil infiltration illustrated by our present study
using experimental sepsis (Fig. 24 and 27), as the p2-integrin expressed on the surface
of neutrophil interacts specifically with ICAM-1 but not VCAM-1.° The inducible
expression of VCAM-1, on the other hand, manifests specific ligand for the integrin
o4p1 (VLA-4), which appears on the surface of monocyte, B and T lymphocytes but

not neutrophil.®® Further investigations may reveal intriguing function of DUSP6 in

regulating VCAM-1-dependent recruitment of leukocytes in the context of vascular
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inflammation.

Using the mouse model of experimental sepsis in conjunction with adoptive transfer
of neutrophils, we have defined a novel role of DUSP6 in pulmonary circulation
response to inflammatory stimulation (Fig. 24 and 27). It has been known clearly that
pulmonary infection results in robust emigration of neutrophils from the capillary bed
into the alveolar space, leading to acute lung injuries often seen in patients with sepsis.™*
Moreover, previous studies showed that intratracheal exposure of LPS in mice induced a
significant increase of ICAM-1 expression on capillary endothelial cells,*® and that
TNF-a-stimulated neutrophil adhesion on human pulmonary capillary endothelial cells
was an ICAM-1 dependent process.”” "® These previous data together with our current
findings suggest a critical function of DUSP6 that drives inducible ICAM-1 expression
within pulmonary capillary endothelial cells during acute inflammatory process. We
propose that capillary endothelial DUSP6 is particularly important in the development
of acute lung injury caused by infection of Escherichia coli or Pseudomonas aeruginosa,
as the endotoxin produced by these bacteria elicits neutrophil emigration via a

p2-intergin pathway,”®®!

which acts through ICAM-1 on the endothelial surface for
strong binding.*

Our study using Dusp6”" mice not only validated the results of cell-based experiments

showing DUSP6’s role in inflammatory response, they also provided the opportunity to
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explore the possibility of subduing inflammatory disorders through inhibition of DUSP6.
From the perspective of drug development for suppression of inflammatory responses,
interference of DUSP6 activity may be a feasible strategy for manipulating NF-xB
pathway. Due to the ubiquitous expression profiles of NF-xB as well as its involvement
in normal cellular physiology, it is expected that application of inhibitors against NF-kB
may lead to profound side effects in humans.?> % Still the inducible expression of
DUSPs follows a cell-type-specific and disease-context-dependent manner,*® rendering
these phosphatases promising drug targets. The present work suggests that specific
inhibitors of DUSP6, for example some lead compounds already identified by recent

studies, & &

could be used in novel therapeutic strategies for the treatment of patients
with sepsis through the reduction of pulmonary endothelial inflammation.

In summary, we demonstrated how the interplay between ERK and NF-kB pathways
is precisely controlled by inducible DUSP6 for the inflammatory response in
endothelium exposed to TNF-a. Therefore, our study provides the rationale for future

experiments focusing the possibility of targeting DUSP6 in the treatment of

inflammatory disorders.
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CHAPTER 5: FUTURE PERSPECTIVES
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In the current study, we have identified ERK as the DUSP6 downstream target to

regulate cell adhesion molecule ICAM-1 expression. However knocking down ERK by

siRNA or inhibiting ERK by chemical inhibitors can only partially restore ICAM-1

expression in DUSP6-ablated HUVECS, indicating DUSP6 may also influence some

other proteins to coordinate ICAM-1 expression as well as inflammatory response in

endothelial cells.

We adopted SILAC analysis for exploring DUSP6-mediated phosphorylation network

in TNF-a-activated HUVECs, and found several cell junction or cell adhesion proteins

with altered phosphorylation level under DUSP6 knockdown condition. These proteins

include p120 catenin (pS269), PECAM-1 (pY663, pY686), connexin 43 (pS365),

caveolin-1 (pY14), paxillin (pS340) and vimentin (pS144), which either associated with

VE-cadherin complex and function in maintaining adherens junctions (AJs) or belongs

to gap junctions or focal adherin complex and function in maintaining vascular integrity.

This result suggests that DUSP6 promotes endothelial inflammation and leukocyte

transmigration not only through increasing cell adhesion molecules expression but also

increasing endothelial permeability by influencing cell junction integrity.

Among these phosphoproteins identified by SILAC analysis, we suspect PECAM-1

as a DUSP6 direct substrate. PECAM-1 is a cellular adhesion and signaling receptor,

containing six extracellular immunoglobulin (I1g)-like homology domains, a short
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transmembrane domain and a 118 amino acid cytoplasmic tail %

The cytoplasmic tail
becomes serine and tyrosine phosphorylated upon cellular activation. PECAM-1 is
highly expressed at endothelial cell intercellular junctions, and interacts with another
PECAM-1 on adjacent endothelial cell by 1g domain 1 in a homophilic manner. Thus
PECAM-1 functions as a regulator in maintaining endothelial cell junctional integrity.®’
PECAM-1/SHP-2 complexes have been proposed to regulate the phosphorylation state
of B-catenin and thereby pB-catenin/VE-cadherin complexes.®” The Tyr686 and Tyr663
on immunoreceptor tyrosine-based inhibitory motif (ITIM) of PECAM-1 were
sequentially phosphorylated by Src and Csk respectively. Phosphorylated ITIM domain
recruit Src homology 2 domain-containing phosphatase 2 (SHP-2, PTPN11) to
dephosphorylate and stabilize B-catenin in VE-cadherin complex thereby maintaining
endothelial cell junction.®’

According to our SILAC analysis, the phosphorylation level on both Tyr663 and
Tyr686 of PECAM-1were increased in DUSP6-ablated HUVECs stimulated with
TNF-a (refer to Table 3). Hence, we propose DUSP6 may directly dephosphorylate
Tyr663 and Tyr686 of PECAM-1 to disable SHP-2 recruitment by ITIM domain. By
this way, B-catenin continues remain in phosphorylated form and dissociates from

VE-cadherin complex thus destabilizing VE-cadherin complex. In this situation, cell

adherens junction will remain opening and let leukocyte emigration much easier.
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To validate of our hypothesis further, HUVECs permeability and cell junction

integrity should be monitored upon TNF-o stimulation. The phosphorylation

modification on junction regulating proteins such as PECAM-1, VE-cadherin and

[-catanin could be checked by immunoblotting. The PECM-1 Y663F and Y686F

mutant, phosphorylation mimic mutant, could be used to rescue DUSP6-mediated

junction integrity loss and permeability increase in TNF-a activated HUVECs.

In summary, our findings suggest DUSP6 may regulate endothelial inflammation and

leukocyte transmigration through multiple aspects. Inhibition of Dusp6 may serve as a

new therapy for the treatment of inflammatory disease.
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Figure 1. TNF-a treatment in EAhy926 does not trigger caspases activation and
cell apoptosis. A to B, EAhy926 cells were serum starved for 16 hours prior to the
treatment of TNF-a (10 ng/ml) for indicated time points. A, aliquots of lysates were
subjected to immunoblotting with anti-caspase 8 and caspase 3 antibodies. Data shown
are the representatives of three independent experiments. B, Cells were harvested,
stained with propidium iodide (PI) and subjected to flow cytometry analysis. Data
shown are the representatives of two independent experiments.
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Figure 2. Mitogen-activated kinases (MAPKs) were transiently activated in
endothelial EAhy926 cells stimulated with TNF-a. EAhy926 cells were treated with
TNF-a (10ng/ml) for indicated time points, aliquots of lysates were subjected to
immunoblotting with anti-phosoho-p38 (pp38), p38, phosphor-JNK (pJNK), JNK,
phosphor-ERK (pERK) and ERK antibodies. Data shown are the representatives of

three independent experiments.
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Figure 3. In EAhy926 cells, TNF-a regulates the activity of MAPKs through
transcriptional and translational regulation mechanism. EAhy926 cells were left
untreated, or pretreated with actinomycin D (ActD, 1 ug/ml, left panel) or
cycloheximide (CHX, 10 pg/ml, right panel) for 1 hour and followed by TNF-a (10
ng/ml) treatment for indicated time points, aliquots of lysates were subjected to
immunoblotting with anti-phosoho-p38 (pp38), p38, phosphor-JNK (pJNK), JNK,
phosphor-ERK (pERK) and ERK antibodies. Data shown are the representatives of
three independent experiments.
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Figure 4. Based on quantitative real-time PCR analysis, 12 DUSPs, typical MKP,
were classified to three groups by gene expression pattern upon TNF-a stimulation.
A to D, EAhy926 cells were treated with TNF-a (10 ng/ml) for indicated time points.
Total MRNA were prepared and subjected to real time-PCR analysis that depicted
expression profiles of 12 Dusp genes. A, Dusp6, Dusp8 and Duspl6 were transiently
expressed. B, The mRNA level of Duspl0 was steadily increased during the time of
treatment. C, Eight Dusp genes did not respond to TNF-o stimulation. D, Statistic
analysis showed significant induction of four Dusp genes. Data are expressed as meant
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Figure 5. Based on RNA interference knockdown technique, DUSP6, 8, and 16
were identified as both ERK and JNK phosphatases. A to E, EAhy926 cells were
transiently transfected with control or individual Dusp siRNA as indicated. After 24
hours, cells were treated with TNF-a. (10 ng/ml) for indicated time points. A, Total
MRNA were prepared and subjected to quantitative real time-PCR analysis that depicted
RNA interfering effect of individual Dusp genes expression. B to E, Aliquots of lysates
were subjected to immunoblotting with anti-phosoho-p38 (pp38), p38, phosphor-JNK
(PINK), JNK, phosphor-ERK (pERK) and ERK antibodies. Data shown are the
representatives of three independent experiments.
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Figure 6. Inducible DUSP6 promotes expression of ICAM-1 in endothelial
EAhy926 cells stimulated with TNF-a.. A, EAhy926 cells were treated with TNF-a
(10 ngl/ml) for indicated time points, aliquots of lysates were subjected to
immunoblotting with anti-ICAM-1 and tubulin antibodies. B to E, EAhy926 cells were
transiently transfected with control or individual Dusp siRNA as indicated.
Transfectants were then treated with TNF-ao for indicated time points. Aliquots of
lysates were subjected to immunoblotting with anti-ICAM-1 and tubulin antibodies.
Data shown are the representatives of three independent experiments.
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Figure 7. Transient expression of DUSP6 in HUVECs stimulated with TNF-a.. A to
B, HUVECs were treated with TNF-a (10 ng/ml) for indicated time points, total mMRNA
were subjected to quantitative real time-PCR analysis that depicted expression of Dusp6
gene (A) or aliquots of lysates were subjected to immunoblotting with anti-ICAM-1,
DUSP6 and tubulin antibodies (B). Data shown in A is presented as meantSD from
three independent experiments (n=3; *, P<0.05). Data shown in B are the
representatives of three independent experiments.

67



A

siRNA:  Control DUSP6 2
TNF-o: 0 2 4 6 0 2 4 6 (h) 57 -o=Control siRNA *%
5204 -0-DUSPESIRNA
85— - | cama <
£
3
S
el LT DUSP6 E
=
3
50 —| "= - o o - o> = Tubulin =

B

siRNA
(3'-UTR):Control  DUSP6

Plasmid: EV EV DUSP6
TNF-a: 0 4 0 4 0 4 (h)

=
<
gs—| ™ W W cavq =
=
-}
2
50 —| " ——————- Tubulin g
<
e
40—{ 4" DUSP6
TNF-o: 0 4 0 4 0 4 (h)
;i Plasmid: EV EV DUSP6
40 — - = Flag siRNA
(3'UTR): Control DUSP6

Figure 8. Inducible DUSP6 is essential for expression of ICAM-1 in HUVECs
stimulated with TNF-a. A, HUVECs transiently transfected with control siRNA or
specific SiRNA that targets the coding region of Dusp6 were treated with TNF-a (10
ng/ml) for indicated time points. Aliquots of lysates were subjected to immunoblotting
with anti-ICAM-1, DUSP6 and tubulin antibodies indicated. B, HUVECs transiently
transfected with control siRNA or specific sSiRNA that targets the 3’-UTR region of
Dusp6 were transfected with empty vector (EV) or plasmid encoding the wild type (WT)
form of Flag-tagged DUSP6. Transfected HUVECs were exposed to TNF-a. for 4 hours.
Aliquots of lysates were subjected to immunoblotting with indicated antibodies. The
relative ICAM-1 levels were obtained by a densitometric analysis of the gel image as a
ratio of ICAM-1 relative to tubulin. A.U., arbitrary unit. Quantitative data shown in the
right panels are presented as mean=SD (n=3; *, P<0.05, **, P<0.01 and ***, P<0.001).
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Figure 9. The catalytic activity of DUSP6 is required for inducible ICAM-1
expression in HUVECs stimulated with TNF-a. HUVECs transiently transfected with
specific siRNA that targets the 3’-UTR region of Dusp6 gene were transfected with
plasmid encoding the wild type (WT) form or the phosphatase-dead C293S mutant form
of Flag-tagged DUSPG6. Transfected HUVECs were then stimulated with TNF-a for 4
hours. Aliquots of lysates were subjected to immunoblotting with anti-ICAM-1, Flag,
phospho-ERK (pERK), ERK and tubulin antibodies. Data shown are the representatives
of two independent experiments.
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Figure 10. Inducible DUSP6 is essential for endothelial leukocyte interaction in
HUVECs stimulated with TNF-a. A, HUVECs transiently transfected with control
SiRNA or specific siRNA that targets the coding region of Dusp6 were treated with
TNF-a (10 ng/ml) for 4 hours. B, HUVECs transiently transfected with control sSiRNA
or specific siRNA that targets the 3’-UTR region of Dusp6 were transfected with empty
vector (EV) or plasmid encoding the wild type (WT) form of Flag-tagged DUSP6.
Transfected HUVECs were exposed to TNF-a for 4 hours. A mono-layer of HUVECs
was incubated with fluorescence dye BCECF-AM-labeled monocytic U937 cells. After
extensive washes, U973 cells bound to HUVECs were visualized by fluorescence
microscopy. The relative quantity of U937 cells attached to HUVECs was measured by
a fluorescence analyze. Quantitative data shown in the right panels are presented as
meanSD (n=3; **, P<0.01 and ***, P<0.001).
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Figure 11. DUSP6 functions as ERK phosphatase in HUVECs stimulated with
TNF-a. Ato C, HUVECs: transiently transfected with control siRNA or specific SIRNA
targeting Dusp6 were treated with TNF-a (10 ng/ml) for indicated time points. Aliquots
of lysates were subjected to immunoblotting with anti-phospho-ERK (pERK), ERK,
DUSP6, phosphor-JNK (pJNK), JNK, phosphor-p38 (pp38) and p38 antibodies. The
right panels show a densitometric analysis of the gel image as a ratio of phosphorylated
ERK (pERK) relative to total ERK (A), phosphorylated JNK (pJNK) relative to total
JNK (B) and phosphorylated p38 (pp38) relative to total p38 (C). Data shown are the

representatives of two independent experiments.
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Figure 12. Inactivation of ERK by chemical inhibitors promoted ICAM-1
expression in HUVECs stimulated with TNF-a. HUVECs were left untreated, or
treated with PD184352 (2 umol/L, left panel), U0126 (10 umol/L, middle panel) or
PD98059 (10 umol/L, right panel) for 1 hour, followed by TNF-o stimulation for
indicated time points. Aliquots of lysates were subjected to immunoblotting with
anti-ICAM-1, phospho-ERK (pERK), ERK and tubulin antibodies. Data shown are the
representatives of three independent experiments.
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Figure 13. Ablation of ERK by RNA interference promoted ICAM-1 expression in
HUVECs stimulated with TNF-a. A and B, HUVECs were transiently transfected
with control siRNA or specific sSiRNA targeting the coding region of Dusp6, followed
by treatment with TNF-o (10 ng/ml) for indicated time points. Aliquots of lysates were
subjected to immunoblotting with indicated antibodies. Data shown in (A) demonstrated
that ablation of ERK by siRNA leads to enhanced level of inducible ICAM-1 in
HUVECs response to TNF-o stimulation. The right panels show a densitometric
analysis of the gel image as a ratio of ICAM-1 relative to tubulin. Data shown in (B)
demonstrated that ablation of ERK by siRNA does not affect intrinsic expression of
MAP kinases such as ERK5, JNK and p38. Similar results (A-B) were observed in two
independent experiments.
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Figure 14. Inactivation of ERK restored ICAM-1 expression in DUSP6
RNAi-ablated HUVECs stimulated with TNF-a. HUVECs transiently transfected
with control siRNA or specific siRNA targeting the coding region of Dusp6 were left
untreated, or treated with pharmacological MEK inhibitors PD184352 (2 umol/L, left
panel), U0126 (10 umol/L, middle panel) or PD98059 (10 umol/L, right panel) for 1
hour, followed by TNF-a stimulation for indicated time points. Aliquots of lysates were
subjected to immunoblotting with anti-ICAM-1, phospho-ERK (pERK), ERK, DUSP6
and tubulin antibodies. Compare to the control cells, DUSP6 ablation led to enhanced
pERK level and suppressed ICAM-1 expression. Interestingly, application of
pharmacological inhibitors in DUSP6 knockdown HUVECs effectively diminished the
phosphorylation level of ERK, leading to restoration of ICAM-1 expression in the
context of TNF-a signaling. Data shown are the representatives of two independent
experiments.
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Figure 15. Inactivation of ERK by DUSP6 is required for inducible expression of
ICAM-1 in HUVECs stimulated with TNF-a. HUVECs transiently transfected with
control siRNA or specific siRNA targeting the coding region of Dusp6 were left
untreated or transfected with specific sSiRNA targeting ERK1/2. Transfected HUVECs
were treated with TNF-a (10 ng/ml) for indicated time points. Aliquots of lysates were
subjected to immunoblotting with indicated antibodies. The right panels show a
densitometric analysis of the gel image as a ratio of ICAM-1 relative to tubulin. Similar
results were observed in two independent experiments.
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Figure 16. DUSP6 regulates ICAM-1 expression in a transcriptional-dependent
manner in HUVECs stimulated with TNF-a. HUVECs were transiently transfected
with control or Dusp6 siRNA. After 24 hours, cells were treated with TNF-a (10 ng/ml)
for 4 hours. Total MRNA were prepared and subjected to quantitative real time-PCR
analysis that depicted Dusp6 interfering effect of ICAM-1 gene expression. Data shown
is presented as meantSD (n=3; *, P<0.05).
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Figure 17. NF-kB is major regulator of ICAM-1 expression and DUSP6 ablation
does not affect NF-kB activation in HUVECs stimulated with TNF-a. A, HUVECs
were treated with TNF-a (10 ng/ml) for indicated time points. Aliquots of lysates were
subjected to immunoblotting with anti-phospho-NF-«xB (pNF-kB), NF-«xB, IkB-o and
tubulin antibodies. B, HUVECs were pretreated with BAY-117082 with indicated
concentrations for 1 hour then followed by TNF-a (10 ng/ml) stimulation for indicated
time points. Aliquots of lysates were subjected to immunoblotting with anti-ICAM-1,
IxB-a and tubulin antibodies. C, HUVECSs were transiently transfected with control or
Dusp6 siRNA. After 24 hours, cells were treated with TNF-a (10 ng/ml) for indicated
time points. Aliquots of lysates were subjected to immunoblotting with
anti-phospho-NF-kB (pNF-kB), NF-xB, IkB-a and tubulin antibodies. Arrow in penal
A indicates IkB-a banding. Data shown are the representatives of three independent
experiments.
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Figure 18. NF-kB-directed transcriptional activation of ICAM-1 gene depends on
termination of ERK signaling by inducible DUSP6 in HUVECs stimulated with
TNF-a. A, Specific NF-kB binding motif on ICAM-1 promoter region®**® was used to
generate the firefly luciferase reporter plasmid. HUVECs were transiently transfected
with the ICAM-1 firefly luciferase reporter plasmid and a control renilla luciferase
expression plasmid. After 24 hours, cells were left untreated or stimulated with TNF-a
(10 ng/ml) for indicated time points. Aliquots of lysates were subjected to analysis of
firefly and renilla luciferase activity. The firefly luciferase activity was normalized with
the renilla luciferase activity to eliminate the variation that might be introduced by
transfection efficiency. B, HUVECs transiently transfected with control siRNA or
specific siRNA targeting the coding region of Dusp6 were co-transfected with firefly
luciferase reporter plasmids driven by NF-kB-targeted promoter region of ICAM-1 gene.
Transfected HUVECs were then treated with TNF-o for 4 hours. Aliquots of lysates
were subjected to luciferase activity assay. C, HUVECs transiently transfected with
specific sSIRNA that targets the 3’-UTR region of Dusp6 were transfected with plasmids
encoding the wild type (WT) form or the kinase interacting motif (KIM) mutant form of
DUSP6, and co-transfected with firefly luciferase reporter plasmids driven by
NF-«kB-targeted promoter region of ICAM-1 gene. Transfected HUVECs were then
treated with TNF-a for 4 hours. Aliquots of lysates were subjected to luciferase activity

assay. Data shown are presented as meantSD (n=3; ***, P<0.001).
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Figure 19. Inactivation of ERK by DUSP6 is required for inducible expression of
ICAM-1 in HUVECs stimulated with TNF-a. HUVECs transiently transfected with
specific sSiRNA that targets the 3’-UTR region of Dusp6 were transfected with plasmids
encoding the wild type (WT) form or the kinase interacting motif (KIM) mutant form of
Flag-tagged DUSP6, followed by stimulation with TNF-a for 4 hours. Aliquots of
lysates were subjected to immunoblotting with anti-ICAM-1, Flag, phospho-ERK
(PERK), ERK and Tubulin antibodies. Data shown are the representatives of three
independent experiments.
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Figure 20. Ablation of DUSP6 reduced endothelial ICAM-1 expression in vitro after
prolonged TNF-a treatment. HUVECs transiently transfected with control siRNA or
specific siRNA targeting the coding region of Dusp6 were treated with TNF-o (10
ng/ml) for indicated time points. Aliquots of lysates were subjected to immunoblotting
with indicated antibodies. The right panels show a densitometric analysis of the gel
image as a ratio of ICAM-1 relative to tubulin. Similar results were observed in three
independent experiments.
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Figure 21. A loss of DUSP6 expression and an increased phosphorylation of ERK
in liver and lung isolated from Dusp6™ mice. A, Genotyping was operated following
the standard protocol suggested by The Jackson Laboratory. Sequences of specific
primers A, B and C were described in the section of Genotyping in Detailed Methods.
These results confirmed the genetic background of the Dusp6 null mice. B,
Immunoblotting results showed the absence of endogenous DUSP6 expression in liver
and lung tissue extracts isolated from Dusp6™ mice, whereas the expression of DUSP6
was obviously detectable in tissue extracts prepared from the wild type (WT) mice. C,
Immunoblotting results showed that phosphorylation level of endogenous ERK in liver
and lung of the Dusp6™ mice was significantly higher compared to the WT mice.
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Figure 22. Specific ICAM-1 staining was observed on aorta and inferior vena cava
(IVC) in the wild type (WT) mice treated with TNF-a.. A to C, Wild type (WT) and
Dusp6”” mice were treated with PBS (-) or 5 ng/kg TNF-a (+) via tail-vein injection for
16 hours. Paraffin-embedded sections of aorta and IVC were subjected to
immunohistochemistry (IHC) staining with anti-ICAM-1 antibody or isotype IgG.
Representative micrograph images show ICAM-1 staining on the surface of (A) aorta
and 1VVC from WT mice with or without TNF-a treatment, and (B) aorta and IVC from
WT or Dusp6” mice without TNF-a. treatment. C, TNF-a-induced ICAM-1 expression
on the surface of aorta and 1VC was visualized by the specific anti-ICAM-1 antibody
but not by the isotype IgG. Data shown are representatives from two independent set of
experiments (n=3 mice in each experiment). Bar in A, B and C, 50 um.
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Figure 23. Ablation of DUSP6 reduced endothelial ICAM-1 expression in vivo after
prolonged TNF-a treatment. A and B, Wild type (WT) and Dusp6” mice were treated
with TNF-a (5 pg/kg) via tail-vein injection for 16 hours. Paraffin-embedded sections
of aorta and inferior vena cava (IVC) were subjected to immunohistochemistry (IHC)
staining with anti-ICAM-1 antibody. Representative micrograph images show ICAM-1
staining (brown color) on the surface of aorta (A) and IVC (B) from mice exposed to
TNF-a. Rectangles indicate areas supplied with magnified views. Quantitation of
relative ICAM-1 staining was performed by denstometric analysis of the IHC images.
Data shown are presented from six mice in each group (bar, the mean of each group;
*** P<0.001). Bar in A and B, 50 um.
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Figure 24. Deficiency of DUSP6 reduced lung injury and pulmonary neutrophil
infiltration during experimental sepsis. A through C, Wild type (WT) and Dusp6'/'
mice were intraperitoneally (IP) injected with TNF-a. (0.1 mg/kg), LPS (10 mg/kg) or
PBS for 24 hours. Paraffin-embedded lung sections were stained with hematoxylin and
eosin (A), or subjected to immunohistochemistry staining with anti-ICAM-1 antibody
(B). Representative micrograph images shown in B indicate ICAM-1 expression (brown
color, and denoted by black arrows) on the alveolar walls from mice exposed to TNF-a
or LPS. Rectangles in B indicate areas supplied with magnified views. C, Lung
homogenates were subjected to the activity measurement of neutrophil-specific
myeloperoxidase (MPO). Data shown in C are presented from 8 or 9 mice in each group
(N, the number of mice; bar, the mean of each group; **, P<0.01 and ***, P<0.001).
Bar in A and B, 50 um.
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Figure 25. The effect of irradiation on leukocyte removal in mice. Wild type (WT)
and Dusp6™ mice were subjected to total body irradiation (9 Gy) or remained untreated.
After 24 hours, the whole blood was taken by submandibular-bleeding and total
leukocytes were analyzed by flow cytometry. There was no obvious difference in the
number of total leukocytes between WT and Dusp6™ mice without irradiation (Control).
In contrast, upon irradiation for 24 hours, the number of endogenous leukocytes was
significantly diminished in both genotypes of mice. Data shown are the representatives
of three independent experiments (n= 3 mice per genotype in each experiment;
R1-granulocytes, R2-lymphocytes, R3-monocytes).
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Figure 26. Purification of polymorphonuclear leukocytes (PMNs) for the adoptive
transfer of neutrophils in lung during experimental sepsis. A, The whole blood from
the wild type (WT) mice were taken by submandibular-bleeding, and PMNs were
isolated from total leukocytes by density gradient centrifugation in Percoll. Purified
PMNs were subjected to flow cytometry analysis and the enriched fraction of
neutrophils (circle R1 in the top panels) was confirmed by double staining with specific
markers Ly-6G and CD11b (shown in the lower panels). B, Purified PMNs from the WT
donor mice were adoptively transferred to the irradiated (9 Gy) recipient WT mice,
followed by intraperitoneal injection with LPS (10 mg/kg) into the recipient mice for 4
hours. The neutrophil infiltration into lung was analyzed by the ELISA-based detection
of myeloperoxidase (MPO) activity. Compare to control mice without neutrophil
transfer, recipient mice with adopted transfer developed higher degrees of neutrophil
infiltration into lung. Data shown in B are presented from 3 mice in each group (N, the
number of mice; bar, the mean of each group; *, P<0.05).
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Figure 27. DUSP6 deficiency-reduced neutrophil infiltration in lung is pulmonary
endothelium intrinsic. A, Schematic illustration of the workflow to assess the potential
function of pulmonary endothelial DUSP6 in LPS-stimulated neutrophil infiltration in
the lung tissue. Wild type (WT) and Dusp6™ mice were subjected to irradiation (9 Gy)
for 24 hours. The irradiated recipients were adoptively transferred with purified
polymorphonuclear leukocytes (PMNSs) from the WT donor mice via intravenous (1V)
injection, followed by intraperitoneally (IP) treatment with LPS (10 mg/kg) for 4 hours.
B, Lung homogenates were subjected to the activity measurement of neutrophil-specific
myeloperoxidase (MPQO). Data shown in B are presented from 5, 6 or 7 mice in each
group (N, the number of mice; bar, the mean of each group; *, P<0.05, **, P<0.01 ; ***
P<0.001; *, no significant difference).
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Figure 28. TNF-a-induced mRNA profile of DUSPs in HUVECs by microarray
analysis. Total RNA samples were prepared from HUVECs exposed to TNF-a. for one
hour. Microarray analysis (Human Genome U133 Plus 2.0 Array from Affymetrix) was
performed according to the manufacturer’s instructions. A subset of DUSPs with
implied function of MAP kinase phosphatases was the primary focus. Data are
presented as the meantSE (n=2). According to the data shown in the Figure, we
proposed that, among four ERK-specific phosphatases (DUSP1, 4, 6 and 9), DUSP6
was the only one exhibiting significant mRNA induction in endothelium response to
TNF-a stimulation.
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Figure 29. NF-kB-directed transcriptional activation of VCAM-1 gene depends on
termination of ERK signaling by inducible DUSP6 in HUVECSs stimulated with
TNF-a. A, HUVECs transiently transfected with control siRNA or specific sSiRNA that
targets the coding region of Dusp6 were treated with TNF-a (10 ng/ml) for indicated
time points. Aliquots of lysates were subjected to immunoblotting with anti-VCAM-1,
DUSP6 and Tubulin antibodies. Data shown are the representative from three
independent experiments. B, HUVECs transiently transfected with control siRNA or
specific siRNA targeting the coding region of Dusp6 were co-transfected with firefly
luciferase reporter plasmids driven by the NF-kB-targeted promoter region of VCAM-1
gene (nucleotides -72~-48). Transfected HUVECs were then treated with TNF-a for 4
hours. Aliquots of lysates were subjected to luciferase activity assay. C, HUVECs
transiently transfected with specific sSiRNA that targets the 3’-UTR region of Dusp6
were transfected with plasmids encoding the wild type (WT) form or the kinase
interacting motif (KIM) mutant form of DUSP6, and then co-transfected with firefly
luciferase reporter plasmids driven by NF-kB-targeted promoter region of VCAM-1
gene. Transfected HUVECSs were subsequently treated with TNF-a. for 4 hours. Aliquots
of lysates were subjected to luciferase activity assay. Data shown in B and C are
presented as meantSD (n=3; *, P<0.05, ***, P<0.001).
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Figure 30. Proposed model for the functional role of endothelial DUSP6 in
regulating vascular inflammation. A, Ligand-bound TNF-a receptor drives (1) release
of NF-xB dimer from the IkB complex, (2) activation of ERK and (3) inducible
expression of DUSP6 in vascular endothelium. Dephosphorylation of ERK by DUSP6
unleashes NF-kB from the inhibitory constraint. Consequently, NF-xB-dependent
expression of ICAM-1 leads to recruitment of leukocytes, thus promoting inflammatory
response. B, Upon gene deletion of Dusp6 or chemical inhibition of DUSP6, activation
of ERK is sustained in TNF-a-stimulated endothelium. Therefore, NF-xB dimer is
prevented from transcriptional activation. As a result, low levels of ICAM-1 on
endothelial surface decrease inflammatory response.
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Flowchart of SILAC-based approach
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Scheme 1. Quantitative phosphoproteomic workflow. The procedure combines

isotopic amino acid incorporation,

sample

preparation, protein digestion,

phosphopeptide enrichment (TiO,), and phosphotyrosine peptides enrichment.
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Figure 31. Sub-network indicates proteins involved in cell junction and focal
adhesion derived from IPA analysis. The sub-network was drawn using the
connection and growth algorithm of the ingenuity pathway analysis (IPA) software. The
protein labeled in red indicates up-regulated phosphoproteins in SILAC analysis. The
line indicates protein-protein interaction and/or enzymatic regulation of adjacent
proteins.
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Table 1.
Primers used for quantitative real-time PCR analysis

Gene name Accession Primer sequence
number
DUSP1 NM_004417 Forward: 5’-TTTGAGGGTCACTACCAG-3’
Reverse: 5’-GAGATGATGCTTCGCC-3’
DUSP2 NM_004418 Forward: 5’-AGTCACTCGTCAGACC-3’
Reverse: 5-TGTTCTTCACCCAGTCAAT-3’
DUSP3 NM_004090 Forward: 5’-ACGTCAACACCAATGC-3’
Reverse: 5’-ATGAGGTAGGCGATAACT-3’
DUSP4 NM_001394 Forward: 5’-CAAAGGCGGCTATGAG-3’
Reverse: 5’-GGTTATCTTCCACTGGG-3’
DUSP5 NM_004419 Forward: 5’-CTAGGTGTTGCGTGGA-3’
Reverse: 5-GATCTATTGCTTCTTGAAAGT-3’
DUSP6 NM_001946 Forward: 5’-CGAGACCCCAATAGTGC-3’
Reverse: 5’-AATGGCCTCAGGGAAA-3’
DUSP7 NM 001947 Forward: 5’-TCATTGACGAAGCCCG-3’
Reverse: 5’-GCGTATTGAGTGGGAACA-3’
DUSP8 NM_ 004420 Forward: 5’-GACGCAAAATGGAATAAGC-3’
Reverse: 5’-CTTCACGAACCTGTAGGC-3’
DUSP9 NM_001395 Forward: 5’-ATCCGCTACATCCTCAA-3’
Reverse: 5’-AGGTCATAGGCATCGTT-3’
DUSP10 NM_007207 Forward: 5’-CTGAACATCGGCTACG-3’
Reverse: 5’-GGTGTAAGGATTCTCGGT-3’
DUSP14 NM_007026 Forward: 5’-CTGCTCACTTAGGACTTTCT-3’
Reverse: 5’-CCTTGGTAGCGTGCTG-3’
DUSP16 NM_030640 Forward: 5’-AGAATGGGATTGGTTATGTG-3’
Reverse: 5’-TGTAGGCGATAGCGATG-3’
ICAM-1 NM_000201 Forward: 5’-GATACAACCGTCTTGGTCAGCCC-3’
Reverse:5’-CAGTTGAAGGATGCGGGAGTATATG-3’
VCAM-1 NM_001078 Forward: 5’-TGCCGAGCTAAATTACACATTG-3’

Reverse: 5’-CCTTGTGGAGGGATGTACAGA-3’
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Table 2.
Oligonucleotides of siRNA used for dusp6 knockdown

Gene name Catalog number* siRNA sequence

DUSP6 D-003964-01 5’-GAACUGUGGUGUCUUGGUA-3’
D-003964-03 5’-UGGCUUACCUUAUGCAGAA-3’
D-003964-04 5’-GACUGUGGCUUACCUUAUG-3’
D-003964-05 5’-GCGACUGGAACGAGAAUAC-3’

DUSP6 (3’-UTR) None 5’-CUGAUACUCCAUUUGAUUAUU-3’

Non-targeting D-001810-01 5’-UGGUUUACAUGUCGACUAA-3’

* Catalog numbers provided by Dharmacon
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Table 3.
List of the identified up-regulated phosphoproteins in DUSP6-ablated HUVECS

Protein Names PTM Score Ratio H/L PhosphoSTY (STY) Probabilities
Vimentin 78.875 79152  S(1)RLGDLYEEEMR
Nestin 70.439 5.1826  S(1)LDQEIARPLENENQEFLK
MAPK3 105.65 3.8955 IADPEHDHTGFLT(0.012)EY(0.986)VAT(0.002)R
MAPK1 95.966 3.8053 VADPDHDHTGFLT(0.002)EY(0.987)VAT(0.011)R
Thymosin beta-10 101.53 3.719  ADKPDMGEIAS(1)FDK
Heme oxygenase 1 69.667 3.5229  DQS(0.954)PS(0.046)RAPGLR
Neuroblast differentiation-associated protein AHNAK 121.34 2.7094 LKS(1)EDGVEGDLGETQSR
Metastasis-associated protein MTA2 82.295 2.5995  GHLSRPEAQS(0.121)LS(0.872)PY(0.003)T(0.003)T(0.001)S(0.001)ANR
WD repeat-containing protein 44 69.159 2.564 S(0.804)N'S(0.155)GRELT(0.041)DEEILASVMIK.
Adenylyl cyclase-associated protein 1 114.1 2.3664  PFSAPKPQT(0.909)S(0.09)PS(0.001)PK.
Cell division protein kinase 3 137.54 2.313 IGEGT(0.001)Y(0.999)GVVYK
Serine/threonine-protein kinase N2 76.09 2.3019  AS(0.123)S(0.877)LGEIDESSELR
Platelet endothelial cell adhesion molecule 81.616 2.2931 DTETVY(0.995)S(0.005)EVRK
Ephrin type-A receptor 2 62.998 2.2448  QS(0.002)PEDVY(0.987)FS(0.011)K
Serine/threonine-protein kinase receptor R3 114.1 2.2057 GLHSELGES(0.948)S(0.052)LILK
Nestin 101.53 2.1597  $(0.104)LRS(0.896)LEEQDQETLR
Eukaryotic translation initiation factor 1 97.956 2.048 $(0.985)ATQNLHS(0.012)FDPFADAS(0.003)XK
Ephrin type-A receptor 2 62.998 2.0097 QSPEDVY(0.001)FS(0.999)K
TBC1 domain family member 4 104.43 2.0054  RSLTS(0.001)S(0.999)LENIFSR
Trans-Golgi network integral membrane protein 2 69.159 1.9625  DS(0.115)PS(0.751)KS(0.019)S(0.115)AEAQTPEDTPNK
Sphingosine-1-phosphate phosphatase 1 82.955 1.9245 RNS(0.994)LT(0.006)GEEGQLAR
High mobility group protein HMG-I/HMG-Y 96.484 1.8938  KQPPVSPGT(0.004)ALVGS(0.995)QKEPS(0.001)BVPTPK
Platelet endothelial cell adhesion molecule 62.185 1.8389  EPLNS(0.147)DVQY(0.823)T(0.029)EVQVSSAESHK
Nexilin 80.761 1.7835  RAEQIEDINNT(0.801)GT(0.033)ES(0.158)AS(0.007)EEGDDSLLITVVPVK
Adenylyl cyclase-associated protein 1 114.1 1.7655  PFSAPKPQT(0.003)S(0.968)PS(0.028)PK
Nestin 97.769 1.7339  S(1)LGEEIQESLK
Paxillin 140.37 1.7083  PGSQLDSMLGS(1)LQSDLNK
E3 ubiquitin-protein ligase RAD18 107.9 1.7064 NDLQDTEIS(1)PR
MLN64 N-terminal domain homolog 97.769 1.7036 LLIVQDAS(1)ER
Palladin 104.29 1.7021  IAS(1)DEEIQGTK
Transcription factor AP-1 186.77 1.6877  NSDLLT(0.001)S(0.999)PDVGLLK
Eukaryotic translation initiation factor 1 97.956 1.6859  SAIQNLHS(1)FDPFADASK
LIM domain only protein 7 123.3 1.6371  VTTEIQLPS(0.107)QS(0.893)PVEEQSPASLSSLR
Platelet endothelial cell adhesion molecule 81.616 1.6292 DTETVY(0.94)S(0.06)EVRK
‘WD repeat-containing protein 44 101.53 1.6248 BLSDQAT(0.005)AS(0.995)PIVAR
Centrosomal protein 170kDa 101.53 1.6106 ARLGEAS(0.992)DS(0.008)ELADADK
Tyrosine-protein kinase SgK269 88.753 1.609 ANTLS(1)PVR
Actin-binding protein anillin 61.011 1.5967  AAS(0.969)PPRPLLS(0.031)NASATPVGR
Nuclear fragile X mental retardation-interacting protein 2 166.57 1.5883  DYEIESQNPLAS(0.996)PT(0.004)NTLLGSAK
Neuron navigator 1 88.268 1.5869  AVALDS(0.003)DNIS(0.997)LK
Cdc42 effector protein 1 110.05 1.5867 RSDS(1)LLSFR
PDZ and LIM domain protein 5 87.563 1.5837  YTEFY(1)HVPTHSDASK
Arginine-glutamic acid dipeptide repeats protein 71.758 1.5777 KQPAS(1)PDGRT(0.874)S(0.127)PINEDIR
Arginine-glutamic acid dipeptide repeats protein 71.758 1.5777 KQPAS(1)PDGRT(0.874)S(0.127)PINEDIR
Phosphatase and actin regulator 2 146.92 1.5769  ASIANSDGPTAGSQT(1)PPFK
Pre-B-cell leukemia transcription factor-interacting protein 1 74.948 1.5752  ALQAPHS(0.995)PS(0.005)K
Nucleolin 88.753 1.5741  VVVS(0.993)PT(0.007)KK
Centrosomal protein 170kDa 80.533 1.5736  LGSLSARS(0.914)DS(0.085)EATISR
Histone H1.4 141.09 1.5599  SETAPAAPAAPAPAEKT(1)PVK
Annexin A2 140.37 1.5485  LSLEGDHSTPPS(0.054)AY(0.946)GSVK
Caveolin-1 73.06 1.5394  YVDS(0.002)EGHLY(0.897)T(0.101)VPIR
Catenin delta-1 74.948 1.5305  VGGS(0.002)S(0.998)VDLHR
Mitochondrial import receptor subunit TOM34 91.202 1.5227 NRVPS(1)AGDVEK
Gap junction alpha-1 protein 64.385 1.5225 LAAGHELQPLAIVDQRPS(0.178)S(0.822)R
DNA ligase 1 86.649 1.5176  RTIQEVLEEQS(1)EDEDREAK
Telomere-associated protein RIF1 94.905 1.51 RSQEDEIS(0.06)S(0.94)PVNK
Rho guanine nucleotide exchange factor 2 78.251 1.5095 ERPS(0.078)S(0.921)ATY(0.001)PSDSFR
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