Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45015
Title: K2,4,n之交叉數
The Crossing Number of K2,4,n
Authors: Chen-Chu Su
蘇承祖
Advisor: 陳文進
Keyword: 交叉數,圖,完全二分圖,完全三分圖,NP完備,
Crossing number,graph,complete bipartite graph,complete tripartite graph,NP-complete,
Publication Year : 2010
Degree: 碩士
Abstract: 交叉數是一個圖,在平面上所有的畫法中,可以畫出最小的交叉數。在這篇論
文,根據Kleitman證明完全二分圖的結果,我們證明了對於所有的n, K2,4,n這個
完全三分圖的交叉數。最後,我們提出了關於K2,m,n交叉數的猜想。
The crossing Number $cr(G)$ of a graph $G$ is the smallest crossing number among all drawings of $G$ in the plane.
In this paper, we determine the crossing number of the tripartite graph $K_{2,4,n}$ for any integer $n$. Our proof depends on Kleitman's results for the complete bipartite graphs.
At last, we propose a conjecture of the crossing number of $K_{2,m,n}$.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/45015
Fulltext Rights: 有償授權
Appears in Collections:資訊工程學系

Files in This Item:
File SizeFormat 
ntu-99-1.pdf
  Restricted Access
250.19 kBAdobe PDF
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved