Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 藥學專業學院
  4. 藥學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44776
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor郭錦劃
dc.contributor.authorChi-Sheng Leeen
dc.contributor.author李至晟zh_TW
dc.date.accessioned2021-06-15T03:54:41Z-
dc.date.available2011-10-07
dc.date.copyright2011-10-07
dc.date.issued2011
dc.date.submitted2011-08-17
dc.identifier.citation[1]《中華中藥典》行政院衛生署編印,中華民國九十三年,第一版,第一六八頁。
[2]《神農本草經 卷二中經 草中品》
[3]《本草綱目 草之三 芳草類五十六種》
[4]《本草備要 草部之二》
[5] Natural Medicine:The Genus Angelica, Curr. Med. Chem. 2004, 11, 1479-1500
[6] 日本薬局方,厚生労働省,第十六改正The Japanese Pharmacopoeia Sixteenth Edition, p.1554 http://www.drugfuture.com/pharmacopoeia/JP16/ Last updated:24, March 2011(最後檢視於2011. 7. 21)
[7] Zhao, K. J.; Dong, T. T. X.; Tu, P. F.; Song, Z. H.; Lo, C. K.; Tsim, K. W. K. Molecular Genetic and Chemical Assessment of Radix Angelica (Danggui) in China, J. Agric. Food Chem., 2003, 51, 2576-2583
[8] Song, G.; Deng, C.; Wu, D.; Hu, Y. Headspace Solid-phase Microextraction–Gas Chromatographic–Mass Spectrometric Analysis of the Essential Oils of Two Traditional Chinese Medicines, Angelica pubescens and Angelica sinensis, Chromatographia, 2004, 59, 343-349
[9] Lu, G.-H.; Chang, K.; Chan, C.-L,; Leung, L.; Jiang, Z.-H.; Zhao, Z. Z. Quantification of ligustilides in the roots of Angelica sinensis and related umbelliferous medicinal plants by high-performance liquid chromatography and liquid chromatography–mass spectrometry, J. Chromatogr. A, 2004, 1046, 101-107
[10] Deng, C.; Ji, J.; Wang, X.; Zhang, X. Development of pressurized hot water extraction followed by headspace solid-phase microextraction and gas chromatography-mass spectrometry for determination of ligustilides in Ligusticum chuanxiong and Angelica sinensis, J. Sep. Sci. 2005, 28, 1237-1243
[11] Kim, M. R.; Abd El-Aty, A. M.; Choi, J.-H.; Lee, K. B.; Shim, J. H. Identification of volatile components in Angelica species using supercritical-CO2 fluid extraction and solid phase microextraction coupled to gas chromatography-mass spectrometry. Biomed. Chromatogr. 2006, 20, 1267-1273
[12] Kim, M. R.; Abd El-Aty, A. M.; Kim, I. S.; Shim, J. H. K Determination of volatile flavor components in danggui cultivars by solvent free injection and hydrodistillation followed by gas chromatographic–mass spectrometric analysis. J. Chromatogr. A, 2006, 1116, 259-264
[13] Huang, W.-Y.; Sheu, S.-J. Separation and identification of the organic acids in Angelicae Radix and Ligustici Rhizoma by HPLC and CE. J. Sep. Sci. 2006, 29, 2616-2624
[14] Cho, S.-K.; Abd El-Aty, A. M.; Chio, J.-H.; Kim, M. R.; Shim, J. H. Optimized conditions for the extraction of secondary volatile metabolites in Angelica roots by accelerated solvent extraction. J. Pharmaceut. Biomed., 2007, 44, 1154-1158
[15] Yi, T.; Leung, K. S.-L.; Lu, G.-H.; Zhang, H. Comparative analysis of Ligusticum chuanxiong and related umbelliferous medicinal plants by high performance liquid chromatography-electrospray ionization mass spectrometry. Planta Med. 2007, 73, 392-398
[16] Lu, G.-H.; Chan, K.; Liang, Y.-Z.; Leung, K.; Chan, C.-L.; Jiang, Z.-H.; Zhao, Z.-Z. Development of high-performance liquid chromatographic fingerprints for distinguishing Chinese Angelica from related umbelliferae herbs. J. Chromatogr. A, 2005, 1073, 383-392
[17] Piao, X.-L.; Park, J. H.; Cui, J.; Kim, D.-Y.; Yoo, H.H. Development of gas chromatographic/mass spectrometry-pattern recognition method for the quality control of Korean Angelica, J. Pharmaceut. Biomed., 2007, 44, 1163-1167
[18] Yang, B.; Chen, J.; Lee, F. S.-C.; Wang, X. GC-MS fingerprints for discrimination of Ligusticum chuanxiong from Angelica. J. Sep. Sci, 2008, 31, 3231-3237
[19] 朴香兰,洪承权, 气质联用模式识别方法对中国当归的质量控制, 中国中药杂志[J], 2008(33), 16: 2008
[20] Kim, M. R.; Abd El-Aty, A. M.; Kim, I. S.; Shim, J. H. Metabolic Profiling of Angelica acutiloba Roots Utilizing Gas Chromatography–Time-of-Flight–Mass Spectrometry for Quality Assessment Based on Cultivation Area and Cultivar via Multivariate Pattern Recognition. J. Biosci. Bioeng. 2008, 105, 655-659
[21]Tianniam, S.; Bamba, T.; Fukusaki, E. Pyrolysis GC-MS-based metabolite fingerprinting for quality evaluation of commercial Angelica acutiloba roots. J. Biosci. Bioeng. 2010, 109, 89-93
[22] Yi, L.; Liang, Y.; Wu, H,; Yuan, D. The analysis of Radix Angelicae Sinensis (Danggui). J. Chromatogr. A, 2009, 1216, 1991-2001
[23] Lao, S. C.; Li, S. P.; Kan, K. K. W.; Li, P.; Wan, J. B.; Wang, Y. T.; Dong, T. T. X.; Tsim, K. W. K. Identification and quantification of 13 components in Angelica sinensis (Danggui) by gas chromatography–mass spectrometry coupled with pressurized liquid extraction. Anal. Chim. Acta. 2004, 526, 131-137
[24] Huang, L.-F., Li, B.-Y.; Liang, Y.-Z.; Guo, F.-Q.; Wang, Y.-L. Application of combined approach to analyze the constituents of essential oil from Dong quai, Anal. Bioanal. Chem, 2004, 378, 510-517
[25] Bioactivity-Guided Fractionation and GC/MS Fingerprinting of Angelica sinensis and Wedge, D. E.; Klun, J. A.; Tabanca, N.; Demirci, B.; Ozek, T.; Baser, K. H. C.; Liu, Z.; Zhang, S.; Cantrell, C. L.; Zhang, J. Angelica archangelica Root Components for Antifungal and Mosquito Deterrent Activity. J. Agric. Food Chem. 2009, 57, 464-470
[26] Di, X.; Shellie, R. A.; Marriott, P. J.; Huie, C. W. Application of headspace solid-phase microextraction (HS-SPME) and comprehensive two-dimensional gas chromatography (GC ×GC) for the chemical profiling of volatile oils in complex herbal mixtures, J. Sep. Sci. 2004, 27, 451-458
[27] Laidler, K. J.; Meiser, J. H.; Sanctuary, B. C. Physical Chemistry. Houghton Mifflin Company: Boston, New York, 2003; pp 483-485
[28] Grahame, D. C.The Electrical Double Layer and the Theory of Electrocapillarity. Chem Rev. 1947, 41, 441-501
[29] Laidler, K. J.; Meiser, J. H.; Sanctuary, B. C. Physical Chemistry. Houghton Mifflin Company: Boston, New York, 2003; pp276~280.
[30] Kuhn, R.; Hoffstetter-Kuhn, S. Capillary Electrophoresis: Principles and Practice, Springer-Verlag; Berlin, Germany, 1993; p 14.
[31] Heiger, D. N. High Performance Capillary Electrophoresis-An Introduction, Agilent Technologies; Santa Clara, California, 2000; p18
[32] Laidler, K. J.; Meiser, J. H.; Sanctuary, B. C. Physical Chemistry. Houghton Mifflin Company: Boston, New York, 2003; p294
[33] Kenndler, E. Organic solvents in CE, Electrophoresis, 2009, 30, S101-S111
[34] Heiger, D. N. High Performance Capillary Electrophoresis-An Introduction, Agilent Technologies; Santa Clara, California, 2000; p18
[35] Petr, J.; Maier, V.; Horakova, J.; Ševcik, J.; Stransky, Z. Capillary isotachophoresis from the student point of view–images and the reality. J. Sep. Sci. 2006, 29, 2705–2715
[36] Heiger, D. N. High Performance Capillary Electrophoresis-An Introduction, Agilent Technologies; Santa Clara, California, 2000; pp31-35, 93
[37] Jorgenson, J. W.; Lukacs, K. D. Zone Electrophoresis in Open-Tubular Glass Capillaries, Anal. Chem. 1981, 53, 1298-1302
[38] Heiger, D. N. High Performance Capillary Electrophoresis-An Introduction, Agilent Technologies; Santa Clara, California, 2000; pp90-91
[39] Jandik, P.; Bonn, G. Capillary Electrophoresis of Small Molecules and Ions, VCH Publishers, Inc;New York, New York, 1993; p24
[40] Polymicro Technologies, Capillary tubing, http://www.polymicro.com/products/products_capillarytubing.htm (最後檢視於2011. 7. 21)
[41] Heiger, D. N. High Performance Capillary Electrophoresis-An Introduction, Agilent Technologies; Santa Clara, California, 2000; p92
[42] Jandik, P.; Bonn, G. Capillary Electrophoresis of Small Molecules and Ions, VCH Publishers, Inc;New York, New York, 1993; pp129-131
[43] Laidler, K. J.; Meiser, J. H.; Sanctuary, B. C. Physical Chemistry. Houghton Mifflin Company: Boston, New York, 2003; pp 485-487
[44] Heiger, D. N. High Performance Capillary Electrophoresis-An Introduction, Agilent Technologies; Santa Clara, California, 2000; p20
[45] Heiger, D. N. High Performance Capillary Electrophoresis-An Introduction, Agilent Technologies; Santa Clara, California, 2000; p25
[46] Schwer, C.; Kenndler, E. Electrophoresis in Fused-Silica Capillaries: The Influence of Organic Solvents on the Electroosmotic Velocity and the ζ Potential. Anal. Chem. 1991, 63, 1801-1807
[47] Laidler, K. J.; Meiser, J. H.; Sanctuary, B. C. Physical Chemistry. Houghton Mifflin Company: Boston, New York, 2003; pp 484
[48] Chien, R. L.; Burgi, D. S. Sample Stacking of an Extremely Large Injection Volume in High-Performance Capillary Electrophoresis. Anal. Chem. 1992, 64, 1046-1050
[49] Jandik, P.; Bonn, G. Capillary Electrophoresis of Small Molecules and Ions, VCH Publishers, Inc;New York, New York, 1993; pp37-38
[50] Jandik, P.; Bonn, G. Capillary Electrophoresis of Small Molecules and Ions, VCH Publishers, Inc;New York, New York, 1993; pp26-28
[51] Heiger, D. N. High Performance Capillary Electrophoresis-An Introduction, Agilent Technologies; Santa Clara, California, 2000; pp51-52, 54-58
[52] Jandik, P.; Bonn, G. Capillary Electrophoresis of Small Molecules and Ions, VCH Publishers, Inc;New York, New York, 1993; pp32-33
[53] Giddings, J. C. Unified Separarion Science; John Wiley & Sons, Inc.; Toronto, Canada, 1991, pp58-61
[54] Heiger, D. N. High Performance Capillary Electrophoresis-An Introduction, Agilent Technologies; Santa Clara, California, 2000; pp83-87
[55] Chien, R. L.; Burgi, D. S. On-Column Sample Concentration Using Field Amplification in CZE Anal. Chem. 1992, 64, 489A-496A
[56] Fang, N.; Meng, P.; Zhang, H.; Sun, Y.; Chen, D. D. Y. Systematic optimization of exhaustive electrokinetic injection combined with micellar sweeping in capillary electrophoresis, Analyst, 2007, 132, 127–134
[57] Bowser, M. T.; Bebault, G. M.; Peng, X.; Chen, D. D. Y. Redefining the separation factor: A potential pathway to a unified separation science. Electrophoresis, 1997, 18, 2928-2934
[58] Kuhn, R.; Hoffstetter-Kuhn, S. Capillary Electrophoresis: Principles and Practice, Springer-Verlag; Berlin, Germany, 1993; pp 212-216
[59] Kuhn, R.; Hoffstetter-Kuhn, S. Capillary Electrophoresis: Principles and Practice, Springer-Verlag; Berlin, Germany, 1993; pp 191-200
[60] Terabe, S.; Matsubara, N.; Ishihama, Y.; Okada, Y. Microemulsion electrokinetic chromatography: comparison with micellar electrokinetic chromatography J. Chromatogr. 1992, 608, 23-29
[61] Bowser, M. T.; Kranack, A. R.; Chen, D. D. Y. Analyte-additive interactions in nonaqueous capillary electrophoresis: a critical review. Trac-Trend Anal. Chem, 1998, 17, 424-434
[62] Terabe, S.; Otsuka, K.; Ichikama, K.; Tsuchiya, A.; Ando, T. Electrokinetic chromatography with micellar solution and open-tubular capillary, Anal. Chem.1985, 57, 834-841
[63] Quirino, J. P.; Haddad, P. R. Online Sample Preconcentration in Capillary Electrophoresis using Analyte Focusing by Micelle Collapse. Anal. Chem. 2008, 80, 6824-6829
[64] Liu, L.; Deng, X.; Chen, X. Micelle to trapping solution stacking in micellar electrokinetic chromatography. J. Chromatogr. A, 2010, 1217, 175-178
[65] Jandik, P.; Bonn, G. Capillary Electrophoresis of Small Molecules and Ions, VCH Publishers, Inc;New York, New York, 1993; pp30-32
[66] Melanson, J. E.; Baryla, N. E.; Lucy, C. A.Dynamic capillary coatings for electroosmotic flow control in capillary electrophoresis. Trac-Trend Anal. Chem. 2001, 20, 265-274
[67] Giddings, J. C. Unified Separarion Science, John Wiley & Sons, Inc.; Toronto, Canada, 1991, pp163-165
[68] Giddings, J. C. Unified Separarion Science, John Wiley & Sons, Inc.; Toronto, Canada, 1991, pp232-235
[69] Giddings, J. C. Unified Separarion Science, John Wiley & Sons, Inc.; Toronto, Canada, 1991, pp92-94
[70] Giddings, J. C. Unified Separarion Science, John Wiley & Sons, Inc.; Toronto, Canada, 1991, p158
[71]Giddings, J. C. Unified Separarion Science, John Wiley & Sons, Inc.; Toronto, Canada, 1991, pp96-99
[72] Heiger, D. N. High Performance Capillary Electrophoresis-An Introduction, Agilent Technologies; Santa Clara, California, 2000; pp42-44
[73] Giddings, J. C. Unified Separarion Science, John Wiley & Sons, Inc.; Toronto, Canada, 1991, pp101-105
[74] Giddings, J. C. Unified Separarion Science, John Wiley & Sons, Inc.; Toronto, Canada, 1991, pp105-106
[75] Giddings, J. C. Unified Separarion Science, John Wiley & Sons, Inc.; Toronto, Canada, 1991, pp131-137
[76] Heiger, D. N. High Performance Capillary Electrophoresis-An Introduction, Agilent Technologies; Santa Clara, California, 2000; p99
[77] Heiger, D. N. High Performance Capillary Electrophoresis-An Introduction, Agilent Technologies; Santa Clara, California, 2000; pp104-105
[78] Jandik, P.; Bonn, G. Capillary Electrophoresis of Small Molecules and Ions, VCH Publishers, Inc;New York, New York, 1993; pp101, 131
[79] Gaš, B.; Štědry, M.; Kenndler, E. Peak broadening in capillary zone electrophoresis. Electrophoresis. 1997, 18, 2123-2133
[80] Heiger, D. N. High Performance Capillary Electrophoresis-An Introduction, Agilent Technologies; Santa Clara, California, 2000; pp30-31
[81] Britz-McKibbin, P; Chen, D. D. Y. Selective Focusing of Catecholamines and Weakly Acidic Compounds by Capillary Electrophoresis Using a Dynamic pH Junction. Anal. Chem. 2000, 72, 1242-1252
[82] Giddings, J. C. Unified Separarion Science, John Wiley & Sons, Inc.; Toronto, Canada, 1991, pp223-232
[83] Watson, D. G. Pharmaceutical analysis, 2nd ed.; Elsevier, Amsterdam, Netherland, 2005, pp238-241
[84] Villas-Boas, S. G.; Roessner, U.; Hansen, M. A. E.; Smedsgaard, J.; Nielsen, J. Metabolome analysis An Introduction; John Wiley & Sons, Inc.; Toronto, Canada, 2007, pp94-99
[85] Pawliszyn, J.; Arthur, C. L. Solid phase microextraction with thermal desorption using fused silica optical fibers. Anal. Chem.1990, 62, 2145-2148
[86]Villas-Boas, S. G.; Roessner, U.; Hansen, M. A. E.; Smedsgaard, J.; Nielsen, J. Metabolome analysis An Introduction; John Wiley & Sons, Inc.; Toronto, Canada, 2007, p75
[87] Zhang, Z.; Pawliszyn, J. Headspace solid-phase microextraction. Anal. Chem. 1993, 65, 1843-185
[1] Yi, L.; Liang, Y.; Wu, H,; Yuan, D. The analysis of Radix Angelicae Sinensis (Danggui). J. Chromatogr. A, 2009, 1216, 1991-2001
[2] Huang, W.-Y.; Sheu, S.-J. Separation and identification of the organic acids in Angelicae Radix and Ligustici Rhizoma by HPLC and CE. J. Sep. Sci. 2006, 29, 2616-2624
[3] Synder, L. R.; Kirkland. J. J. Glajch, J. L. Practical HPLC Method Development, 2nd Ed. John Wiley & Sons, Inc.; Toronto, Canada , 1997, 236-248
[1] Di, X.; Shellie, R. A.; Marriott, P. J.; Huie, C. W. Application of headspace solid-phase microextraction (HS-SPME) and comprehensive two-dimensional gas chromatography (GC ×GC) for the chemical profiling of volatile oils in complex herbal mixtures, J. Sep. Sci. 2004, 27, 451-458
[2] Robinson, A. L.; Boss, P. K.; Heymann, H.; Solomon, P. S.; Trengove, R. D. Development of a sensitive non-targeted method for characterizing the wine volatile profile using headspace solid-phase microextraction comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry, J. Chromatogr. A. 2011, 1218, 504-517
[3] Čajka, T.; Hajšlova, J.; Cochran, J.; Holadova, K. Klimankova, E. Solid phase microextraction–comprehensive two-dimensional gas chromatography–time-of-flight mass spectrometry for the analysis of honey volatiles. J. Sep. Sci, 2007, 30, 534-546
[4] Plutowska, B.; Chmiel, T.; Dymerski, T. Wardencki, W. A headspace solid-phase microextraction method development and its application in the determination of volatiles in honeys by gas chromatography, Food Chem. 2011, 126, 1288-1298
[5] Zhang, Z.; Pawliszyn, J. Headspace solid-phase microextraction. Anal. Chem. 1993, 65, 1843-1852
[6] Pawliszyn, J.; Arthur, C. L. Solid phase microextraction with thermal desorption using fused silica optical fibers. Anal. Chem.1990, 62, 2145-2148
[7] Kim, M. R.; Abd El-Aty, A. M.; Choi, J.-H.; Lee, K. B.; Shim, J. H. Identification of volatile components in Angelica species using supercritical-CO2 fluid extraction and solid phase microextraction coupled to gas chromatography-mass spectrometry. Biomed. Chromatogr. 2006, 20, 1267-1273
[8] Di, X.; Shellie, R. A.; Marriott, P. J.; Huie, C. W. Application of headspace solid-phase microextraction (HS-SPME) and comprehensive two-dimensional gas chromatography (GC ×GC) for the chemical profiling of volatile oils in complex herbal mixtures, J. Sep. Sci. 2004, 27, 451-458
[9] Deng, C.; Ji, J.; Wang, X.; Zhang, X. Development of pressurized hot water extraction followed by headspace solid-phase microextraction and gas chromatography-mass spectrometry for determination of ligustilides in Ligusticum chuanxiong and Angelica sinensis, J. Sep. Sci. 2005, 28, 1237-1243
[10] Song, G.; Deng, C.; Wu, D.; Hu, Y. Headspace Solid-phase Microextraction–Gas Chromatographic–Mass Spectrometric Analysis of the Essential Oils of Two Traditional Chinese Medicines, Angelica pubescens and Angelica sinensis, Chromatographia, 2004, 59, 343-349
[11] http://www.sigmaaldrich.com/ SPME fiber assembly Polydimethylsiloxane (PDMS)
[12] Kim, M. R.; Abd El-Aty, A. M.; Kim, I. S.; Shim, J. H. K Determination of volatile flavor components in danggui cultivars by solvent free injection and hydrodistillation followed by gas chromatographic–mass spectrometric analysis. J. Chromatogr. A, 2006, 1116, 259-264
[13] Bioactivity-Guided Fractionation and GC/MS Fingerprinting of Angelica sinensis and Wedge, D. E.; Klun, J. A.; Tabanca, N.; Demirci, B.; Ozek, T.; Baser, K. H. C.; Liu, Z.; Zhang, S.; Cantrell, C. L.; Zhang, J. Angelica archangelica Root Components for Antifungal and Mosquito Deterrent Activity. J. Agric. Food Chem. 2009, 57, 464-470
[14] Huang, L.-F., Li, B.-Y.; Liang, Y.-Z.; Guo, F.-Q.; Wang, Y.-L. Application of combined approach to analyze the constituents of essential oil from Dong quai, Anal. Bioanal. Chem, 2004, 378, 510-517
[15]Deng, S. Doctor’s Dissertation, Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, 2005
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44776-
dc.description.abstract繖形科植物當歸(Angelica sinensis)為一種常用的中藥,其藥理活性包括調經,血管舒張、抗志賀氏菌及防止腦栓塞等。而日本藥典所規定的當歸(Angelica acutiloba)則與中華藥典中當歸不同,且具不同的藥理活性。由於在民間使用的廣泛性及重要性,本研究開發分析當歸中非揮發性成份與揮發性成份的方法。對非揮發性分析物以毛細管電泳法分離,以紫外光吸收偵測器分析當歸萃取物。以40%甲醇萃取當歸,研究中對影響毛細管電泳分離當歸萃取物之參數進行最佳化及探討。最佳化電泳條件為以壓力進樣,在15mM 四硼酸鈉 (pH 9.3)、20mM 硫酸月桂酸鈉、9%乙腈(v/v)為背景電解質的環境下以偵測於210nm波長下的吸光度進行分析。以 最佳化條件分析24個實際當歸樣品所得指紋圖譜,經過校準後比較其相似度可將中華當歸與日本當歸以0.5為閾值區別。本實驗開發出一個簡易快速的毛細管電泳方法,並具在實際樣品中區分中華與日本當歸的能力。
對揮發性成份以頂空固相微萃取為樣品製備方法,以二維氣相層析結合飛行時間質譜儀為分析方法。本研究對頂空固相微萃取的溫度與時間、二維氣相層析結合飛行時間質譜儀之一維、二維溫度梯度與調變器(modulator)參數進行最佳化。最佳化分析條件為以80°C萃取樣品45分鐘,所得樣品於二維氣相層析法需時36分鐘,並在其中鑑定出28個於文獻中報導的分析物。以此方法分析中華當歸與日本當歸所得之層析圖有顯著差異,顯示此分析方法有鑑定當歸基原之潛力。
zh_TW
dc.description.abstractAngelica is a commonly used traditional Chinese herbal medicine. Pharmacological activities of Angelica include regulating menstrual cycle, vasorelaxation, anti-Shigella and treating cerebral thrombosis. The Pharmacopeia species in Japan and Taiwan are Angelica acutiloba and Angelica sinensis, respectively. Different Angelica species show different pharmacological activities. Owing to its extensive use and importance, we developed analytical methods to analyze volatile and non-volatile components in Angelica plants. For non-volatile components, we developed a capillary electrophoresis-UV absorbance (CE-UV) method to analyze Angelica extract. The extraction solvent contains 40% methanol. We optimized CE parameters to analyze Angelica extract. The optimal CE conditions used hydrodynamic injection and the background solution was 15mM sodium tetraborate (pH was 9.3), 20mM sodium lauryl sulfate and 9% acetonitrile (v/v). The detection wavelength was 210nm. The fingerprint of 24 Angelica extract were aligned and compared the similarity. A. sinensis and A. acutiloba could be distinguished by the threshold value of 0.5. This simple and fast CE-UV method appears to be applicable to distinguish A. sinensis and A. acutiloba.
For volatile components, we used headspace-microextraction (HS-SPME) as sample preparation method and the extract was analyzed by two-dimension gas chromatography-time of flight mass spectrometry (2D GC-TOF MS). We optimized the SPME extraction temperature and time. The temperature gradients in the first and second dimensional GC oven as well as the modulation period were optimized to improve the separation efficiency. The optimized condition for HS-SPME extracted the sample at 80°C for 30 minutes and the sample was analyzed by 2D- GC. The analytical time was 36 minutes, and 28 components that had been reported in Angelica were identified. Under optimal conditions, chromatograms of A. sinensis and A. acutiloba sample showed significant difference. The developed method shows potential for authentication of Angelica plant.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T03:54:41Z (GMT). No. of bitstreams: 1
ntu-100-R98423021-1.pdf: 2417561 bytes, checksum: 40fb1581e38bb2f7756443fdf982184d (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents誌謝------------------------------------------------------------------i
中文摘要-------------------------------------------------------------ii
英文摘要-------------------------------------------------------------iii
目錄-----------------------------------------------------------------iv
圖目錄---------------------------------------------------------------vii
表目錄---------------------------------------------------------------viii
內文目錄
第一章、序論--------------------------------------------------------1
1.當歸------------------------------------------------------------------1
1.1當歸的傳統功效------------------------------------------------------1
1.2當歸之現代研究----------------------------------------------------------1
1.3當歸之分析方法文獻探討-----------------------------------------------------------3
1.3.1 當歸之化學成分分析法---------------------------------------------------3
1.3.2 當歸之基原鑑定方法------------------------------------------------------3
1.4當歸之藥典規定與研究動機------------------------------------------------4
2. 毛細管電泳------------------------------------------------------------5
2.1毛細管電泳原理---------------------------------------------------5
2.1.1電雙層(Electrical double layer) -------------------------------------------5
2.1.2電泳淌度 (Electrophoretic mobility) ------------------------------------7
2.1.3焦耳熱 (Joule heating) -----------------------------------------------------8
2.1.4毛細管 (Capillary) ----------------------------------------------------------9
2.1.5電滲流 (Electroosmotic flow) -------------------------------------------10
2.1.6壓力流 (Hagen-Poiseuille flow) -----------------------------------------11
2.2毛細管電泳進樣方式----------------------------------------------------------------12
2.2.1壓力進樣,水動力進樣/流體進樣,重力進樣----------------------12
2.2.2電動進樣--------------------------------------------------------------------13
2.3電泳分離模式-------------------------------------------------------------------------13
2.3.1區帶電泳 (Zone electrophoresis, ZE) ----------------------------------13
2.3.2電動層析 (Electrokinetic chromatography, EKC) --------------------14
2.3.3 等速電泳 (Isotachophoresis, ITP) --------------------------------------15
2.4電泳效能--------------------------------------------------------------16
2.4.1分離因子(Separation factor) ---------------------------------------------16
2.4.2理論板數(Theoretical plate numbers) ----------------------------------16
2.4.3解析度(Resolution) -------------------------------------------------------17
2.4.4峰容量(Peak capacity) ----------------------------------------------------18
2.4.5靈敏度(Sensitivity) -------------------------------------------------------18
3. 氣相層析法(Gas chromatography, GC)與固相微萃取技術(Solid phase microextraction, SPME) ---------------------------------------------------------------------19
3.1氣相層析法(Gas chromatography, GC) -------------------------------------------20
3.2 固相微萃取(Solid phase microextraction, SPME) ------------------------------20
第一章參考文獻---------------------------------------------------------------------------22
第二章 開發以毛細管電泳分析當歸中之非揮發性物質之基原鑑定方法-------------40
1. 研究目的---------------------------------------------------------------------------------40
2. 實驗部份---------------------------------------------------------------------------------40
2.1 實驗器材 ---------------------------------------------------------------------40
2.2 試劑----------------------------------------------------------------------------40
2.3樣品配製----------------------------------------------------------------------41
2.4分析條件----------------------------------------------------------------------42
2.4.1毛細管處理--------------------------------------------------------42
3. 結果與討論-----------------------------------------------------------------42
3.1萃取液組成-------------------------------------------------------------------43
3.1.1甲醇比例-----------------------------------------------------------43
3.2毛細管電泳分析條件最佳化----------------------------------------------43
3.2.1初始條件-----------------------------------------------------------43
3.2.2背景溶液有機添加劑種類與濃度-----------------------------44
3.2.3背景溶液介面活性劑濃度--------------------------------------44
3.2.4背景溶液硼酸鹽濃度--------------------------------------------45
3.2.5背景溶液pH值---------------------------------------------------45
3.3分析方法確效----------------------------------------------------------------45
3.4 當歸樣品分析---------------------------------------------------------------46
4. 結論-------------------------------------------------------------------46
第二章參考文獻---------------------------------------------------------------------------47
第三章 開發以頂空固相微萃取結合二維氣相層析分析當歸中之揮發性物質方法--58
1. 研究目的--------------------------------------------------------------------------------58
2. 實驗部份--------------------------------------------------------------------------------58
2.1 試劑----------------------------------------------------------------------------58
2.2儀器----------------------------------------------------------------------------58
2.3二維氣相層析-質譜儀條件------------------------------------------------58
2.4固相微萃取條件-------------------------------------------------------------59
3. 結果與討論-----------------------------------------------------------------------------59
3.1二維氣相層析方法開發----------------------------------------------------59
3.1.1 第一維氣相層析之溫度梯度-----------------------------------59
3.1.2第二維與第一維氣相層析之溫度差值(Offset) -------------60
3.1.3二維氣相層析之Modulation period---------------------------61
3.2 固相微萃取方法開發-------------------------------------------------------61
3.2.1固相微萃取之纖維材質選取-----------------------------------61
3.2.2固相微萃取之萃取溫度最佳化--------------------------------62
3.2.3固相微萃取之萃取時間最佳化--------------------------------62
3.3 當歸樣品分析----------------------------------------------------------------62
4. 結論---------------------------------------------------------------------------------------63
第三章參考文獻---------------------------------------------------------------------------64
dc.language.isozh-TW
dc.title當歸藥材基原鑑定分析方法開發zh_TW
dc.titleDevelopment of Analytical Methods for Identification of Angelica plantsen
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree碩士
dc.contributor.oralexamcommittee吳信隆,陳家揚
dc.subject.keyword當歸,毛細管電泳,固相微萃取,二維氣相層析,基原鑑定,zh_TW
dc.subject.keywordAngelica,Capillary electrophoresis,Solid phase microextraction,Two dimensional-gas chromatography,Authentication,en
dc.relation.page72
dc.rights.note有償授權
dc.date.accepted2011-08-18
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept藥學研究所zh_TW
顯示於系所單位:藥學系

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  目前未授權公開取用
2.36 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved