Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 藥學專業學院
  4. 藥學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44732
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林君榮
dc.contributor.authorYi-Chen Tsaien
dc.contributor.author蔡宜臻zh_TW
dc.date.accessioned2021-06-15T03:53:45Z-
dc.date.available2015-09-13
dc.date.copyright2010-09-13
dc.date.issued2010
dc.date.submitted2010-07-01
dc.identifier.citationAkarawut W, Lin CJ and Smith DE (1998) Noncompetitive inhibition of glycylsarcosine transport by quinapril in rabbit renal brush border membrane vesicles: effect on high-affinity peptide transporter. J Pharmacol Exp Ther 287:684-690.
American Diabetes Association (2010) Diagnosis and classification of diabetes mellitus. Diabetes Care 33:S62-S69.
Amidon GL, Lennernas H, Shah VP and Crison JR (1995) A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm Res 12:413-420.
Amidon GL, Sinko PJ and Fleisher D (1988) Estimating human oral fraction dose absorbed: a correlation using rat intestinal membrane permeability for passive and carrier-mediated compounds. Pharm Res 5:651-654.
Artursson P, Palm K and Luthman K (2001) Caco-2 monolayers in experimental and theoretical predictions of drug transport. Adv Drug Deliv Rev 46:27-43.
Atkinson MA and Eisenbarth GS (2001) Type 1 diabetes: new perspectives on disease pathogenesis and treatment. Lancet 358:221-229.
Balimane PV, Chong S and Morrison RA (2000) Current methodologies used for evaluation of intestinal permeability and absorption. J Pharmacol Toxicol Methods 44:301-312.
Berner W and Kinne R (1976) Transport of p-aminohippuric acid by plasma membrane vesicles isolated from rat kidney cortex. Pflugers Arch 361:269-277.
Booth AN, Jones FT and Deeds F (1958) Metabolic and glucosuria studies on naringin and phloridzin. J Biol Chem 233:280-282.
Brunelle FM and Verbeeck RK (1997) Conjugation-deconjugation cycling of diflunisal via beta-glucuronidase catalyzed hydrolysis of its acyl glucuronide in the rat. Life Sci 60:2013-2021.
Center for Drug Evaluation and Research (2000) Guidance for industry, Waiver of in vivo bioavailability and bioequivalence studies for immediate-release solid oral dosage forms based on a biopharmaceutics classification system. Food and Drug Administration.
Corpe CP, Basaleh MM, Affleck J, Gould G, Jess TJ and Kellett GL (1996) The regulation of GLUT5 and GLUT2 activity in the adaptation of intestinal brush-border fructose transport in diabetes. Pflugers Arch 432:192-201.
Dahan A and Amidon GL (2008) Segmental dependent transport of low permeability compounds along the small intestine due to P-glycoprotein: the role of efflux transport in the oral absorption of BCS class III drugs. Mol Pharm 6:19-28.
Daugherty AL and Mrsny RJ (1999) Transcellular uptake mechanisms of the intestinal epithelial barrier Part one. Pharm Sci Technolo Today 4:144-151.
Diez-Sampedro A, Wright EM and Hirayama BA (2001) Residue 457 controls sugar binding and transport in the Na(+)/glucose cotransporter. J Biol Chem 276:49188-49194.
Ellsworth BA, Meng W, Patel M, Girotra RN, Wu G, Sher PM, Hagan DL, Obermeier MT, Humphreys WG, Robertson JG, Wang A, Han S, Waldron TL, Morgan NN, Whaley JM and Washburn WN (2008) Aglycone exploration of C-arylglucoside inhibitors of renal sodium-dependent glucose transporter SGLT2. Bioorg Med Chem Lett 18:4770-4773.
Fagerholm U, Johansson M and Lennernas H (1996) Comparison between permeability coefficients in rat and human jejunum. Pharm Res 13:1336-1342.
Farber SJ, Berger EY and Earle DP (1951) Effect of diabetes and insulin of the maximum capacity of the renal tubules to reabsorb glucose. J Clin Invest 30:125-129.
Fisher MB, Campanale K, Ackermann BL, VandenBranden M and Wrighton SA (2000) In vitro glucuronidation using human liver microsomes and the pore-forming peptide alamethicin. Drug Metab Dispos 28:560-566.
Fiske CH and Subbarow Y (1925) The colorimetric determination of phosphorous. J Biol Chem 66:375-400.
Freitas HS, Anhe GF, Melo KF, Okamoto MM, Oliveira-Souza M, Bordin S and Machado UF (2008) Na(+) -glucose transporter-2 messenger ribonucleic acid expression in kidney of diabetic rats correlates with glycemic levels: involvement of hepatocyte nuclear factor-1alpha expression and activity. Endocrinology 149:717-724.
Fujimori Y, Katsuno K, Nakashima I, Ishikawa-Takemura Y, Fujikura H and Isaji M (2008) Remogliflozin etabonate, in a novel category of selective low-affinity sodium glucose cotransporter (SGLT2) inhibitors, exhibits antidiabetic efficacy in rodent models. J Pharmacol Exp Ther 327:268-276.
Goldman M, Yaari A, Doshnitzki Z, Cohen-Luria R and Moran A (2006) Nephrotoxicity of uranyl acetate: effect on rat kidney brush border membrane vesicles. Arch Toxicol 80:387-393.
Goodwin NC, Mabon R, Harrison BA, Shadoan MK, Almstead ZY, Xie Y, Healy J, Buhring LM, DaCosta CM, Bardenhagen J, Mseeh F, Liu Q, Nouraldeen A, Wilson AG, Kimball SD, Powell DR and Rawlins DB (2009) Novel L-xylose derivatives as selective sodium-dependent glucose cotransporter 2 (SGLT2) inhibitors for the treatment of type 2 diabetes. J Med Chem 52:6201-6204.
Han S, Hagan DL, Taylor JR, Xin L, Meng W, Biller SA, Wetterau JR, Washburn WN and Whaley JM (2008) Dapagliflozin, a selective SGLT2 inhibitor, improves glucose homeostasis in normal and diabetic rats. Diabetes 57:1723-1729.
He K, Ludtke SJ, Heller WT and Huang HW (1996) Mechanism of alamethicin insertion into lipid bilayers. Biophys J 71:2669-2679.
Hediger MA (1994) Structure, function and evolution of solute transporters in prokaryotes and eukaryotes. J Exp Biol 196:15-49.
Hediger MA and Rhoads DB (1994) Molecular physiology of sodium-glucose cotransporters. Physiol Rev 74:993-1026.
Hirayama BA, Diez-Sampedro A and Wright EM (2001) Common mechanisms of inhibition for the Na+/glucose (hSGLT1) and Na+/Cl-/GABA (hGAT1) cotransporters. Br J Pharmacol 134:484-495.
Hirayama BA, Loo DD, Diez-Sampedro A, Leung DW, Meinild AK, Lai-Bing M, Turk E and Wright EM (2007) Sodium-dependent reorganization of the sugar-binding site of SGLT1. Biochemistry 46:13391-13406.
Hirayama BA, Lostao MP, Panayotova-Heiermann M, Loo DD, Turk E and Wright EM (1996) Kinetic and specificity differences between rat, human, and rabbit Na+-glucose cotransporters (SGLT-1). Am J Physiol 270:G919-926.
Hongu M, Funami N, Takahashi Y, Saito K, Arakawa K, Matsumoto M, Yamakita H and Tsujihara K (1998) Na(+)-glucose cotransporter inhibitors as antidiabetic agents. III. Synthesis and pharmacological properties of 4'-dehydroxyphlorizin derivatives modified at the OH groups of the glucose moiety. Chem Pharm Bull (Tokyo) 46:1545-1555.
Hopfer U, Nelson K, Perrotto J and Isselbacher KJ (1973) Glucose transport in isolated brush border membrane from rat small intestine. J Biol Chem 248:25-32.
Jorgensen PL and Skou JC (1971) Purification and characterization of (Na+K+)-ATPase. I. The influence of detergents on the activity of (Na+K+)-ATPase in preparations from the outer medulla of rabbit kidney. Biochim Biophys Acta 233:366-380.
Kakinuma H, Oi T, Hashimoto-Tsuchiya Y, Arai M, Kawakita Y, Fukasawa Y, Iida I, Hagima N, Takeuchi H, Chino Y, Asami J, Okumura-Kitajima L, Io F, Yamamoto D, Miyata N, Takahashi T, Uchida S and Yamamoto K (2010) (1S)-1,5-anhydro-1-[5-(4-ethoxybenzyl)-2-methoxy-4-methylphenyl]-1-thio-D- glucitol (TS-071) is a potent, selective sodium-dependent glucose cotransporter 2 (SGLT2) inhibitor for type 2 diabetes treatment. J Med Chem 53:3247-3261.
Kanai Y, Lee WS, You G, Brown D and Hediger MA (1994) The human kidney low affinity Na+/glucose cotransporter SGLT2. Delineation of the major renal reabsorptive mechanism for D-glucose. J Clin Invest 93:397-404.
Katsuno K, Fujimori Y, Takemura Y, Hiratochi M, Itoh F, Komatsu Y, Fujikura H and Isaji M (2007) Sergliflozin, a novel selective inhibitor of low-affinity sodium glucose cotransporter (SGLT2), validates the critical role of SGLT2 in renal glucose reabsorption and modulates plasma glucose level. J Pharmacol Exp Ther 320:323-330.
Kilford PJ, Stringer R, Sohal B, Houston JB and Galetin A (2009) Prediction of drug clearance by glucuronidation from in vitro data: use of combined cytochrome P450 and UDP-glucuronosyltransferase cofactors in alamethicin-activated human liver microsomes. Drug Metab Dispos 37:82-89.
Kim JS, Mitchell S, Kijek P, Tsume Y, Hilfinger J and Amidon GL (2006) The suitability of an in situ perfusion model for permeability determinations: utility for BCS class I biowaiver requests. Mol Pharm 3:686-694.
Komiya I, Park JY, Kamani A, Ho NFH and Higuchi WI (1980) Quantitative mechanistic studies in simultaneous fluid flow and intestinal absorption using steroids as model solutes. Int J Pharm 4:249-262.
Komoroski B, Vachharajani N, Boulton D, Kornhauser D, Geraldes M, Li L and Pfister M (2009a) Dapagliflozin, a novel SGLT2 inhibitor, induces dose-dependent glucosuria in healthy subjects. Clin Pharmacol Ther 85:520-526.
Komoroski B, Vachharajani N, Feng Y, Li L, Kornhauser D and Pfister M (2009b) Dapagliflozin, a novel, selective SGLT2 inhibitor, improved glycemic control over 2 weeks in patients with type 2 diabetes mellitus. Clin Pharmacol Ther 85:513-519.
Kramer SD (1999) Absorption prediction from physicochemical parameters. Pharm Sci Technolo Today 2:373-380.
Lelievre-Pegorier M and Merlet-Benichou C (1993) Effects of weaning on phosphate transport maturation in the rat kidney. Clearance and brush border membrane studies. Pediatr Nephrol 7:807-814.
Lennernäs H (2007) Modeling gastrointestinal drug absorption requires more in vivo biopharmaceutical data: experience from in vivo dissolution and permeability studies in humans. Curr Drug Metab 8:645-657.
Lennernäs H and Abrahamsson B (2005) The use of biopharmaceutic classification of drugs in drug discovery and development: current status and future extension. J Pharm Pharmacol 57:273-285.
Lennernäs H, Ahrenstedt O, Hallgren R, Knutson L, Ryde M and Paalzow LK (1992)Regional jejunal perfusion, a new in vivo approach to study oral drug absorptionin man. Pharm Res 9:1243-1251.
Lin CJ, Chen CH, Liu FW, Kang JJ, Chen CK, Lee SL and Lee SS (2006) Inhibition ofintestinal glucose uptake by aporphines and secoaporphines. Life Sci79:144-153.
List JF, Woo V, Morales E, Tang W and Fiedorek FT (2009) Sodium-glucose cotransport inhibition with dapagliflozin in type 2 diabetes. Diabetes Care 32:650-657.
Little JM (1949) A modified diphenylamine procedure for the determination of inulin. J Biol Chem 180:747-754.
Lo B and Silverman M (1998) Cysteine scanning mutagenesis of the segment between putative transmembrane helices IV and V of the high affinity Na+/Glucosecotransporter SGLT1. Evidence that this region participates in the Na+ and voltage dependence of the transporter. J Biol Chem 273:29341-29351.
Loo DD, Hirayama BA, Gallardo EM, Lam JT, Turk E and Wright EM (1998) Conformational changes couple Na+ and glucose transport. Proc Natl Acad Sci U S A 95:7789-7794.
Lowry OH, Rosebrough NJ, Farr AL and Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265-275.
Majowicz MP, Gonzalez Bosc LV, Albertoni Borghese MF, Delgado MF, Ortiz MC, Sterin Speziale N and Vidal NA (2003) Atrial natriuretic peptide and endothelin-3 target renal sodium-glucose cotransporter. Peptides 24:1971-1976.
Malathi P and Crane RK (1969) Phlorizin hydrolase: a beta-glucosidase of hamster intestinal brush border membrane. Biochim Biophys Acta 173:245-256.
Meng W, Ellsworth BA, Nirschl AA, McCann PJ, Patel M, Girotra RN, Wu G, Sher PM, Morrison EP, Biller SA, Zahler R, Deshpande PP, Pullockaran A, Hagan DL, Morgan N, Taylor JR, Obermeier MT, Humphreys WG, Khanna A, Discenza L, Robertson JG, Wang A, Han S, Wetterau JR, Janovitz EB, Flint OP, Whaley JM and Washburn WN (2008) Discovery of dapagliflozin: a potent, selective renal sodium-dependent glucose cotransporter 2 (SGLT2) inhibitor for the treatment of type 2 diabetes. J Med Chem 51:1145-1149.
Miller DL and Schedl HP (1972) Nonabsorbed indicators: a comparison of phenol red and inulin-14 C and effects of perfusion technique. Gastroenterology 62:48-55.
Mogensen CE (1971) Maximum tubular reabsorption capacity for glucose and renalhemodynamcis during rapid hypertonic glucose infusion in normal and diabetic subjects. Scand J Clin Lab Invest 28:101-109.
Mohler ML, He Y, Wu Z, Hwang DJ and Miller DD (2009) Recent and emerging anti-diabetes targets. Med Res Rev 29:125-195.
Nathan DM, Buse JB, Davidson MB, Ferrannini E, Holman RR, Sherwin R and ZinmanB (2009) Medical management of hyperglycemia in type 2 diabetes: a consensus algorithm for the initiation and adjustment of therapy: a consensus statement of the American Diabetes Association and the European Association for the Study of Diabetes. Diabetes Care 32:193-203.
Obermeier M, Yao M, Khanna A, Koplowitz B, Zhu M, Li W, Komoroski B, Kasichayanula S, Discenza L, Washburn W, Meng W, Ellsworth BA, Whaley JM and Humphreys WG (2010) In vitro characterization and pharmacokinetics of dapagliflozin (BMS-512148), a potent sodium-glucose cotransporter type II inhibitor, in animals and humans. Drug Metab Dispos 38:405-414.
Panayotova-Heiermann M, Loo DD and Wright EM (1995) Kinetics of steady-state currents and charge movements associated with the rat Na+/glucose cotransporter. J Biol Chem 270:27099-27105.
Quaroni A and Hochman J (1996) Development of intestinal cell culture models for drug transport and metabolism studies. Advanced Drug Delivery Reviews 22:3-52.
Rahmoune H, Thompson PW, Ward JM, Smith CD, Hong G and Brown J (2005) Glucose transporters in human renal proximal tubular cells isolated from the urine of patients with non-insulin-dependent diabetes. Diabetes 54:3427-3434.
Regardh CG, Borg KO, Johansson R, Johnsson G and Palmer L (1974) Pharmacokinetic studies on the selective beta1-receptor antagonist metoprolol in man. J Pharmacokinet Biopharm 2:347-364.
Robinson RP, Mascitti V, Boustany-Kari CM, Carr CL, Foley PM, Kimoto E, Leininger MT, Lowe A, Klenotic MK, Macdonald JI, Maguire RJ, Masterson VM, Maurer TS, Miao Z, Patel JD, Preville C, Reese MR, She L, Steppan CM, Thuma BA and Zhu T (2010) C-Aryl glycoside inhibitors of SGLT2: Exploration of sugar modifications including C-5 spirocyclization. Bioorg Med Chem Lett 20:1569-1572.
Rossetti L, Smith D, Shulman GI, Papachristou D and DeFronzo RA (1987) Correction of hyperglycemia with phlorizin normalizes tissue sensitivity to insulin in diabetic rats. J Clin Invest 79:1510-1515.
Rowland A, Gaganis P, Elliot DJ, Mackenzie PI, Knights KM and Miners JO (2007) Binding of inhibitory fatty acids is responsible for the enhancement of UDP-glucuronosyltransferase 2B7 activity by albumin: implications for in vitro-in vivo extrapolation. J Pharmacol Exp Ther 321:137-147.
Rowland A, Knights KM, Mackenzie PI and Miners JO (2008) The 'albumin effect' and drug glucuronidation: bovine serum albumin and fatty acid-free human serum albumin enhance the glucuronidation of UDP-glucuronosyltransferase (UGT) 1A9 substrates but not UGT1A1 and UGT1A6 activities. Drug Metab Dispos 36:1056-1062.
Salphati L, Childers K, Pan L, Tsutsui K and Takahashi L (2001) Evaluation of a single-pass intestinal-perfusion method in rat for the prediction of absorption in man. J Pharm Pharmacol 53:1007-1013.
Sharp PA, Debnam ES and Srai SK (1996) Rapid enhancement of brush border glucose uptake after exposure of rat jejunal mucosa to glucose. Gut 39:545-550.
Skyler JS (2004) Diabetes mellitus: pathogenesis and treatment strategies. J Med Chem 47:4113-4117.
Stumvoll M, Goldstein BJ and van Haeften TW (2005) Type 2 diabetes: principles of pathogenesis and therapy. Lancet 365:1333-1346.
Tabatabai NM, Sharma M, Blumenthal SS and Petering DH (2009) Enhanced expressions of sodium-glucose cotransporters in the kidneys of diabetic Zucker rats. Diabetes Res Clin Pract 83:e27-30.
Tomimatsu T and Horie T (2005) Enhanced glucose absorption in the rat small intestine following repeated doses of 5-fluorouracil. Chem Biol Interact 155:129-139.
Tsujihara K, Hongu M, Saito K, Inamasu M, Arakawa K, Oku A and Matsumoto M (1996) Na(+)-glucose cotransporter inhibitors as antidiabetics. I. Synthesis and pharmacological properties of 4'-dehydroxyphlorizin derivatives based on a new concept. Chem Pharm Bull (Tokyo) 44:1174-1180.
Tsujihara K, Hongu M, Saito K, Kawanishi H, Kuriyama K, Matsumoto M, Oku A, Ueta K, Tsuda M and Saito A (1999) Na(+)-glucose cotransporter (SGLT) inhibitors as antidiabetic agents. 4. Synthesis and pharmacological properties of 4'-dehydroxyphlorizin derivatives substituted on the B ring. J Med Chem 42:5311-5324.
Turk E, Kerner CJ, Lostao MP and Wright EM (1996) Membrane topology of the human Na+/glucose cotransporter SGLT1. J Biol Chem 271:1925-1934.
Turk E, Zabel B, Mundlos S, Dyer J and Wright EM (1991) Glucose/galactose malabsorption caused by a defect in the Na+/glucose cotransporter. Nature 350:354-356.
Turner RC, Cull CA, Frighi V and Holman RR (1999) Glycemic control with diet, sulfonylurea, metformin, or insulin in patients with type 2 diabetes mellitus: progressive requirement for multiple therapies (UKPDS 49). UK Prospective Diabetes Study (UKPDS) Group. JAMA 281:2005-2012.
Tyagi NK, Kumar A, Goyal P, Pandey D, Siess W and Kinne RK (2007) D-Glucose-recognition and phlorizin-binding sites in human sodium/D-glucose cotransporter 1 (hSGLT1): a tryptophan scanning study. Biochemistry 46:13616-13628.
Uchaipichat V, Mackenzie PI, Guo XH, Gardner-Stephen D, Galetin A, Houston JB and Miners JO (2004) Human udp-glucuronosyltransferases: isoform selectivity and kinetics of 4-methylumbelliferone and 1-naphthol glucuronidation, effects of organic solvents, and inhibition by diclofenac and probenecid. Drug Metab Dispos 32:413-423.
Uldry M and Thorens B (2004) The SLC2 family of facilitated hexose and polyol transporters. Pflugers Arch 447:480-489.
Ussing HH and Zerahn K (1951) Active transport of sodium as the source of electric current in the short-circuited isolated frog skin. Acta Physiol Scand 23:110-127.
van den Heuvel LP, Assink K, Willemsen M and Monnens L (2002) Autosomal recessive renal glucosuria attributable to a mutation in the sodium glucose cotransporter (SGLT2). Hum Genet 111:544-547.
Varma MV and Panchagnula R (2005) Prediction of in vivo intestinal absorption enhancement on P-glycoprotein inhibition, from rat in situ permeability. J Pharm Sci 94:1694-1704.
Washburn WN (2009) Development of the renal glucose reabsorption inhibitors: a new mechanism for the pharmacotherapy of diabetes mellitus type 2. J Med Chem 52:1785-1794.
Wells RG, Pajor AM, Kanai Y, Turk E, Wright EM and Hediger MA (1992) Cloning of a human kidney cDNA with similarity to the sodium-glucose cotransporter. Am J
Physiol 263:F459-465.
Wielert-Badt S, Lin JT, Lorenz M, Fritz S and Kinne RK (2000) Probing the conformation of the sugar transport inhibitor phlorizin by 2D-NMR, molecular dynamics studies, and pharmacophore analysis. J Med Chem 43:1692-1698.
Wright EM (2001) Renal Na(+)-glucose cotransporters. Am J Physiol Renal Physiol 280:F10-18.
Wright EM, Loo DD, Hirayama BA and Turk E (2004) Surprising versatility of Miners JO (2004) Human udp-glucuronosyltransferases: isoform selectivity and kinetics of 4-methylumbelliferone and 1-naphthol glucuronidation, effects of organic solvents, and inhibition by diclofenac and probenecid. Drug Metab Dispos 32:413-423. Na+-glucose cotransporters: SLC5. Physiology (Bethesda) 19:370-376.
You G, Lee WS, Barros EJ, Kanai Y, Huo TL, Khawaja S, Wells RG, Nigam SK and Hediger MA (1995) Molecular characteristics of Na(+)-coupled glucose transporters in adult and embryonic rat kidney. J Biol Chem 270:29365-29371.
Zakeri-Milani P, Valizadeh H, Tajerzadeh H, Azarmi Y, Islambolchilar Z, Barzegar S and Barzegar-Jalali M (2007) Predicting human intestinal permeability using single-pass intestinal perfusion in rat. J Pharm Pharm Sci 10:368-379.
Zakeri-Milani P, Valizadeh H, Tajerzadeh H and Islambulchilar Z (2009) The utility of rat jejunal permeability for biopharmaceutics classification system. Drug Dev Ind Pharm 35:1496-1502.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44732-
dc.description.abstract第二型鈉離子依賴型轉運蛋白 (sodium-dependent glucose transporter-2,SGLT2) 抑制劑被認為具有調控血糖的功能,而利用結構與活性關係的探討,可了解最適合之抑制劑結構。本研究嘗試利用不同結構之糖苷類化合物,分別探討其糖基及非糖基結構對鈉離子依賴型轉運蛋白功能之影響。其轉運功能利用大鼠腎臟及小腸刷狀外緣細胞膜微粒配合放射性物質及快速過濾技術來測定。同時,為評估抑制劑是否可發展為有效之口服降血糖藥物,以人類肝臟微粒體系統檢視其代謝狀況,並利用大鼠之原位小腸灌流試驗評估其腸道穿透性,配合溶解度試驗進行生物藥劑學分類,以了解其腸道吸收之特性。
研究結果顯示,非糖基之芳香環需與糖基呈一定距離且具有適當之取代基以達到選擇性抑制第二型鈉離子依賴型轉運蛋白之作用。此外,糖基結構與鈉離子依賴型轉運蛋白的交互作用對其抑制效果是必要的,而將dapagliflozin 之糖基修改為五元環之新化合物core 1 亦具有抑制腎臟刷狀外緣細胞膜微粒轉運葡萄糖的功能,兩者IC50 分別是19.2 ± 7.1 (μM) 及9.0 ± 3.7 (μM)。Core 1 與dapagliflozin 同樣可能經由phase II 代謝酵素作用而降解,而推算其人體腸道吸收分率約為90 %,顯示在口服吸收的過程中可能會受到腸道穿透性不佳的限制。由以上藥效及藥動學之探討,本研究提供第二型鈉離子依賴型轉運蛋白抑制劑之結構特性,並討論發展為口服降血糖藥物必要的考量,可作為此類藥物後續研究方向之參考。
zh_TW
dc.description.abstractSodium-dependent glucose transporter-2 (SGLT2) inhibitors are proved to have antihyperglycemic effect. With the approach of structure-activity relationship, the optimal structure of SGLT2 inhibitors can be revealed. In the present study, glucosides of different structures are used to evaluate the effect of aglycones or “glucose” moieties modification on SGLTs inhibition. The transport activity of SGLTs in the presence of glucosides was measured using brush border membrane vesicles (BBMV) isolated from rat kidneys or intestines. Furthermore, in order to evaluate the suitability of inhibitors for oral administration, human liver microsomes and rat in situ perfusion were used to study the sensitivity to metabolic enzymes and intestinal permeability, respectively. With the results of solubility test, the biopharmaceutics classification system (BCS) of inhibitors was discussed.
The results suggested that a certain distance between the “glucose” moiety and the distal aromatic ring as well as appropriate substituents on aromatic rings were necessary for selective SGLT2 inhibition. In addition, the “glucose” moiety was important to interact with SGLTs. Finally, core 1, a new compound formed by replacing the pyranose of dapagliflozin with furanose, had similar inhibitory effect as dapagliflozin, with the IC50 values of 9.0 ± 3.7 (μM) and 19.2 ± 7.1 (μM), respectively. Like dapagliflozin, core 1 might be degraded by phase II metabolic enzymes, and its predicted fraction absorbed in human was about 90 % indicating that its oral absorption might be limited by poor intestinal permeability.
In conclusion, the study provided suitable structure characteristics and considerations relating to oral application of SGLT2 inhibitors, which could be of use for further investigation.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T03:53:45Z (GMT). No. of bitstreams: 1
ntu-99-R96423026-1.pdf: 1007603 bytes, checksum: c8ecf79a8717763032f8b56d4b19e4c1 (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents目錄 i
圖目錄 v
表目錄 vii
Abstract ix
中文摘要 xi
第1章 緒論.................................................1
1.1. 糖尿病 .................................................1
1.2. 糖尿病的治療 .................................................2
1.2.1. 現有糖尿病治療藥物 ..........................................2
1.2.2. 發展中的糖尿病治療藥物 .......................................5
1.3. 鈉離子依賴型葡萄糖轉運蛋白 .....................................6
1.3.1. 鈉離子依賴型葡萄糖轉運蛋白與腎臟 .............................7
1.3.2. 鈉離子依賴型葡萄糖轉運蛋白與糖尿病 ...........................8
1.4. 鈉離子依賴型葡萄糖轉運蛋白抑制劑................................... 8
1.4.1. O-glucosides.................................................9
1.4.2. C-glucosides.................................................10
1.4.2.1 Dapagliflozin.................................................11
1.5. 生物藥劑學分類系統.................................................12
1.5.1. 概念及應用.................................................12
1.5.2. 實驗模式.................................................13
第2章 研究目的.................................................25
第3章 實驗材料.................................................27
3.1. 實驗動物.................................................27
3.2. 刷狀外緣細胞膜微粒萃取.................................................27
3.3. 蛋白質濃度測定.................................................28
3.4. 鹼性磷酸酶活性測定.................................................29
3.5. 鈉-鉀-腺苷三磷酸水解酶活性測定.....................................29
3.6. 放射性物質攝取量測定...............................................31
3.7. 尿苷二磷酸葡萄糖醛酸基轉移酶反應測定...............................33
3.8. 原位小腸灌流穿透性試驗.............................................34
3.9. 溶解度試...........................................................36
3.10. 高效能液相層析試驗................................................37
第4 章 實驗方法.........................................................39
4.1. 實驗設計...........................................................39
4.2. 刷狀外緣細胞膜微粒萃取.............................................40
4.2.1. 大鼠腎臟刷狀外緣細胞膜微粒萃取...................................40
4.2.2. 大鼠小腸刷狀外緣細胞膜微粒萃取...................................41
4.3. 蛋白質濃度測定.....................................................42
4.4. 鹼性磷酸酶活性測定.................................................43
4.5. 鈉-鉀-腺苷三磷酸水解酶活性測定.....................................44
4.6. 放射性物質攝取量測定...............................................45
4.6.1. 受質濃度相依性之研究............................................ 47
4.6.2. 化合物影響受質攝取之研究.........................................47
4.6.3. 化合物抑制50 %受質攝取量之濃度研究...............................48
4.7. 尿苷二磷酸葡萄糖醛酸基轉移酶反應測定...............................49
4.8. 原位小腸灌流穿透性試驗............................................50
4.8.1. 原位小腸分離手術................................................50
4.8.2. 原位小腸灌流給藥及取樣......................................... 51
4.8.3. 菊糖濃度測定....................................................51
4.9. 溶解度試驗........................................................54
4.10. 高效能液相層析試驗.............................................. 54
4.11. 統計分析........................................................... 55
第5 章 實驗結果........................................................57
5.1. 刷狀外緣細胞膜微粒萃取結果......................................... 57
5.2. 化合物影響刷狀外緣細胞膜微粒葡萄糖攝取之研究........................ 57
5.2.1. 化合物影響葡萄糖攝取之研究......................................... 57
5.2.2. 化合物抑制50 %葡萄糖攝取量之濃度研究............................... 58
5.3. 化合物尿苷二磷酸葡萄糖醛酸基轉移酶反應之研究........................ 59
5.4. 化合物小腸穿透性之研究.............................................59
5.5. 化合物溶解度之研究................................................ 60
第6 章 結果討論....................................................... 69
6.1. 刷狀外緣細胞膜微粒萃取結果之探討................................ 69
6.2. 化合物影響刷狀外緣細胞膜微粒葡萄糖攝取結果之探討................ 69
6.3. 化合物結構與鈉離子依賴型葡萄糖轉運蛋白抑制作用之探討........ 70
6.3.1 非糖基結構與抑制作用之關係.................................... 71
6.3.2 糖基結構與抑制作用之關係....................................... 72
6.4. 化合物尿苷二磷酸葡萄糖醛酸基轉移酶反應結果之探討................ 73
6.5. 化合物生物藥劑學分類系統之探討.................................... 74
第7 章 結論............................................................. 87
參考文獻.............................................................. 89
dc.language.isozh-TW
dc.title第二型鈉離子依賴型葡萄糖轉運蛋白抑制劑之臨床前活性及藥動性質研究zh_TW
dc.titlePreclinicl activity and pharmacokinetic study of Sodium-dependent glucose transporter-2 (SGLT2) inhibitorsen
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree碩士
dc.contributor.oralexamcommittee許麗卿,梁碧惠
dc.subject.keyword鈉離子依賴型葡萄糖轉運蛋白,抑制劑,糖尿病,藥物動力學,生物藥劑學分類系統,zh_TW
dc.subject.keywordSodium-dependent glucose transporter,inhibitor,diabetes,pharmacokinetics,biopharmaceutics classification system,en
dc.relation.page100
dc.rights.note有償授權
dc.date.accepted2010-07-01
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept藥學研究所zh_TW
顯示於系所單位:藥學系

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  目前未授權公開取用
983.99 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved