請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/4450
標題: | 三維卡拉比-丘空間奇異點及模空間連結性研究 The Connectedness Problem of Calabi--Yau Moduli Spaces |
作者: | Sz-Sheng Wang 王賜聖 |
指導教授: | 王金龍 |
關鍵字: | 卡拉比-丘,錐過渡變換, Calabi-Yau threefold,conifold transition,small contraction,determinantal contraction,standard web, |
出版年 : | 2015 |
學位: | 博士 |
摘要: | 本文探討在雙有理映射及形變理論的操作下,給出判別三維卡拉比-丘簇的奇異點是否為節點(即米爾諾數等於一)的條件。同時也對於P.S. Green和T. Hübsch教授的結果:在乘積射影空間裡的三維完全交集卡拉比—丘流形皆可由錐過渡變換連接,提供一個詳細的證明。 We develop criteria for a Calabi--Yau 3-fold to be a conifold, i.e. to admit only ODPs as singularities, in the context of extremal transitions. There are birational contraction and smoothing involved in the process, and we give such a criterion in each aspect. More precisely, given a small projective resolution pi : widehat{X} rightarrow X of Calabi--Yau 3-fold X, we show that (1) If the fiber over a singular point P in X is irreducible then P is a cA_1 singular point, and an ODP if and only if there is a normal surface which is smooth in a neighborhood of the fiber. (2) If the natural closed immersion Def(widehat{X}) hookrightarrow Def(X) is an isomorphism then X has only ODPs as singularities. There are topological constraints associated to a smoothing widetilde{X} of X. It is well known that $e(widehat{X}) - e(widetilde{X}) = 2 | Sing(X) | if and only if X is a conifold. Based on this and a Bertini-type theorem for degeneracy loci of vector bundle morphisms, we supply a detailed proof of the result by P.S.~Green and T.~Hübsch that all complete intersection Calabi--Yau 3-folds in product of projective spaces are connected through projective conifold transitions (known as the standard web). |
URI: | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/4450 |
全文授權: | 同意授權(全球公開) |
顯示於系所單位: | 數學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-104-1.pdf | 841.75 kB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。