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摘 要 

本文探討在雙有理映射及形變理論的操作下，給出判別三維卡拉比-丘簇的奇異

點是否為節點（即米爾諾數等於一）的條件。同時也對於 P.S. Green 和 T. Hübsch
教授的結果：在乘積射影空間裡的三維完全交集卡拉比—丘流形皆可由錐過渡變

換連接，提供一個詳細的證明。 
 
關鍵字— 卡拉比-丘; 錐過渡變換 



Abstract

We develop criteria for a Calabi–Yau 3-fold to be a conifold, i.e. to admit
only ODPs as singularities, in the context of extremal transitions. There
are birational contraction and smoothing involved in the process, and we
give such a criterion in each aspect.

More precisely, given a small projective resolution π : X̂ → X of
Calabi–Yau 3-fold X, we show that (1) If the fiber over a singular point
P ∈ X is irreducible then P is a cA1 singular point, and an ODP if and
only if there is a normal surface which is smooth in a neighborhood of the
fiber. (2) If the natural closed immersion Def(X̂) ↪→ Def(X) is an isomor-
phism then X has only ODPs as singularities.

There are topological constraints associated to a smoothing X̃ of X. It
is well known that e(X̂) − e(X̃) = 2 |Sing(X)| if and only if X is a coni-
fold. Based on this and a Bertini-type theorem for degeneracy loci of vector
bundle morphisms, we supply a detailed proof of the result by P.S. Green
and T. Hübsch that all complete intersection Calabi–Yau 3-folds in product
of projective spaces are connected through projective conifold transitions
(known as the standard web).

Keywords— Calabi–Yau threefold; conifold transition; small contrac-
tion; determinantal contraction; standard web.



Acknowledgements

First of all, I am very grateful to my advisor Professor Chin-Lung Wang
for his constant encouragement and guidance. Without his illuminating
instruction, this thesis could not have reached its present form. I am also
indebted to the professors and teachers at the Department of Mathematics:
Professor Hui-Wen Lin, who has instructed and helped me greatly in the
past years.

I would like to thank Professor Chen-Yu Chi for very helpful discus-
sions and suggestions, Professors Jeng-Daw Yu and Yukinobu Toda for
valuable comments. I would also like to thank Professors Slawomir Cynk,
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Chapter 1
Introduction

Calabi–Yau conifolds, i.e. Calabi–Yau 3-folds with only ordinary double
points (ODPs), arise naturally in algebraic geometry and string theory,
where a Calabi–Yau 3-fold X is a projective Gorenstein 3-fold with at worst
terminal singularities such that KX ∼ 0 and H1(OX) = 0. M. Reid [43]
had proposed to study the moduli spaces of smooth Calabi–Yau 3-folds
through conifold transitions. One major question asked there is if all the
moduli spaces are indeed connected through conifold transitions. This is
usually referred as the Reid’s fantasy. While non-projective conifold tran-
sitions are also considered in the literature, in this thesis we stick on the
projective ones.

A special yet fundamental question arising from the connectedness
problem is the following: Suppose that there is a small (extremal) transi-
tion between smooth Calabi–Yau 3-folds X̂ and X̃. By this we mean there
is a projective small contraction X̂ π−→ X from X̂ to a Calabi–Yau 3-fold
X, with general terminal singularities, that X is smoothable to X̃ in a flat
family. It is called a conifold transition if X has such only ODPs as its
singularities.

Question 1. Is it true X̂ can in fact be connected to X̃ through a sequence of
conifold transitions (through a different X of course)?

Let X̂ → X be a small projective resolution of a Calabi–Yau 3-fold
X. We already know that the singularities of X are terminal singulari-
ties of index 1, i.e., isolated cDV singularities. For such singularities, the
dual graph of the exceptional curves and their normal bundles had been
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studied systematically in [27, 33, 42]. The analysis of such singularities is
based on the lemma of M. Reid [42, (1.1), (1.14)], namely a general hyper-
plane section through the singularity has a Du Val surface singularity at
it, and the inverse image E of the surface gives a partial resolution of the
Du Val singularity. Notice that the normal surface E contains the excep-
tional curves and is a relatively trivial divisor. Applying a theory of rational
Gorenstein surfaces to the surface E, D.R. Morrison gave a description of
the dual graphs for such singularities [33, (5.5)].

Our first goal is to study such singularities in the case of Calabi–Yau 3-
folds. Instead of a relatively trivial divisor we will consider a relatively an-
tiample divisor. For example, a 3-fold X with only cA1-singularities which
contains a smooth surface D passing through all singularities admits a
small projective resolution by blowing up X along D. Let E be the inverse
image of D. It is simple to show that for any irreducible exceptional curve
C the intersection number E.C is the negative number degC(OE(−1)|C).
Thus the smooth divisor E is relatively antiample.

The first result is the following.

Theorem 1.1 (= Theorem 4.1). Let π : X̂ → X be a small projective resolution
of a normal variety X of dimension 3. Suppose that KX̂ is π-trivial and that there
is an irreducible normal surface D in X̂ such that −D is π-ample. If the fiber
over a singular point P ∈ X is irreducible, then the analytic type of the singular
point P is

x2 + y2 + z2 + w2m = 0 for some m ∈N.

Furthermore, the singular point P is an ODP if and only if the surface D is smooth
in a neighborhood of the fiber.

Such small projective morphism π is called a flopping contraction (cf.
Definition 2.17). Remark that, for the ODP criterion in Theorem 1.1, the
”if” implication is well known and frequently used in the literature (cf.
Lemma 2.23). We prove that the existence of such normal surface D, which
is smooth in a neighborhood of the fiber, is also a necessary condition.

The case with cA1-singularities different from ODPs do occur (cf. Ex-
ample 2.21 and Example 4.6).

Note that there are no small contractions with −K being ample by
Mori’s classification of K-negative extremal rays on smooth projective 3-
folds.
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We briefly explain the idea of the proof. Notice that π(D) is non Q-
Cartier. We will prove that it is a smooth Weil divisor by using a theory
of normal Gorenstein surfaces (cf. Proposition 2.27), due to H. Laufer and
F. Sakai. Applying a result of D.R. Morrison and a simple observation (cf.
Lemma 2.23 and Corollary 2.32), we can show that the normal bundle of
the irreducible curve π−1(P) in X̂ is either of type OP1(−1)

⊕
OP1(−1) or

of type OP1
⊕

OP1(−2) and Theorem 1.1 follows.

Corollary 1.2 (= Corollary 4.2). With notation as in Theorem 1.1, the scheme
theoretical fiber structure on π−1(P) is reduced, that is, π−1mP · OX̂ = I ,
where I is the ideal sheaf of the fiber with the reduced structure.

There is an application of Theorem 1.1 to 3-dimensional pl flipping con-
tractions (cf. Definition 2.18).

Corollary 1.3 (= Corollary 4.3). Let π : Y → X be a pl flipping contraction for
a 3-dimensional plt pair (Y, S + B). If the fiber C over a singular point P ∈ X is
irreducible, Y is smooth in a neighborhood of C and KY.C = 0, then

(1) The scheme theoretical fiber structure on π−1(P) is reduced,
(2) The analytic type of the singular point P is

x2 + y2 + z2 + w2m = 0 for some m ∈N.
Furthermore, the singular point P is an ODP if and only if the surface S is smooth
in a neighborhood of the fiber C.

In the case of Calabi–Yau 3-folds which admit small projective resolu-
tions, the characterizations of singularities induced by irreducible fibers
are:

Theorem 1.4 (= Theorem 4.4). Let π : X̂ → X be a small projective resolution
of a Calabi–Yau 3-fold X. Then

(1) Given a singular point P ∈ X, then the following are equivalent:
(a) The fiber over the singular point P is irreducible;
(b) The scheme theoretical fiber π−1(P) is integral;
(c) The analytic type of the singular point P is

x2 + y2 + z2 + w2m = 0 for some m ∈N;
More generally, the same conclusion holds if X is a projective Gorenstein
terminal 3-fold.

(2) The singularities of X are of type cA1 if and only if there is a smooth Weil
divisor S containing the singular locus such that BlSX is Q-factorial. In
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this case, π is isomorphic to the blowing up of X along a smooth Weil divi-
sor.

Furthermore, if S is as in part (2), the singularities of X are ODPs if and only if
the normal surface π−1(S) is smooth.

We remark that BlSX is in fact smooth in this case (cf. Remark 4.5). In
the literature, to construct a small projective resolution π of a conifold, one
usually assumes that there is a such Weil divisor S passing through all of
the ODPs. Conversely, our result proves the existence of such smooth Weil
divisors.

There is an example of Calabi–Yau 3-folds with cA1-singularities dif-
ferent from ODPs which admits a small projective resolution (cf. Example
4.6). The projectivity assumption in Theorem 1.4 plays a key technical role
(cf. Example 2.22).

Note that, for an isolated cDV singularity which admits a small res-
olution with an irreducible exceptional set, it was classified in [20, Main
Theorem] into three types: cA1, cD4 and cEn. The key difficulty in the
proof of Theorem 1.4 is thus to show that such small contractions contract
its irreducible fibers to cA1 singularities. We can prove that there are such
normal surfaces (as in Theorem 1.1) by a Bertini-type theorem for normal-
ity (c.f Proposition 2.39). Nakamaye’s theorem on augmented base loci (cf.
Proposition 2.35) plays an essential role in the proof.

In the second part of the thesis, we discuss how to relate projective
small transitions to conifold transitions (cf. Section 4.2). There is a simple
ODPs criterion (involved topological constraints) for small transitions.

Proposition 1.5 (= Proposition 4.8). Let X̂ → X  X̃ be a small transi-
tion. Then the difference of the topological Euler numbers e(X̂) − e(X̃) equals
the number 2 |Sing(X)| if and only if the singularities of X are ODPs.

We will also introduce the primitive small transitions (cf. Definition
4.9) and prove the following result:

Theorem 1.6 (= Theorem 4.10). Let π : X̂ → X be a small resolution of
a Calabi–Yau 3-fold X. If the natural closed immersion Def(X̂) ↪→ Def(X)
of Kuranishi spaces is an isomorphism then the singularities of X are ODPs.
Moreover, the number of ODPs is equal to the relative Picard number ρ(X̂/X).
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Theorem 1.6 is a generalization of the case of relative Picard number
one which have been studied in [15, (5.1)]. Using the deformation proper-
ties of X and X̂ and the minimal model theory, we will prove it by induc-
tion on the relative Picard number.

Corollary 1.7 (= Corollary 4.12). Let π : X̂ → X be a small resolution of
a Calabi–Yau 3-fold X. Suppose that, for any Calabi–Yau 3-fold X̂′ which is
birationally equivalent to X̂ and any factorization X̂′ → X′ → X with X′ 6= X̂′,
the Calabi–Yau 3-fold X′ is not smoothable. Then the singularities of X are ODPs.
Moreover, the number of ODPs is equal to the relative Picard number ρ(X̂/X).

Remark that X̂ and X̂′ are connected by a sequence of flops [21, 23].
In final chapter, we review the result of P.S. Green and T. Hübsch and

the construction of determinantal contractions between complete intersec-
tion Calabi–Yau (CICY) configuration matrices. The fibers of determinan-
tal contractions are irreducible (cf. Remark 5.15) and thus these contrac-
tions provide a lot of examples of small projective resolution of Calabi–Yau
3-folds with the exceptional set being a disjoint union of irreducible ratio-
nal curves.

Theorem 1.8. (= Theorem 5.18) Any two (parameter spaces of) complete in-
tersection Calabi–Yau 3-folds in products of projective spaces are connected by a
finite sequence of conifold transitions.

In [17, §3 p.435], the authors deferred the proof of the existence of (pro-
jective) conifold transitions to a forthcoming paper, which unfortunately
has not yet been available.

By analysing the normal bundle of (irreducible) 1-dimensional fibers of
determinantal contractions, we have inferred that all singularities are cA1-
singularities (cf. Theorem 1.4). To prove the connectedness theorem of
moduli spaces of CICY 3-folds as discovered by P.S. Green and T. Hübsch,
we have to show that the singularities appeared in determinantal contrac-
tions are ODPs. It turns out that we need only use the more topological
criterion Proposition 1.5 rather than the geometric criterion Theorem 1.4
to deduce Theorem 1.8.

Following the outline sketched in [3, 17], we will prove the existence of
determinantal contractions between CICY configuration matrices by using
another Bertini-type theorem for degeneracy loci of morphisms of vector
bundles (cf. Proposition 2.36). According to a description of degeneracy
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loci and explicit computations (cf. Proposition 5.4 and Corollary 5.16),
Theorem 1.8 then follows from Proposition 1.5.

We hope that Theorem 1.4 and Theorem 1.6 will be useful for further
studies on primitive small transitions.

The contents of this paper are organized as follows.
Chapter 1 briefly describes some motivations and the results of this

thesis.
Chapter 2 contains some definitions and materials needed for our proof

of main results. We recall the definitions of singularities and their small
(and crepant) resolutions in Section 2.1, 2.2. In Section 2.3, the theory of
normal Gorenstein surfaces, due to H. Laufer, D.R. Morrison and F. Sakai,
are reviewed. Section 2.4, 2.5 give Nakamaye’s theorem for augmented
base locus and Bertini-type theorems for vector bundle and the normality
on smooth varieties. In Section 2.6, we review the mixed Hodge Structures
on varieties with normal crossings following the point of view of Griffiths
and Schmid and prove a Lefschetz-type theorem for reducible ample hy-
perplane sections.

In Chapter 3, we establish the main result, the characterizations of cA1
singularities in the case of Calabi–Yau 3-folds which admit small projective
resolutions, it also contains further discussions on conifold transitions and
their relations to the primitive small transitions.

In Chapter 4, we review the definitions and basic results on CICY con-
figuration matrices and the formal correspondence between such matrices,
and give a proof of the connectedness of parameter spaces of Calabi–Yau
complete intersections.
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Chapter 2
Preliminaries

2.1 Singularities

Definition 2.1. Let (X, ∆) be a pair, that is, X is a normal variety and ∆ =
∑ diDi a Q-divisor on X, where Di are distinct, irreducible and 0 6 di 6 1,
such that KX + ∆ is Q-Cartier. Let f : Y → X be a birational morphism
from a normal variety Y. Then we can write

KY ≡ f ∗(KX + ∆) + ∑ a(E, X, ∆)E,

where the sum runs over all the distinct prime divisors E ⊆ Y, and a(E, X, ∆)
is a rational number. We define

discrep(X, ∆) := inf{a(E, X, ∆) | E is exceptional over X}.

We say that (X, ∆) is

terminal
canonical

klt
plt

 if discrp(X, ∆)


> 0
> 0
> −1 and b∆c = 0
> −1

.

Here klt is an abbreviation for Kawamata log terminal and plt for purely log
terminal. If ∆ = 0 then the notations klt and plt coincide and in this case
we say that X has log terminal singularities.

8



The rational number a(E, X, ∆) is called the discrepancy of E with re-
spect to (X, ∆). Note that it only depends on the valuation of the function
field K(X), corresponding to the discrete valuation ring OE,Y ⊆ K(X).

The index of a singularity is the smallest r for which rKX is Cartier in a
neighbourhood of the singularity. If r = 1 and it is Cohen-Macaulay, then
it is called Gorenstein.

Example 2.2 (The surface case). Let S be a surface, let λ : S̃ → S be a
minimal resolution and {Ei} the family of all exceptional divisors. Since
the intersection matrix (Ei.Ej) is negative definite, the surface S is terminal
if and only if it is smooth.

In the case of canonical singularities, we have KS̃ = λ∗KS. Namely,
the canonical surface singularities are the Du Val singularities [26, (4.20)],
which are analytically isomorphic to isolated hypersurface singularities
defined by one of the equations

An : x2 + y2 + zn+1 = 0 (n > 1);
Dn : x2 + y2z + zn−1 = 0 (n > 4);
E6 : x2 + y3 + z4 = 0;
E7 : x2 + y3 + yz3 = 0;
E8 : x2 + y3 + z5 = 0.

(2.1.1)

For log terminal surface singularities (or more general surface singu-
larities) see [26, Section 4.1].

Remark 2.3. Let (X, ∆) be an n-dimensional plt pair. Then X has rational
singularities, i.e., for any resolution f : Y → X we have Ri f∗OY = 0
for i > 0 [26, (5.22)]. For the case of surfaces, it is a rational Gorenstein
singularity if and only if it is a Du Val singularity. In general, we call
a Gorenstein point p ∈ X elliptic if Rn−1 f∗OY is a 1-dimensional vector
space at p.

We recall the following proposition due to M. Reid [41]. The statements
are taken from [26, (5.30), (5.35)].

Proposition 2.4 ([41, 26]). Let (X, p) be an index 1 canonical 3-fold singularity.
(1) If p ∈ H ⊆ X is a general hypersurface section, then (H, p) is either a Du

Val or an elliptic singularity.
(2) The following are equivalent:

(a) The general hypersurface section p ∈ H ⊆ X is elliptic.
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(b) If f : Y → X is any resolution of singularities then there is a divisor
E ⊆ f−1(p) such that a(E, X) = 0.

Definition 2.5. A point p ∈ X is called a compound Du Val singularity
(or cDV singularity) if a general hypersurface section p ∈ H ⊆ X is a
Du Val surface singularity, that is, it is analytically equivalent to a three-
dimensional hypersurface singularity given by an equation of the form

f (x, y, z) + tg(x, y, z, t) = 0

where f is the equation of a Du Val singularity (as in (2.1.1)), and g is an
arbitrary polynomial. We will say that p ∈ X is a cAn, cDn, cE6, cE7 or cE8
singularity to specify the general hypersurface section through p.

Example 2.6. A singularity p ∈ X is a cA1 if and only if it is analytically
equivalent to x2 + y2 + z2 + wn = 0 for some n ∈N, denoted it by A1(n−
1). If n = 2, it is called an ordinary double point or ODP for short.

According to Example 2.2 and Proposition 2.4 (1), it follows that an in-
dex 1 terminal 3-fold singularity is isolated (in general, a terminal variety
is smooth in codimension two [26, (5.18)]). Indeed, we have a characteri-
zation of such singularities, which is a consequence of Proposition 2.2.

Corollary 2.7. [42, (1.1)] Let (X, p) be a 3-fold singularity. Then (X, p) is
terminal of index 1 if and only if it is an isolated cDV singularity.

The following proposition will be used in the proof of Theorem 4.4.

Proposition 2.8. Let X be a projective Gorenstein 3-fold with only terminal sin-
gularities. Then for a general hypersurface section H ⊇ Sing(X), the surface
singularity (H, p) is a Du Val singularity for all p ∈ Sing(X).

Proof. The idea is to find a general hypersurface section though all singu-
lar points of X in the sense of Definition 2.5 in [41].

Set
I1 :=

⊕
p∈Sing(X)

mp

and
I2 :=

⊕
p∈Sing(X)

mp/m2
p,

where mp is the maximal ideal of OX,p. There is a canonical surjective
morphism from I1 to I2 and let K be the kernel of this morphism.
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Choose a sufficiently ample divisor A on X such that A⊗I1 and A⊗
I2 are generated by global sections and H1(X, A ⊗K ) = 0, Then the
composition map

H0(X, A⊗I1)⊗OX � H0(X, A⊗I2)⊗OX � A⊗I2 (2.1.2)

is surjective.
Let A ⊗I1 be generated by global sections s1, · · · , sn. For each α =

(α1, · · · , αn) ∈ Cn, a global section Σn
i=1αisi defines a hypersurface section

Hα ⊆ X containing Sing(X). By the Bertini theorem, a general hyper-
surface section H ⊇ Sing(X) is irreducible and smooth away from the
singularities of X, i.e., there is a Zariski open set U0 in Cn such that, for
α ∈ U0, Hα is irreducible and Sing(Hα) ⊆ Sing(X). Note that Hα is a
normal surface since X is Cohen–Macaulay (by Serre’s criterion).

For each p ∈ Sing(X), let Vp ⊆ mp be a vector space which is the image
of the subspace generated by s1, · · · , sn under the natural map

H0(X, A⊗I1)⊗OX → A⊗I1 → mp.

By the surjectivity of the morphism (2.1.2), the vector space Vp ⊆ mp is
mapped onto mp/m2

p. Hence an element in Vp gives a hypersurface section
through the point p (in the sense of [41, (2.5)]). From Proposition 2.4 (2)
and that p ∈ X is a terminal singularity, a general hypersurface section
through the singularity p is Du Val. That is, there is a Zariski open set
Up ⊆ Cn such that (Hα, p) is a Du Val singularity for α ∈ Up. Let U be the
intersection of all Up and U0. Then for α ∈ U, Hα is a Du Val surface with
Sing(H) = Sing(X). This completes the proof.

2.2 Small Birational Morphisms

Let π : Y → X be a birational morphism. The π-exceptional set Exc(π) is
the set of points in Y where π is not a local isomorphism.

Proposition 2.9. [6, (1.40)] Let π : Y → X be a birational morphism of a normal
variety X. If X is Q-factorial, then every irreducible component of Exc(π) has
codimension one in Y

Proof. Let y ∈ Exc(π) and x = π(y). If we can find a codimension one
component of Exc(π) through y then the proposition follows immediately.
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Identify the function fields K(X) and K(Y) via the isomorphism π∗, so
that OX,x is a proper subring of OY,y. Pick an element t ∈ mY,y\OX,x, and
write div(t) = D1−D2 where Di’s are effective divisors without common
components.

Since X is Q-factorial, there exists a m ∈ N such that mDi’s are Cartier
divisors, hence define elements u and v of OX,x such that tm = uv−1 in
K(Y). Obviously, u = tmv belongs to mY,y ∩OX,x = mX,x. We claim that v
is also in mX,x. If otherwise, then tm = uv−1 would be in OX,x. Therefore
t ∈ OX,x, since OX,x is integral closed, a contradiction.

The equations u = v = 0 define a subscheme Z containing x, which has
codimension two in some neighborhood of x (it is the intersection of the
codimension one subschemes mD1 and mD2). On the other hand, π−1(Z)
is defined by tmv = v = 0, hence by the sole equation v = 0. It has
codimension one in Y and thus is contained in Exc(π).

Definition 2.10. A birational morphism is called small if the exceptional
set has codimension at least two.

Small projective resolutions play important roles in this thesis. By
Proposition 2.9, if we are interested in small projective birational mor-
phism f : Y → X then X is forced to be non Q-factorial. In general, there
is small Q-factorializations for projective terminal 3-folds.

Theorem 2.11. [21, (4.5)] Let X be a projective 3-fold with terminal singulari-
ties. Then there is a small projective birational morphism f : Y → X such that Y
is Q-factorial with at most terminal singularities. The morphism f is said to be a
(small) Q-factorialization of X.

Another way to construct small projective morphisms is:

Lemma 2.12. Let X be a Cohen–Macaulay variety of dimension n with only
isolated singularities. Suppose that the embedding dimension of X at each singu-
larity is n + 1 and there is a Gorenstein prime divisor D which is not Q-Cartier
and contains a subset S of Sing(X).

Let π : BlDX → X be the blowing-up of X with center D. Then π−1(s) ∼=
P1

k(s) for all s ∈ S. In particular, the fiber over s is irreducible.

Proof. Pick a singular point s ∈ S. Since the embedding dimension at s is
n+ 1, there is a (n+ 1)-dimensional regular affine scheme M, an neighbor-
hood U containing only the singularity s, and a closed immersion U ↪→ M.
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Note that π is an isomorphism over U\{s}. Let I be the defining ideal of
D ∩M in M. Since the codimension of Is in OM,s is 2 and OD,s is Goren-
stein, the ideal Is is generated by a regular sequence f1, f2 by [8, (21.20)].

Let M̃ = BlD∩M M. Consider the diagram

ι−1(M̃) �
� //

��

M̃

��
Spec OM,s

� � ι // M.

Then ι−1(M̃) is the blowing-up of Spec OM,s along Is and

ι−1(M̃) ∼= Proj OM,s[X, Y]/( f2X− f1Y)

(see e.g. [9, IV-25]). Hence the fiber over s is isomorphic to P1
k(s).

According to the commutative diagram

BlD∩UU �
� //

π
��

M̃

��
U �
� // M,

it follows that π−1(s) is isomorphic to P1
k(s). This completes the proof.

A crepant contraction is a proper morphism π : Y → X of normal veri-
ties with connected fibers such that KY is a pullback of a Catier divisor for
X. Any small resolution π : Y → X of a Gorenstein 3-fold X is crepant
,i.e., KY = π∗KX, because the exceptional set contains no divisors.

Remark 2.13. If X admits a crepant resolution then all discrepancies are
zero and hence it has canonical singularities. If X admits a small resolution
π then, by definition, X has terminal singularities.

Proposition 2.14. [1, (5.4)] Let π : Y → Z be a crepant contraction from a
smooth projective variety Y to an affine normal variety Z. Assume that the fiber
F = π−1(z)red, with reduced structure, is locally complete intersection with the
conormal bundle N∨F/Y = IF/I 2

F . Suppose moreover that the blow up β : Ŷ →
Y of Y along F has log terminal singularities. By F̂ we denote the exceptional
divisor of the blow-up. Then the following conditions are equivalent:
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(1) N∨F/Y is generated by global sections on F;
(2) OŶ(−F̂) is generated by global sections at any point of F̂;
(3) π−1mz ·OY = IF or, equivalently, the scheme theoretic fiber structure of

F is reduced and contains no embedded components.

Proof. First we note that π∗IF = mz ⊆ OZ and the scheme theoretic struc-
ture on π−1(P) is defined by the ideal sheaf which is the image of the
evaluation π−1π∗IF → IF [1, (5.1)].

Claims (2) and (3) are equivalent because

β−1IF = OŶ(−F̂) and β∗OŶ(−F̂) = IF.

The implication (2) ⇒ (1) is obvious. To prove the converse implica-
tion, we consider a short exact sequence

0→ OŶ(−2F̂)→ OŶ(−F̂)→ OF̂(−F̂)→ 0.

Since, by assumption, −2F̂ − KŶ = −(dim Y − dim F + 1)F̂ − β∗KY is
(π ◦ β)-big and nef and Ŷ has log terminal singularities it follows that
H1(Ŷ, OŶ(−2F̂)) = 0 and global sections of OF̂(−F̂) extends to Ŷ. Hence
any section of N∨F/Y extends to a function in H0(Y, OY) vanishing along F,
that is the natural map

π! : mz → H0(F, N∨F/Y) = H0(F̂, OF̂(−F̂))
f 7−→ (y 7→ [ f ◦ π] ∈ (IF/I 2

F )y)

is surjective.

We will use the shorthand (a, b) ∈ Z2 for the vector bundle of rank two
OP1(a)⊕OP1(b) on P1.

Example 2.15. Suppose that X is a 3-fold with only k ODPs. Let X̃ denote
the blowup of X in all its singular points; ϕ : X̃ → X is a smooth projective
3-fold with k exceptional divisors E1, · · · , Ek isomorphic to P1×P1. There
are two projections ϕ±i : Ei → P1, rulings of P1 ×P1, corresponding to a
choice of P1 factor. Then the fibres of every ϕ±i can be blown-down to yield
a 3-dimensional Moishezon manifold Z, i.e. a compact complex manifold
with three algebraically independent meromorphic functions. Thus we
obtain 2k Moishezon small resolutions Z of the X in which each ODP has
been replaced by a smooth rational curve with normal bundle (−1,−1).
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Suppose that X is a terminal 3-fold which admits a small resolution
π : X̂ → X. Let X̃ denote the blowup of X̂ in all its exceptional curves over
ODPs. Then we obtain a Moishezon small partial resolution f : Z → X
factoring X̃ → X [12, 35].

We recall the definition of flipping contractions.

Definition 2.16. Let X be a normal variety and D a Q-divisor on X such
that KX + D is Q-Cartier. A (K + D)-flipping contraction is a projective bi-
rational morphism f : X → Z to a normal variety Z such that f is small
and −(KX + D) is f -ample.

A (K+D)-flip of f is a small projective birational morphism f+ : X+ →
Z such that (KX+ + D+) is Q-Cartier and f+-ample, where D+ is the
proper transform of D in X+.

Note that if ρ(X/Z) = 1 then the (K + D)-flip does not depend on the
choice of D [26, (6.5)]. In this case we call f+ : X+ → Z the flip of f .

Definition 2.17. Let X be a normal variety. A flopping contraction is a
projective birational morphism f : X → Z to a normal variety Z such that
f is small and KX is (numerically) f -trivial.

If D is a Q-Cartier Q-divisor on X such that −(KX + D) is f -ample,
then the (K + D)-flip of f is also called the D-flop.

Definition 2.18. Let (X, ∆ = S + B) be a plt pair. The notation means
that b∆c = S is a prime Weil divisor and B a Q-divisor having no com-
ponent in common with S. A pl (prelimiting) contraction is a (K + S + B)-
flipping contraction f : X → Z such that −S is f -ample, X is Q-factorial
and ρ(X/Z) = 1.

Remark 2.19. This definition is more restrictive than the Shokurov’s def-
inition of pl flipping contraction. We adopt the above Definition, which
follows BCHM, in this thesis.

Finally, let (X, x) be the germ of an isolated Gorenstein 3-fold singu-
larity with a small resolution π : X̂ → X. It is a terminal singularity (cf.
Remark 2.13).

The following proposition describes the structure of π−1(x).

Proposition 2.20. [33, (5.5)] Denote the exceptional set π−1(x) =
⋃

Ci with
reduced structure. Then the Ci

∼= P1 meet transversally. Moreover, the normal
bundle of Ci in X̂ is either (−1,−1), (0,−2) or (1,−3).
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We remark that three branches are allowed to meet at a point, with the
singularity of π−1(x) analytically of the form Spec C[[x, y, z]]/(xy, xz, yz).

Example 2.21. Suppose that π : X̂ → X is irreducible, i.e. the exceptional
curve C is irreducible. The singularity is an ODP if and only if the normal
bundle is (−1,−1).

We recall a simple example for the case (0,−2): Let (X, 0) ⊆ (C4, 0) be
a cA1-singularity which is defined by xy = u(v2 − u). It admits a small
resolution π : X̂ → X which is given by the blowing up of the plane S
defined by x = u = 0. We remark that the inverse image of S is a normal
surface with an isolated singularity 0 ∈ π−1(S).

In general, the normal bundle NC/X̂ is (0,−2) if and only if it is a cA1
singularities

x2 + y2 + z2 + w2m = 0

for some m ∈N [27, p. 273] or [42, Section 5].

Example 2.22. By the method of Laufer, we can construct an example for
the case (1,−3) (cf. [27, Example 2.3.], [40, Example 10.]). Consider the
hypersurface singularity (X, 0) ⊆ (C4, 0)

x2 + z3 + (y2z− w2)y = 0.

It is easy to see that its general hypersurface section is the Du Val singu-
larity D4 (cf. Example 2.1.1), i.e., (X, 0) is a cD4-singularity. The blow up
Y → X of the ideal I generated by the 2× 2 minors of(

y z w x
−w −x yz z2

)
resolve the singularity of X, so that Y is smooth, and the exceptional locus
of the blow up is a P1 with normal bundle (1,−3).

The following lemma is a criterion for ODPs.

Lemma 2.23. Let π : Y → X be a small resolution of a 3-fold X and let C be an
irreducible exceptional curve. Suppose that there is a smooth surface S in Y such
that S ⊇ C and π(C) ∈ π(S) is a smooth surface point. Then the normal bundle
of C in Y is (−1,−1).

Proof. Consider the normal bundle exact sequence

0→ NC/S → NC/Y → NS/Y|C → 0. (2.2.1)
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Since S is a smooth surface with π(C) ∈ π(S) being a smooth point, the
normal bundle NC/S is OP1(−1). By Lemma 2.20 and the short sequence
(2.2.1), we get

deg NS/Y|C = deg NC/Y + 1 = −1,

where the deg NC/Y ∈ Z is the degree of its determinant line bundle. Ac-
cording to the fact Ext1(OP1(−1), OP1(−1)) = 0, it follows that the exact
sequence (2.2.1) is split and thus the normal bundle NC/Y is (−1,−1).

The following technical lemma will be used in the sequel.

Lemma 2.24. Let C =
⋃

Ci be a curve in a smooth 3-fold Y such that the irre-
ducible components Ci meet in a finite set of points. Then there exsits an injection⊕

i H2
Ci
(Y, Ω2

Y) ↪→ H2
C(Y, Ω2

Y). Moreover, it is an isomorphism if Ci are mutu-
ally disjoint.

Proof. By induction on the number of components of C, we may assume
that C = C1 ∪ C2. From the Mayer–Vietoris sequence, we get

H2
C1∩C2

(Ω2
Y)→ H2

C1
(Ω2

Y)⊕ H2
C2
(Ω2

Y)→ H2
C(Ω

2
Y).

Since Ω2
Y is locally free and depthC1∩C2

OY = 3, we have the result.

2.3 Normal Gorenstein Surfaces

This section is developed to prove Corollary 2.32, which plays an impor-
tant role in the proof of our main result. We first recall a theory of normal
Gorenstein surfaces [44, 45, 46].

Let S be a normal surface and let π be a resolution of S. The inverse
image π∗C of a Q-Weil divisor C is defined to be C̃ + ∑ αiEi where C̃ is the
proper transform of C, those curves Ei are contracted by π and αi ∈ Q are
determined by the relations: (C̃ + ∑ αiEi).Ej = 0 for all j (cf. [26, (4.1)],
[45]). Even if C is integral, π∗C is in general a Q-divisor. For two Q-
Weil divisor C and C′, the intersection number C.C′ ∈ Q is defined by
π∗C.π∗C′.

Definition 2.25. An irreducible curve C on S is called an exceptional curve
of the first kind if KS.C < 0 and C2 < 0.
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Remark 2.26. From [46, (1.1)], the proper transform of an exceptional curve
of the first kind on S by the minimal resolution of S is a (−1)-curve, where
a (−k)-curve on a smooth surface means a smooth rational curve with
self-intersection −k.

Proposition 2.27. [31, 33, 46] Let S be a normal Gorenstein surface, λ : S̃→ S
the minimal resolution and C an exceptional curve of the first kind on S.

(1) The inverse image λ−1(C) consists of a chain of (−2)-curves and (−1)-
curve C̃ with the following dual graph Γn (n > 1):

n−1︷ ︸︸ ︷
•
C1
− •

C2
− · · · − •

Cn−1
−C̃◦ (2.3.1)

where • denotes a (−2)-curve Ci, C2 = −1/n and C̃ is the proper trans-
form of C.

(2) Let T be a normal surface and let π : S → T be a proper birational mor-
phism. Suppose that the irreducible curve C is the fiber over a point P ∈ T.
Then P is a smooth point of T.

We remark that the statement (1) was known in [46, Example 1.2] and
(2) in [33, (1.2)], [31, (0.1)]. For the convenience of the reader, we supply a
proof here.

Proof. (1) First we note that C meets only Du Val singularities of S. Indeed,
there is a unique effective integral divisor ∆ supported in λ−1(Sing(S))
such that λ∗KS = KS̃ +∆. Given P ∈ C∩ Sing(S), let ∆P be the component
of ∆ which is supported in λ−1(P). Since ∆ is integral, if ∆P > 0, we have

KS.C = KS̃.C̃ + ∆.C̃ = −1 + ∆.C̃ > 0,

a contradiction. Then ∆P = 0 and thus the assertion holds by [44, p.1235].
From Remak 2.26, the proper transform C̃ is a (−1)-curve. If C̃ meets

an irreducible component E of Exc(λ), then (C̃ + E)2 = 2(C̃.E)− 3 (since
E2 = −2). The negative definiteness of λ−1(C) and C̃.E > 0 imply that
C̃.E = 1.

Suppose that C̃ meets two irreducible components E1 and E2 of Exc(λ).
Then (2C̃ + E1 + E2)

2 = 2E1.E2 > 0 which would contradict the negative
definiteness of λ−1(C). Hence C̃ meets a unique curve E1 transversely.
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Assume that E1 + · · · + Ek is an Ak-configuration inside λ−1(C), and
that C̃ meets E1. If Ek meets two exceptional curves Ek+1 and Ek+2, then(

2C̃ + 2

(
k

∑
i=1

Ei

)
+ Ek+1 + Ek+2

)2

= 0

which once again would contradict the negative definiteness of λ−1(C).
(2) Suppose that the dual graph of C is of type Γn. From C = π−1(P),

the fiber (π ◦ λ)−1(P) consists of C̃ and (−2)-curves Ei. Since C̃ is (−1)-
curve, we get the map π1 : S̃→ S1 by blowing down C̃. Then S1 is smooth
along ∪π1(Ei), and there is a birational map S1 → T taking ∪π1(Ei) to the
point P. If n > 1, then there is exactly one i for which C̃ meets Ei. Hence

KS1 .π1(Ei) = KS̃.Ei − C̃.Ei = −1.

that is, π1(Ei) is a (−1)-curve in S1. Similarly, π1(Ej)
2 = −2 for j 6= i.

We can then blow down π1(Ei) and repeat the argument. Continue in
this way until there is nothing left to blow down, at which point there is
a birational map ν : Sn → T with Sn smooth and with ν−1(P) having
dimension zero. Then, by Zariski’s main theorem, ν is an isomorphism
and thus P is a smooth point of T.

We also need a result of D.R. Morrison, which computes the normal
bundle of a rational curve in a smooth 3-fold.

Theorem 2.28. [33, (2.1)] Let S be a surface with Du Val singularities P1, · · · , Pr,
and let λ : S̃→ S be the minimal resolution. Let C be an irreducible curve which
has multiplicity one in the fundamental cycle, and let

Γ = (∪iλ−1(Pi)) \ C.

Then there is an exact sequence of OS̃\Γ-modules

0→ OB → λ∗(ΩS)|S̃\Γ → ΩS̃|S̃\Γ → OB → 0

where B = m(C \ (Γ ∩ C)), and m is given by Table 2.1.
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Table 2.1:
λ(C) C m

An Ck+1 min(k + 1, n− k)
Dn C1 2

Cn−1, Cn [n / 2]
E6 C1, C6 2
E7 C7 3

Definition 2.29. Let C be a smooth rational curve on a surface S with Du
Val singularities. The conormal sheaf N∨C/S of C in S is defined by the
kernel of the morphism ΩS|C � ΩC.

Notice that if S is smooth in a neighborhood of C, then this agrees with
the standard definition of conormal invertible sheaf of C. However, if S is
singular at a point of C, the conormal sheaf will not in general be invert-
ible.

Proposition 2.30. [33, (3.1)] Let C be a smooth Weil divisor on a surface S with
Du Val singularities, and let P1, · · · , Pl be the singular points of S contained in
C. Let λ : S̃ → S be the minimal resolution, and let C̃ be the proper transform
of C; we identify C̃ and C via λ. Then there is a zero-dimensional subscheme
Z = ∑ miPi ⊆ C such that

0→ OZ → N∨C/S → N∨C/S̃ → OZ → 0

is an exact sequence of OC-modules. Moreover, if Ci is the component of λ−1(Pi)
meeting C, then the coefficient mi is given by Table 2.1

Let C be a smooth rational curve in a smooth 3-fold Y. Since NC/Y
is a rank two vector bundle on C ∼= P1, we write NC/Y = (a, b) with
a > b. Suppose that there is a surface S with Du Val singularities such that
Y ⊇ S ⊇ C and C ∩ Sing(S) 6= ∅. By Proposition 2.30, we have the exact
sequence

0→ OZ → N∨C/S → N∨C/S̃ → OZ → 0 (2.3.2)

Proposition 2.31. Under the above condition, if KY.C = 0 and N∨
C/S̃

= OC(1),
then deg Z = m > 1 and NC/Y = (m− 1,−m− 1).
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Proof. First note that a + b = −KY.C− 2 = −2. Since C ⊆ S ⊆ Y, we have
a commutative diagram with exact rows:

0 // N∨C/Y
//

��

ΩY|C //

����

ΩC // 0

0 // N∨C/S
// ΩS|C // ΩC // 0

so that N∨C/Y → N∨C/S is surjective. Combining this with (2.3.2), we get a
surjection

N∨C/Y → ker(N∨C/S̃ → OZ) = IZ(1). (2.3.3)

By assumption,

HomOC(N∨C/Y, N∨C/S̃) = HomOC(OC(−a)⊕OC(−b), OC(1))

= HomOC(OC, OC(a + 1)⊕OC(b + 1)).

Hence a morphism α : N∨C/Y → N∨
C/S̃

corresponds to a global section of
OC(a + 1)⊕OC(−a− 1), and Im(α) = IZ(1) if the corresponding section
vanishes exactly along Z, that is, if its zero locus has degree m.

Now, under the convention a > b, OC(a + 1) ⊕ OC(−a − 1) has non-
trivial global sections if and only if a > 0, and the non-trivial section of
OC(a + 1)⊕OC(−a− 1) vanish along a scheme of degree a + 1. By (2.3.3),
we get m = a + 1, as desired.

The following corollary will be used in the proof of Theorem 4.1.

Corollary 2.32. Let C, S and Y be as in Proposition 2.31. If C is an exceptional
curve of the first kind on S, then the normal bundle NC/Y is (0,−2).

Proof. Recall that C contains at least one singular points of S. By Propo-
sition 2.27, the dual graph of C is of type Γn with n > 1, and thus all
(−2)-curves are contracted to an An−1 surface singularity P ∈ C. Then
Z = mP for some m ∈ Z>0. From Proposition 2.30, the degree m of Z is
min(1, n− 1) = 1. Hence the normal bundle NC/Y is (0,−2).
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2.4 Augmented Base Locus

In this section, we discuss a theorem of Nakamaye describing the aug-
mented base locus of a big and nef divisor, which will be used in the proof
of Theorem 4.4.

Let Y be a smooth projective variety and D a divisor on Y. The stable
base locus of D is defined by

B(D) =
⋂

m>1

Bs(|mD|).

Equivalently, B(D) = Bs(|mD|) for sufficiently large and divisible m. The
augmented base locus of D is a Zariski closed set

B+(D) = B(D− εA)

for any ample Q-divisor A and 0 < ε � 1. It is well-defined and depend
only on the numerical class of D.

Suppose further that D is big, i.e. Ddim X > 0. Then the restriction of
OY(D) to any subvariety V of Y is nef, but it may not be big, that is, it may
happen that Ddim V .V = 0.

Definition 2.33. Given a big and nef divisor D on Y, the null locus Null(D)
of D is defined to be the union of all subvarieties V ⊆ Y with dimension
d > 0 such that Dd.V = 0.

Observe that Null(D) is a proper subset of Y since Ddim Y > 0. In fact,
it is a subvariety of Y.

Proposition 2.34 ([34]). Let D be a big and nef divisor on Y. Then Null(D) is
a Zariski closed subset of Y.

Proof. Suppose that {Vi}i∈I is a collection of subvarieties of Y having the
property that Ddim Vi .Vi = 0 for each i ∈ I and that the Zariski closure
of this union is an irreducible subvariety V. We will show that then V is
contained in the null locus Null(D).

Suppose to the contrary that Ddim V .V > 0, so that D|V is big. Then
given an ample divisor A there is an integer m� 0 such that OV(mD− A)
has a non-vanishing section. Let W ( V be the zero locus of this section.
Then any subvariety V′ * W, the restriction OV′(mD− A) of this bundle
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to V′ also has a non-vanishing section. It follows that OV′(D) is big. There-
fore all the Vi in the collection must lie in W, contradicting the fact that V
is the Zariski closure of their union.

Obviously, we have Null(D) ⊆ B+(D). Indeed, for such subvariety
V ⊆ Y, the diviosr D|V is not big. Then OV(mD − εmA) cannot have
non-vanishing section for any m ∈N and thus V ⊆ B(D− εA) = B+(D).

Nakamaye’s theorem states that such null subvarieties account for ev-
ery irreducible components of B+(D):

Proposition 2.35 ([34]). If Y is a smooth projective variety of dimension > 2
and D a big and nef divisor on Y, then B+(D) = Null(D).

2.5 Bertini-type theorems

The aim of the section is to introduce Bertini-type theorem, which is used
to construct suitable general sections in the sequel.

Let σ : E → F be a morphism of vector bundles of ranks m and n on a
variety M. Note that there is a bijection between morphisms E → F and
global sections of E ∨ ⊗F .

For k 6 min(m, n), we define the k-th degeneracy locus of σ by

Dk(σ) = {x ∈ M | rank(σx) 6 k}.

Its ideal is locally generated by (k + 1)-minors of a matrix for σ. We can
show that the codimension of Dk(σ) in M is less than or equal to (m −
k)(n− k) [39, (2.7)], which is called its expected codimension. Notice that
the 0-th degeneracy locus of σ is the zero scheme Z(σ).

Now we state a Bertini-type theorem for vector bundles. The statement
is taken from [39, (2.8)]. For the reader’s convenience, we review its proof.

Theorem 2.36. Let E and F be vector bundles of ranks m and n on a smooth
variety M and let E ∨ ⊗F be generated by global sections. If σ : E → F is a
general morphism, then one of the following holds:

(1) Dk(σ) is empty;
(2) Dk(σ) has expected codimension (m− k)(n− k) and the singular locus of

Dk(σ) is Dk−1(σ).
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Here the ”general” means that there is a Zariski open set in the vector
space H0(E ∨⊗F ) such that every global section σ in the open set satisfies
(1) or (2).

Proof. Let V be the variety Spec(Sym((E ∨ ⊗F )∨)), with projection mor-
phism π : V→ M. Note that there is a subvariety Σk ⊆ V of codimension
(m− k)(n− k) whose fibers over M are isomorphic to the determinantal
variety Yk := {A ∈ Mn(C) | rank(A) 6 k}.

Since E ∨ ⊗F is globally generated, the evaluation map

OM ⊗ H0(E ∨ ⊗F )→ E ∨ ⊗F

is surjective. It induces the projection

p : M× H0(E ∨ ⊗F )→ V

which is regular everywhere. Then p−1 preserves codimension and singu-
lar locus, i.e. the subvariety Z := p−1(Σk) has codimension (m− k)(n− k)
and Sing(Z) = p−1(Sing(Σk)).

Let q : Z → H0(E ∨ ⊗F ) be the projection morphism. Notice that the
fiber q−1(σ) is isomorphic to Dk(σ) and

q−1
Z\SingZ(σ) ' Dk(σ)\Dk−1(σ).

If (qZ\SingZ)
−1 does not have dense image then Dk(σ) is empty for general

σ. Otherwise, Dk(σ) is smooth by generic smoothness theorem and thus

Sing(Dk(σ)) ⊆ Dk−1(σ).

By using the fact that the determinantal variety Yk is Cohen-Macaulay [13,
Theorem 14.4 (c)], we can show that the singular locus of Dk(σ) is exactly
Dk−1(σ) (and omitting the argument because we do not use it in the se-
quel).

Remark 2.37. Let D be a Cartier divisor on M. Assume that the linear sys-
tem Λ := |O(D)| is base point free. Since the (−1)-th degeneracy locus is
empty, the classical Bertini’s second theorem follows from Theorem 2.36
by taking k = 0, E = O and F = O(D). Namely, a general member of
Λ is smooth. We also know, by the Bertini’s first theorem, that if Λ is not
composed of a pencil then its general member is irreducible. However, the
general degeneracy locus Dk(σ) may not be connected.
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Definition 2.38. A closed subscheme Z of a smooth variety M is called su-
perficial if codim(Z, M) > 2 and the closed subset F ⊆ Z of points at which
the embedding dimension of Z is equal to dim M satisfies codim(F, M) >
3.

Proposition 2.39. [2, (2.1)] Let L be a line bundle on a smooth variety M. Let
Z be the scheme-theoretic base locus of a linear system V ⊆ H0(M, L ). If Z is
superficial then a general member of |V| is normal.

Sketch of Proof. If the codimension of the superficial base scheme Z is greater
than two, then a general member of |V| is regular in codimension one. The
proposition follows from the fact that divisors on a smooth variety satisfy
Serre’s S2 condition.

Let f : BlZ M → M be the blowing up of M along Z and assume that
Z has codimension two. Let F ⊆ Z be the closed subset of points at which
the embedding dimension of Z equals dim M. Then Z is a codimension
two local complete intersection away from F. (Indeed, for z ∈ Z\F, let
(A, m) be the regular local ring OM,z and OZ,z = A/I. From the short
exact sequence of A/m-vector spaces

0→ (I + m2)/m2 → m/m2 → m/(I + m2)→ 0,

codim(Z, M) = 2 and z /∈ F, we get 0 < dim(I + m2/m2) 6 2. By
Nakayama’s Lemma, I is generated by two elements.)

Thus BlZ M\ f−1(F) → M\F is a P1-bundle over Z\F and an isomor-
phism elsewhere. We can prove that a general member of |V| is regu-
lar in codimension one away from F. Combining codim(F, M) > 2 with
Serre’s S2 condition, Proposition 2.39 follows. For more details, see [2,
(2.1), p.1226].

2.6 Mixed Hodge Structures on Varieties with Nor-
mal Crossings

In this section we follow the point of view of the article of Griffiths and
Schmid [14, Section 4], which stays as close as possible to classical Hodge
theory, and proves a Lefschetz theorem for reducible ample hyperplane
sections.
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A compact complex analytic variety V is called a variety with normal
crossings of dimension n if for each point x ∈ V there exists a neighbor-
hood U, which can be realized as the union of coordinate hyperplanes:

U ∼= {(z1, · · · , zn+1) ∈ Cn+1 | z1 · z2 · · · zk = 0, |zi| < ε}. (2.6.1)

We assume moreover that globally V = D1 ∪ · · · ∪ DN, where the Di are
compact Kähler manifolds meeting transversely, as in (2.6.1).

A mixed Hodge structure on Hk(V, C) consists of an increasing weight
filtration W• which shall be defined over Q, and a decreasing Hodge fil-
tration F• such that it induces a pure Hodge structure of weight m on
GrW

m = Wm ⊗C/Wm−1 ⊗C. More precisely, the induced filtration is given
by

FpGrW
m Hk(V, C) = (Fp ∩Wm ⊗C + Wm−1 ⊗C)/Wm−1 ⊗C.

There exists a functorial mixed Hodge structure on each variety with
normal crossings.

Theorem 2.40. Let V be a variety with normal crossings, V =
⋃N

i=1 Di. Then
the cohomology group Hk(V, C) carries a functorial mixed Hodge structure, with
weights varying between 0 to k.

We say that mixed Hodge structures on the cohomology of varieties
with normal crossings are functorial if, for a morphism f : X → Y of
varieties with normal crossings, f ∗ : Hk(Y, C) → Hk(X, C) is a morphism
of mixed Hodge structures of weight 0, i.e. f ∗(WpHk(Y)) ⊆WpHk(X) and
f ∗(FpHk(Y)) ⊆ FpHk(X).

We remark that the Theorem 2.40 is actually true even for rational coef-
ficients. For computing Betti numbers we will only deal with the theorem
special to complex coefficients.

To construct a mixed Hodge structure, we need to find a weight filtra-
tion W• on Hk(V, C) verifying

(0) ⊆W0 ⊆W1 ⊆ · · · ⊆Wk−1 ⊆Wk = Hk(V, C).

For each multi-index I = (i1, · · · , iq) with 1 6 i1 < · · · < iq 6 N, we
let |I| = q, the length of I, and DI = Di1

⋂ · · ·⋂Diq . For fixed q, we define
the disjoint union

D[q] = ä
|I|=q

DI .
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Each D[q+1] is compact Kähler, and we define Ap,q = Ap(D[q+1]), where
A∗(D[q+1]) is the usual de Rham complex.

Let d : Ap,q → Ap+1,q be the usual exterior derivative and let δ : Ap,q →
Ap,q+1 be given by the formula, δϕ = ∑|J|=q+2(δϕ)J and J = (j1, · · · , jq+2),

(δϕ)J =
q+2

∑
l=1

(−1)p+l ϕj1,··· , ĵl ,··· ,jq+2
|DJ .

Then {A•,•, d, δ} is a double complex, i.e. d2 = 0, δ2 = 0 and dδ + δd =
0. We associate to this double complex a simple complex (A•, D), where
As = ⊕p+q=s Ap,q, D = d + δ.

Theorem 2.41 (De Rham theorem for varieties with normal crossings).
Hk(A•, D) ∼= Hk(V, C).

To define a mixed Hodge structure on Hk(V, C) by defining two filtra-
tions W and F, it turns out that these filtrations can be introduced already
at the level of the double complex {A•,•, d, δ}.

The complex A•(D[s+1]) has a Hodge filtration, so we can take FP Ar,s

to be the usual Hodge filtration Fp Ar(D[s+1]) on differential r-forms, and
define

Fp A• =
⊕
r,s

FP Ar,s.

Let us consider the filtered complex {A•, W̃}, where

W̃m :=
⊕
r∈Z

⊕
s>−m

Ar,s,

with associated spectral sequence {W̃ Ep,q
r }. By Theorem 2.41, we get

W̃ Ep,q
1 = Hq(D[p+1])⇒ Hp+q(V, C).

Note that Hq(D[p+1]) has a Hodge structure of weight q, induced by the
filtration F.

Now consider the first differential of the spectral sequence:

W̃ Ep,q
1

d1 //
W̃ Ep+1,q

1

Hq(D[p+1]) δ // Hq(D[p+2])

,
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and

W̃ Ep,q
2 = H(W̃ Ep−1,q

1
d1−→ W̃ Ep,q

1
d1−→ W̃ Ep+1,q

1 ). (2.6.2)

Since d1 is a morphism of Hodge structures, W̃ Ep,q
2 has a Hodge structure

of weight q. We do not need to consider any further space, because we
have the following result.

Lemma 2.42. The spectral sequence {W̃ Ep,q
r } degenerates at W̃ E2, that is,

W̃ Ep,q
2
∼= W̃ Ep,q

∞
∼= GrW̃

−pHp+q(V, C).

As a consequence, the graded piece carries a Hodge structure of weight
q induced by the filtration F.

Let k = p + q be fixed. We define the shifted filtration Wp = W̃p−k and
thus

GrW
q Hk(V, C) = GrW̃

−pHk(V, C).

Then {Hk(V, C), W, F} is a mixed Hodge structure with weights varying
from 0 to k, which completes the proof of Theorem 2.40.

Recall that, Lefschetz hyperplane theorem, if Y is a smooth projective
variety and V is an ample hypersurface then Hk(Y, C) → Hk(V, C) is an
isomorphism for k < dim Y − 1 and injective for k = dim Y − 1. From
Lefschetz’s theorem, we have the following result:

Corollary 2.43. Let Y be a smooth projective variety, and let V =
⋃N

i=1 Di be an
ample divisor on Y with normal crossings. Then, for k < dim Y − 1, the mixed
Hodge structure on Hk(V, C) is pure of weight k, i.e. WjHk(V, C) = 0 for all
j < k.

Proof. By Lefschetz hyperplane theorem, the maps Hk(Y, C) → Hk(V, C)
induced by the inclusion are isomorphisms for k < dim Y − 1. According
to Theorem 2.40, it follows that these isomorphisms are morphisms of the
mixed Hodge structures of weight 0. Since Hk(Y, C) is pure of weight k,
we get Wk−1Hk(V, C) = 0 for k < dim Y− 1.

Theorem 2.44. [4, (2.1)] Let Y, V and Di (1 6 i 6 N) be as in Corollary 2.43.
Then for i + k− 1 < dim Y

0→ Hk(Y, C)→
⊕
|I|=1

Hk(DI , C)→ · · · →
⊕
|I|=i

Hk(DI , C)

is exact with the convention that Hk(DI , C) = 0 if |I| > N.
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Proof. From (2.6.2), we know that the sequence⊕
|I|=r

Hk(DI , C)→
⊕
|I|=r+1

Hk(DI , C)→
⊕
|I|=r+2

Hk(DI , C)

is exact if and only if GrW
k Hr+k(V, C) = 0. According to Corollary 2.43

and our assumption, it follows that GrW
k Hr+k vanishes if 1 6 r 6 i − 2.

Note that

0→ Hk(V, C)→
⊕
|I|=1

Hk(DI , C)→
⊕
|I|=2

Hk(DI , C)

is exact because GrW
k Hk = Hk(V, C). Thus the theorem follows from Lef-

schetz hyperplane theorem.
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Chapter 3
Deformation Theory of Calabi–Yau
threefolds

3.1 Unobstructedness Theorem

First we recall the definition of Calabi–Yau 3-fold.

Definition 3.1. A variety X is called a Calabi–Yau 3-fold if it is a projec-
tive Gorenstein 3-fold with at worst terminal singularities, such that the
canonical Cartier divisor is trivial KX ∼ 0 and H1(OX) = 0. If the singu-
larities of X are ordinary double points, we will say that X is a Calabi–Yau
conifold.

Remark 3.2. The cohomology H1(O) is well preserved under resolutions
and deformations of Calabi–Yau 3-folds. Indeed, let π : X̂ → X be a
rational resolution, i.e. π∗OX̂ ' OX and Riπ∗OX̂ vanishes for all i > 0.
Using Leray spectral sequence, we get an isomorphism

0→ H1(OX)→ H1(OX̂)→ H0(R1π∗OX̂) = 0

In particular, H1(OX̂) = 0 for any resolution X̂ of a Calabi–Yau 3-fold X.
On the other hand, H1(OXt) = 0 for a general deformation Xt of X by the
semicontinuity theorem [19, III Thm.12.8].

Let X be a complex manifold. We can vary the complex structure on X.
In general, the miniversal deformation (or Kuranishi) space Def(X) might
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be singular if X is arbitrary. But in the case of Calabi–Yau manifolds, we
have the following well-known result:

Theorem 3.3 (Bogomolov-Tian-Todorov Unobstructedness Theorem). If X
is a Calabi–Yau manifold, then Def(X) is smooth.

For singular Calabi–Yau, we have:

Theorem 3.4. [37, Theorem 1]. Let X be a Calabi-Yau 3-fold with isolated ratio-
nal complete intersection singularities. Then Def(X) is smooth.

Given a proper birational morphism π : X̂ → X with π∗OX̂ ' OX and
R1π∗OX̂ = 0, there is a natural map of germs Def(X̂) → Def(X) (c.f. [25,
(11.4)] or [48, (1.4)] on the level of deformation functors). We have the
following result.

Proposition 3.5. [48, (1.8)], [38, (2.3)] Let X̂ be a small projective partial reso-
lution of a Calabi–Yau 3-fold X and Def(X̂) the Kuranishi space of X̂. Then there
is a natural closed immersion of Def(X̂) into Def(X).

3.2 Smoothings

Theorem 3.6. [11, (8.7)] Let X be a Calabi–Yau 3-fold with only ordinary double
points p1, · · · , pk, and π : X̂ → X be a small (not necessarily projective) reso-
lution of X such that Ci := π−1(pi) ' P1. Then X is smoothable if and only if
there is a relation ∑k

i=1 λi[C]i = 0 in H2(X̂, Z) with λi 6= 0 for all i.

Definition 3.7. A Calabi–Yau 3-fold X is called maximal if, for any small
projective partial resolution X̂( 6= X) of X, the natural inclusion Def(X̂) ↪→
Def(X) is not surjective.

Theorem 3.8. [38, (2.5)] Let {p1, · · · , pk} ⊆ Sing(X) be the ordinary double
points on X and f : Z → X be a small (not necessarily projective) partial res-
olution of X such that Ci := f−1(pi) ' P1 and that f is an isomorphism over
X\{p1, · · · , pk}. Then the following three conditions are equivalent:

(1) X is maximal;
(2) X is smoothable by a flat deformation;
(3) there is a relation in H2(Z, C): ∑ λi[Ci] = 0 with λi 6= 0 for all i.
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The following corollary was proved in [15, (5.1)]. We will generalize
it to the case of the relative Picard number greater than one (cf. Theorem
4.10).

Corollary 3.9. Suppose that π : X̂ → X is a small projective resolution of
X with the relative Picard number one. Then X is smoothable unless π is the
contraction of a single P1 to an ordinary double point.

Proof. If X has only ordinary double points, and C1, · · · , Ck are the excep-
tional curves of π, then the homology classes [Ci]’s in H2(X̂, Z) coincide,
by hypothesis. Hence there is a non-trivial linear dependence relation on
[C1], · · · , [Ck] unless n = 1. Thus by Theorem 3.6, X is smoothable.

Suppose that X does not have only ordinary double points. Let f :
Z → X be a small resolution of the ordinary double points of X (cf. Ex-
ample 2.15). Let C′1, · · · , C′k ⊆ Z be the exceptional curves. Since X has
singularities other than ordinary double points and π has the relative Pi-
card number one, the small partial resolution f is non-projective and thus
H2(Z, C) = H2(X, C). Hence [C′1], · · · , [C′k] = 0 in H2(Z, Z), and so by
Theorem 3.8, X is smoothable.

There is a simple relation between topological Euler numbers and Mil-
nor numbers of singularities, which will be used in Proposition 4.8.

Proposition 3.10. Let X̂ → X be a small resolution of a Gorenstein terminal
3-fold X and X̃ a smoothing of X. Let Sing(X) = {p1, · · · , pm} and Ci the
exceptional curve over pi. Then

e(X̂)− e(X̃) = ∑
i

m(pi) + ∑
i
(e(Ci)− 1) ,

where e(−) denotes the topological Euler number and m(pi) is the Milnor num-
ber of pi.

Sketch of Proof. By Mayer–Vietoris sequence argument, we can show that
e(X̂) = e(X) + ∑i (e(Ci)− 1). Using similar methods in [7, (5.4.4)], we can
prove that e(X) = e(X̃) + ∑i m(pi).
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Chapter 4
Decompositions of Small
Transitions

4.1 Criteria for small reduced fibers

The aim of this section is to prove our main result which gives a descrip-
tion of irreducible fibers of 3-dimensional flopping contractions.

Theorem 4.1. Let π : X̂ → X be a small projective resolution of a normal variety
X of dimension 3. Suppose that KX̂ is π-trivial and that there is an irreducible
normal surface D in X̂ such that−D is π-ample. If the fiber over a singular point
P ∈ X is irreducible, then the analytic type of the singular point P is

x2 + y2 + z2 + w2m = 0 for some m ∈N.

Furthermore, the singular point P is an ODP if and only if the surface D is smooth
in a neighborhood of the fiber.

Proof. If we can prove that the normal bundle of such irreducible fiber in
X̂ is of type (−1,−1) or (0,−2) then the theorem follows immediately (cf.
Example 2.21).

Set E be the irreducible surface π(D) (since π is small). Since −D is
π-ample, E is non-Q-Cartier and D contains exceptional curves Exc(π).
Then Sing(X) ⊆ E.
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Now we consider the following commutative diagram with exact rows:

OX //

∼=
��

OE //

��

0

π∗OX̂
// π∗OD // R1π∗OX̂(−D).

If we can prove π∗OD
∼= OE, then E is normal. According to that D is

irreducible and π is surjective, it follows that OE → π∗OD is injective. To
show that it is indeed an isomorphism, we shall prove R1π∗OX̂(−D) = 0.

Since X̂ is smooth, the pair (X̂, εD) is klt for 0 < ε � 1. By the relative
version of Kodaira vanishing theorem and −(KX̂ + εD) and −D− (KX̂ +

εD) are π-ample, we get Riπ∗OX̂ = 0 and Riπ∗OX̂(−D) = 0 for i > 0.
Hence E is normal and D is rational Gorenstein.

Suppose that the fiber C = π−1(P) over a singular point P ∈ X is
irreducible. We claim that P ∈ E is a smooth surface point. Indeed, since
the exceptional curve C can be contracted to the normal surface point P ∈
E, we get C2 < 0 [45, (1.2)]. On the other hand, by adjunction, we have
KD = (KX̂ + D)|D. According to (KX̂ + D).C < 0 and degC(KD|C) =
degC((KX̂ + D)|C), it follows that KD.C < 0. Thus C is an exceptional
curve of the first kind on D. Then, by Proposition 2.27, p ∈ E is smooth.

If C does not meet any surface singularities in D, then NC/X̂ is (−1,−1)
by Lemma 2.23. Otherwise, by Corollary 2.32, the normal bundle NC/X̂ is
(0,−2). This completes the proof.

Corollary 4.2. With notation as in Theorem 4.1, the scheme theoretical fiber
structure on π−1(P) is reduced, that is, π−1mP · OX̂ = I , where I is the
ideal sheaf of the fiber with the reduced structure.

Proof. By Theorem 4.1, the conormal bundle of the fiber is generated by
global sections (because it is either (1, 1) or (0, 2)). The corollary follows
from Proposition 2.14.

Corollary 4.3. Let π : Y → X be a pl flipping contraction for a 3-dimensional
plt pair (Y, S + B). If the fiber C over a singular point P ∈ X is irreducible, Y is
smooth in a neighborhood of C and KY.C = 0, then

(1) The scheme theoretical fiber structure on π−1(P) is reduced,
(2) The analytic type of the singular point P is

x2 + y2 + z2 + w2m = 0 for some m ∈N.
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Furthermore, the singular point P is an ODP if and only if the surface S is smooth
in a neighborhood of the fiber C.

Proof. This is a local statement, so we may assume Y is smooth and KY is
π-trivial. By [26, (5.51)] and (X, S + B) is a plt pair, bS + Bc = S is a nor-
mal surface. Then the theorem follows from the definition of pl flipping
contractions and Theorem 4.1.

Theorem 4.4. Let π : X̂ → X be a small projective resolution of a Calabi–Yau
3-fold X. Then

(1) Given a singular point P ∈ X, then the following are equivalent:
(a) The fiber over the singular point P is irreducible;
(b) The scheme theoretical fiber π−1(P) is integral;
(c) The analytic type of the singular point P is

x2 + y2 + z2 + w2m = 0 for some m ∈N;
More generally, the same conclusion holds if X is a projective Gorenstein
terminal 3-fold.

(2) The singularities of X are of type cA1 if and only if there is a smooth Weil
divisor S containing the singular locus such that BlSX is Q-factorial. In
this case, π is isomorphic to the blowing up of X along a smooth Weil divi-
sor.

Furthermore, if S is as in part (2), the singularities of X are ODPs if and only if
the normal surface π−1(S) is smooth.

Proof. To apply Theorem 4.1, we have to find an irreducible normal surface
E in the smooth Calabi–Yau 3-fold X̂ with OX̂(−E) being π-ample.

Set D = π∗A0 where A0 ie an ample divisor on X. Obviously, it is big
and nef. By Kodaira’s Lemma, the linear system |mD − A| is nonempty
for any ample divisor A on X̂ and m � 0. Using the relative Kleiman’s
criterion for ampleness, we reduce the proof to showing that the linear
system |mD− A| contains a normal surface (for a suitable m and A).

Take an ample divisor B on X̂. By definition,

B+(D) = Bs(|m1m2D−m2B|)

for sufficiently large and divisible m1 and m2. On the other hand, by
Proposition 2.35, the augmented base locus B+(D) is Null(D). From the
definition of D, a curve that has zero intersection number with D must be
contained in Exc(π), and thus B+(D) = Exc(π).
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Set D1 = m1m2D−m2B for divisible m1, m2 � 0. Since the birational
morphism π is induced by |mD| for m � 0, the linear system |D1| is not
composed of a pencil. By Bertini’s first Theorem, a general member of |D1|
is irreducible.

Since X is a projective Gorenstein terminal 3-fold and π is small, there
is a very ample divisor H ∈ |lA0| such that H ⊇ Sing(X) and Ĥ = π∗H
is a normal surface (with at worst Du Val singularities) by [42, (1.14)]. We
may take l > m1m2 and thus D1 − Ĥ is an antiample divisor on X̂.

Let F be the closed subset of the base scheme Bs(|D1|) consisting of
points at which the embedding dimension of Bs(|D1|) equals 3. If we can
prove codim(F, X̂) = 3 then the theorem follows form Proposition 2.39.

By Kodaira’s vanishing theorem, we have Hi(OX̂(D1 − H)) = 0 for
i < 3. Then we obtain Bs(|D1|) = Bs(|D1|Ĥ|) from the exact sequence

0→ OX̂(D1 − Ĥ)→ OX̂(D1)→ OĤ(D1|Ĥ)→ 0.

Since the base scheme Bs(|D1|Ĥ|) is contained in the normal surface Ĥ, we
get F ⊆ Sing(Ĥ), which are finite sets. Thus the base scheme Bs(|D1|) is
superficial (cf. Definition 2.38), and we infer that a general member E in
|D1| is normal. Then first case follows immediately from Theorem 4.1.

Suppose that the singularities of X are cA1 and thus each fiber of π is
irreducible. Set S = π(E). As in the proof of Theorem 4.1, the surface
S ⊇ Sing(X) is smooth. From the universal property of blowing up, we
have a unique morphism from X̂ onto BlSX factoring π, say π = g ◦ f .
Since fibers of f have dimension zero, f is an isomorphism, by Zariski’s
main theorem; in particular BlSX is Q-factorial since it is smooth.

Conversely, assume that there is such a smooth divisor S. Since X̂ and
BlSX are Q-factorial Calabi–Yau 3-folds, they are connected by flops [23,
(4.9)]. Notice that all fibers of BlSX → X are irreducible (because S is a
smooth surface). By [24, (2.1.12)], all fibers of π are also irreducible. This
complete the remainder of the proof by Theorem 4.1.

Remark 4.5. Since X̂ and BlSX are connected by flops, they have the same
analytic singularities [23, (4.11)]. Thus BlSX is also smooth.

The following example is Calabi–Yau 3-folds with cA1-singularities dif-
ferent from ODPs which admits a small projective resolution.
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Example 4.6. Let η1 : S1 → P1 and η2 : S2 → P1 be relatively minimal,
rational elliptic surfaces with sections. Fix a point t0 in P1 and assume
that, in the notation of Kodaira,

(1) η1 has a singular fiber of type In (for n > 1) over t0;
(2) η2 has a singular fiber of type I I I over t0;
(3) either η−1

1 (t) or η−1
2 (t) is smooth for every point t 6= t0.

Let X = S1 ×P1 S2. Observe that the singularities of X occur precisely at
the points (p1, p2) in η−1

1 (t0) × η−1
2 (t0) where both p1 and p2 are singu-

lar points in the fibers of the S1 and S2 respectively. By construction, X
has n singular points and each singularity is analytically isomorphic to a
singularity defined by xy = u(v2 − u), an A1(3)-singularity (cf. Exam-
ple 2.6). Every irreducible component (considered as a reduced scheme)
of η−1

1 (t0) × η−1
2 (t0) is a smooth surface, which is in fact isomorphic to

P1 ×P1. Every A1(3)-singularity of X lies on such a Weil divisor. A small
projective resolution of X is obtained by successively blowing up any se-
quence of irreducible components of η−1

1 (t0)× η−1
2 (t0) which contains all

A1(3)-singularities. Note that the local description of such blowing up has
computed in Example 2.21.

4.2 Decomposition Process of Small Transition

We recall the definition of (projective) small transitions.

Definition 4.7. Let X̂ → X be a projective small resolution of a Calabi–
Yau 3-fold X, which has terminal singularities. If X can be smoothed to
a Calabi–Yau manifold X̃, then the process of going from X̂ to X̃ is called
a small transition and denoted by a diagram X̂ → X  X̃. It is called a
conifold transition if all singularities of X are ODPs.

There is a simple criterion for ODPs for small transitions.

Proposition 4.8. Let X̂ → X  X̃ be a small transition. Then the difference
of the topological Euler numbers e(X̂)− e(X̃) equals the number 2 |Sing(X)| if
and only if the singularities of X are ODPs.

Proof. Let Sing(X) = {p1, · · · , pk} and Ci the exceptional curve over an
isolated hypersurface singularity pi. We have the identity of the topologi-
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cal Euler numbers

e(X̂)− e(X̃) = ∑ m(pi) + ∑ (e(Ci)− 1) ,

where m(pi) is the Milnor number of pi. According to Proposition 2.20,
the exception curve Ci is a union of smooth rational curves which meet
transversally and thus the number e(Ci)− 1 is equal to ni the number of
irreducible components of Ci. Observe that m(pi) and ni are greater than
or equal to one. Then

e(X̂)− e(X̃) = ∑ m(pi) + ∑ ni > 2k,

and the equality holds if and only if ni = m(pi) = 1 for all i.

Conifold transitions play a fundamental role in Reid’s fantasy [43, Sec-
tion 8] (cf. §1), which conjectures that all the moduli spaces of smooth
Calabi–Yau 3-folds are connected through conifold transitions.

For a Calabi–Yau 3-fold X, Namikawa and Steenbrink proved that X
can be deformed to a Calabi–Yau 3-fold with at worst ODPs [36]. In view
of this result, it seems that one may possibly answer Question 1 affirma-
tively by finding a deformation direction of X̂ which deforms X̂ → X into
X̂1 → X1 with X1 being a Calabi–Yau conifold. Unfortunately, Namikawa
produced a counterexample to this in [38, Remark 2.8]. We recall it briefly
as follows:

Choose a suitable rational elliptic surface S with six singular fibers of
type II (i.e. cuspidal rational curves). Let X = S×P1 S. Then X is a Calabi–
Yau 3-fold with six singular points of cA2 type:

x2 − y3 = u2 − v3,

which admits smoothings to X̃ = S1 ×P1 S2 with Si → P1 having disjoint
discriminant loci. A small resolution π : X̂ → X can also be constructed
(see below). Namikawa observed that the exceptional loci should not be
deformed to a disjoint union of (−1,−1)-curves. The reason is that a sin-
gular fiber of type II splits up into at most two singular fibers of type I, and
a general fiber of small deformation of a singularity of X which preserves
small resolutions has three ODPs.

To search for a modification of Question 1, we need to study Namikawa’s
construction of the small resolution π carefully. Notice that the diagonal
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D ∼= S in X is a smooth Weil divisor which contains the six singular points
and is thus not Q-Cartier. On the other hand, there is a τ ∈ Aut(X) such
that Dτ := τ(D) has the same properties as D. Then X′ := BlDX has six
ODPs and the exceptional locus of X′ → X consists of six mutually dis-
joint P1s, with each of them passing through one of the six ODPs. Now
the small resolution can be constructed as the blowing up of X′ along
the proper transform D̃τ of Dτ, with π being composed of morphisms
X̂ → X′ → X. It admits exceptional trees, composed of couples of rational
curves intersecting at one point.

Now comes the key point. Using Friedman’s criterion, X′ → X can be
deformed to a small resolution Y′ → Y where Y′ is smooth and Y has only
ODPs. Thus we have decomposed the small transition X̂ → X  X̃ into
two conifold transitions X̂ → X′  Y′ and Y′ → Y X̃:

X̂ = BlD̃τ
X′

��

Y′

��
X′ = BlDX

��

::

Y __

��
X

99

// X̃.

Combining the above discussions, we modify Question 1 as follows:

Question 2. Let X̂ → X  X̃ be a small transition. Up to deformations
of contractions, is that true X̂ can be connected to X̃ through a sequence of
conifold transitions?

To attack Question 2, we introduce primitive small transitions:

Definition 4.9. A small transition X̂ π−→ X  X̃ is said to be primitive if it
satisfies the following two conditions (up to flops of π):

(1) If X̂ → X can be deformed to another small resolution Ŷ → Y, then
the analytic type of singularities of X and Y are the same.

(2) For any factorization X̂ → X′ → X of the resolution X̂ → X with
X′ 6= X and X′ 6= X̂, the closed immersion Def(X̂) ↪→ Def(X′) of
Kuranishi spaces is an isomorphism.

Evidently, every small transition can be decompose into primitive small
transitions up to deformations. If we want to approach Question 2, un-
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derstanding primitive small transitions becomes essential. The following
theorem provides the first step towards this problem:

Theorem 4.10. Let π : X̂ → X be a small resolution of a Calabi–Yau 3-fold
X. If the natural closed immersion Def(X̂) ↪→ Def(X) of Kuranishi spaces is
an isomorphism then the singularities of X are ODPs. Moreover, the number of
ODPs is equal to the relative Picard number ρ(X̂/X).

We note that Theorem 4.10 is a generalization of [15, (5.1)].

Proof. The proof is by induction on the relative Picard number ρ = ρ(X̂/X).
Suppose that ρ = 1. The result follows from [15, (5.1)].

To prove the case ρ > 2, we recall some facts about extremal rays. Let D
be the pullback of an ample divisor under the morphism π. By Kodaira’s
Lemma, a linear system |mD− A| is nonempty for any ample divisor A on
X̂ and m � 0. Pick a divisor E ∈ |mD− A|, which is relatively antiample
by the relative Kleiman’s criterion for ampleness. Let NE(X̂/X) be the
relative Mori cone. It is a convex (polyhedral) cone generated by (finitely
many) exceptional curves of π. Using the Cone Theorem [26, (3.25)], we
have a klt pair (X̂, εE) for 0 < ε � 1 with OX̂(−E) being π-ample such
that

NE(X̂/X) = ∑k
i=1 R>0[Ci],

where R>0[Ci] are different extremal rays and k > ρ. Notice that the
Calabi-Yau condition implies that every face of NE(X̂/X) is a (KX̂ + εE)-
negative extremal face. It is also evident that the number of irreducible
components of Exc(π) is at least ρ.

Suppose that our assertion is valid for small resolutions with the rela-
tive Picard number less than ρ, and let π : X̂ → X be a small resolution
with ρ(X̂/X) = ρ. We first claim that the number of irreducible compo-
nents of Exc(π) is ρ.

Let U = X̂\π−1(Sing(X)). Consider the following long exact sequence

0→ H1(Ω2
X̂)→ H1(U, Ω2

U)→
⊕

p∈Sing(X)

H2
π−1(p)(Ω

2
X̂)

α−→ H2(Ω2
X̂) (4.2.1)

where H1
π−1(p)(Ω

2
X̂
) is vanishing for all p ∈ Sing(X) by the depth argu-

ment (cf. Lemma 2.24). Note that Def(X) is smooth [37] and the tan-
gent space of Def(X) is isomorphic to H1(U, Ω2

U), by Schlessinger’s result
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[10, 47]. According to the assumption of the theorem, the dimension of
Def(X̂) and Def(X) are the same. Then we get h1(Ω2

X̂
) = h1(U, Ω2

U) and
thus α is injective. Since the image of α is just the vector space generated by
the fundamental classes of irreducible components of π−1(Sing(X)), we
get rank(α) = ρ. According to Lemma 2.24, it follows that the dimension
of
⊕

p H2
π−1(p)(Ω

2
X̂
) is greater than or equal to the number of irreducible

components of π−1(Sing(X)) which is at least ρ. Hence we conclude that
the number of irreducible components of π−1(Sing(X)) is exactly ρ.

Notice that now we have

NE(X̂/X) =
⊕ρ

i=1
R>0[Ci].

If any two curves have non-empty intersection, say C1 and C2, we let F
be the cone generated by [C1] and [C2]. It is indeed a face since there are
precisely ρ generators of the ρ-dimensional cone NE(X̂/X). Let π′ : X̂ →
X′ be the contraction of the (KX̂ + εE)-negative extremal face F. By the
induction hypothesis, the singularities of X′ consist of exactly two ODPs
and Exc(π′) = C1 ä C2. This contradicts to that C1 ∩ C2 6= ∅, and thus
Exc(π) is a disjoint union of irreducible rational curves.

By the induction hypothesis and the Cone theorem, we infer that the
normal bundle of an irreducible exception curve in X̂ is (−1,−1). Hence
the singularities of X are ODPs.

As an immediate consequence of Theorem 4.10, we have:

Corollary 4.11. For a primitive small transition X̂ → X X̃ and any nontriv-
ial factorization X̂ → Y → X, the singularities of Y are ODPs.

Corollary 4.12. Let π : X̂ → X be a small resolution of a Calabi–Yau 3-fold X.
Suppose that, for any Calabi–Yau 3-fold X̂′ which is birationally equivalent to X̂
and any factorization X̂′ → X′ → X with X′ 6= X̂′, the Calabi–Yau 3-fold X′ is
not smoothable. Then the singularities of X are ODPs. Moreover, the number of
ODPs is equal to the relative Picard number ρ(X̂/X).

Proof. According to that X̂ and X̂′ are connected by a sequence of flops
[21, 23] and the Kuranishi spaces are unchanged under flops [25, (12.6)],
Corollary 4.12 follows from Theorem 3.8 and Theorem 4.10.

Question 3. Can one classifies primitive transitions? Or more ambitiously,
is that true a primitive transition is necessarily a conifold transition?
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Chapter 5
A Connectedness Theorem of
Moduli spaces

5.1 Configurations and Parameter Spaces

We start by introducing the configuration of complete intersections and
constructing their parameter spaces.

A configuration is a pair [V‖L] of a smooth projective variety V and
a sequence of line bundles L = (L1, · · · , Lm), where Lj is generated by
global sections. In this thesis, we always assume that dim V = m + 3. A
variety X is called a member of the configuration and write X ∈ [V‖L] if
it is defined by global sections σj of Lj for 1 6 j 6 m and of dim X = 3.

If

V = ∏k
i=1 Pni and Lj =

⊗k
i=1 pr∗i OPni (qi

j),

where pri : V → Pni is the natural projection and qi
j > 0 for all i, j, then we

define a configuration matrix

[n‖q] =

 n1 q1
1 · · · q1

m
...

... . . . ...
nk qk

1 · · · qk
m

 .

Here the (q1
j , · · · , qk

j ) and are called the multidegree of Lj and X ∈ [n‖q]
respectively. We may assume that

∑k
i=1 qi

j > 2
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for all 1 6 j 6 m (otherwise a hyperplane section of only one factor Pn

reduces the factor to Pn−1). Note that the global sections of Lj are multi-
homogeneous polynomials of multidegree (q1

j , · · · , qk
j ).

Definition 5.1. Two configuration matrices are said to represent the same
configuration if one can go from one to the other by a permutation of the
rows or of the columns other than first. We say that [n1‖q1] is a sub-
configuration matrix of [n‖q] if[

n1 q1 a
m 0 b

]
and [n‖q] represent the same configuration.

We can explain the meaning of a complete intersection X ∈ [n‖q] pre-
cisely by defining a projective family for the configuration [n‖q] whose
fibers are complete intersections of multidegree q.

In the following we will write Xi and u as a short form for indetermi-
nates Xi0, · · · , Xini and u1, · · · , ud respectively.

Let X be defined by a sequence of multi-homogeneous polynomials
σ = (σj) of multidegree q and of dimension three. Let

Φ(1), · · · , Φ(d)

be a basis of
⊕m

j=1 H0(V, Lj) and write Φ(h) = (φ
(h)
j ) where φ

(h)
j ’s belong

C[X1; · · · ; Xk] with multidegree (q1
j , · · · , qk

j ).

Let K• := K•(σ + ∑d
h=1 uhΦ(h)) be the Koszul complex and

D := Supp(H1(K•)) ⊆ Ad+N = Spec (C[u; X1; · · · ; Xk])

where N = ∑i ni + k is the dimension of V.
Let q be the projection from Ad+N onto Ad, and let U := Ad\q(D) be

the set of points such that the H1(K•) vanishes, i.e. the Koszul complex K•
is exact on such points. Obviously, U contains the origin. Let

X = Proj

(
C[u; X1; · · · ; Xk]/(σ1 + ∑

h
uhφ

(h)
1 , · · · , σm + ∑

h
uhφ

(h)
m )

)
.

Consider the projection P : X ⊆ V ×Ad → Ad and its restriction PU :
XU → U. Since the the Koszul complex K• is exact on U, all fibers of
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PU are complete intersections of multidegree q and have the same Hilbert
polynomial P(t) which is computed by the Koszul resolution and depends
on its multidegree. Hence PU is a flat family with the fiber X0 = X [19, III
Thm.9.9]. From this we know that such complete intersections are param-
eterized by an open subset of HilbN

P(t).
To summarize what we have proved, we get the following proposition:

Proposition 5.2. Given X ∈ [n‖q]. Then there is a Zariski open set 0 ∈ U
in
⊕m

j=1 H0(V, Lj) and a flat projective morphism PU : XU → U with the
fiber X0 = X such that all complete intersections in V of multidegree q are
parameterized by the pair (U, PU).

Hence we may use the configuration [n‖q] to denote the parameter
space of complete intersections in V of multidegree q and dimensional
three.

The following result is a well known result in [16]. In order to point
out what the fundamental cycle of a smooth member is, we are going to
use Theorem 2.36 to give a proof.

Proposition 5.3. A general member X of a configuration [V‖L] is smooth and
of dimension three, where L = (L1, · · · , Lm) is a sequence of globally generated
line bundles over V. Moreover, the normal bundle of X in V is

⊕m
j=1 Lj|X and

the fundamental class [X] in A3(V) is the top Chern class of
⊕m

j=1 Lj.

Proof. Apply Theorem 2.36 to the case k = 0, E = OV and F =
⊕m

j=1 Lj,
the zero locus Z(σ) is smooth and has the expected codimension m for a
general σ : E → F . Namely, a general (sj) ∈

⊕m
j=1 H0(V, Lj) defines a

smooth member X ∈ [V‖L] of dimension dim V−m = 3. By [13, Example
14.4.1], the fundamental class of a general member in A3(V) is the Chern
class cm(F ) ∩ [V].

In order to connect two configurations, we shall define a formal corre-
spondence on matrices which is introduced in [3].

Given a configuration

Ĉ =

[
n 1 · · · 1 0 · · · 0
P L1 · · · Ln+1 Ln+2 · · · Lm

]
where P is a smooth projective variety and Lj’s are line bundles on P, we
introduce a new configuration

C =
[

P
⊗n+1

i=1 Li Ln+2 · · · Lm
]
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so as to remove the Pn factor and denote the correspondence by

Ĉ �→ C . (5.1.1)

We refer to the correspondence of passing from the right hand side to
the left as formal splitting and the reverse process as formal contraction. A
configuration connects to other formally if, after a finite formal splitting
and contractions, one represents the same configuration as other one.

We are going to compute the difference of topological Euler numbers
of smooth members between the formal correspondence.

Proposition 5.4. Let Ĉ �→ C be as in (5.1.1). Given smooth members X̂ ∈ Ĉ
and X̃ ∈ C , we have

e(X̂)− e(X̃) = 2
∫

P

(
c2(E )2 − c1(E )c3(E )

)
cm−n−1(F )

where E =
⊕n+1

i=1 Li and F =
⊕m

i=n+2 Li, which are vector bundles of rank
n+ 1 and m− n− 1 respectively, and e(−) denotes the topological Euler number.

Proof. From Proposition 5.3 and the normal sequence

0→ TX̃ → TP|X̃ → NX̃ → 0,

we calculate

p(t) := ι∗ct(TX̃) = ct(TP)st(⊗n+1
i=1 Li)st(F ),

where ι : X̃ ↪→ P is the inclusion, ct(V ) denotes the Chern polynomial of
a vector bundle V and ct(V )st(V ) = 1. Observe that ⊗n+1

j=1 Lj and E have

same first Chern class ∑n+1
j=1 c1(Lj). Then st(⊗n+1

j=1 Lj) = ∑∞
i=0 si(E )iti and

fundamental class of X̃ in A3(P) is

(c1(E )cm−n−1(F )) ∩ [P]. (5.1.2)

We are going to calculate e(X̃). Set ct(P) = ct(TP). By a direct compu-
tation,

p′′′(0) = s1(E )3 + C1s1(E )2 + Cs,
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where

C1 :=c1(P) + s1(F ), (5.1.3)
Cs :=s3(F ) + [c1(P) + s1(E )] s2(F )

+ [c2(P) + c1(P)s1(E )] s1(F ) + c2(P)s1(E ) + c3(P).

Using the above identity, (5.1.2) and the Gauss-Bonnet theorem, we get

e(X̃) =
∫

X̃
c3(X̃) =

∫
P

p′′′(0)c1(E )cm−n−1(F ).

To compute e(X̂), we identify the line bundle OPn(1) on Pn with pr∗OPn(1)
on Pn × P (similarly for vector bundles on P), where pr is the projection
from Pn × P onto Pn.

According to
ι′∗NX̂ = (E ⊗OPn(1))

⊕
F ,

where ι′ : X̂ ↪→ Pn × P is the inclusion, it follows that

q(t) := ι′∗ct(TX̂) = ct(TPn ⊕ TP)st(E ⊗OPn(1))st(F )

and the fundamental class of X̂ in A3(P
n × P) is

(cn+1(E ⊗OPn(1))cm−n−1(F )) ∩ [Pn × P].

Set H = c1(OPn(1)) in A1(P
n × P). An explicit computation show that

q′′′(0) = s1(E )H2 − [2s2(E ) + C1s1(E )] H + [s3(E ) + C1s2(E ) + Cs] ,

where C1 and Cs are classes as defined in (5.1.3).
We regard the class q′′′(0)cn+1(E ⊗ OPn(1)) as a polynomial in H, de-

noted it by Q(H). Then Q(n)(H) is equal to the Hn-term in the class

q′′′(0)
(

c1(E )Hn + c2(E )Hn−1 + c3(E )Hn−2
)

.

Let P(H) be the class p′′′(0)c1(E )Hn in A∗(Pn × P). Using the recurrence
relation cl(E ) = −∑l

i=1 si(E )cn−i(E ) between Chern classes and Segre
classes, we get

e(X̂)− e(X̃) =
∫

Pn×P

(
Q(n)(H)− P(H)

)
cm−n−1(F )

=
∫

P
2
(

s2(E )2 − s1(E )s3(E )
)

cm−n−1(F )

=
∫

P
2
(

c2(E )2 − c1(E )c3(E )
)

cm−n−1(F ).
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Example 5.5. We consider

Ĉ :=

 3 1 1 2
1 0 0 2
2 1 1 1

�→ C :=
[

3 4
1 2

]
.

For smooth member X̂ ∈ Ĉ and X̃ ∈ C , the topological Euler num-
bers e(X̂) and e(X̃) are −112 and −168 respectively. Let s (resp. t) be
the class of a hyperplane on P3 (resp. P1), and let E be the vector bun-
dle O(1, 0)

⊕
O(1, 0)

⊕
O(2, 2) of rank three on P3 ×P1. Then the Chern

classes of E are 
c1(E ) = 4s + 2t,
c2(E ) = 5s2 + 4st,
c3(E ) = 2s3 + 2s2t.

and the coefficient of s3t in c2(E )2 − c1(E ).c3(E ) is 28.

Definition 5.6. A configuration matrix [n‖q] is called a complete intersec-
tion Calabi–Yau (CICY) configuration if it satisfy the Calabi–Yau condtion

∑m
j=1 qi

j = ni + 1

for all 1 6 i 6 k.

It is easy to see that CICY configuration matrices are preserved under
formal splitting and contractions. Note that the topological Euler number
of a smooth member which belongs to a CICY configuration matrix is non-
positive [3, (2.28)].

Remark 5.7. We do not allow that a Calaba–Yau 3-fold X is a product of
three elliptic curves or of an elliptic curve and K3 surface since H1(OX) =
0. Further we are not interested in a configuration matrix which contains
the sub-configuration [1‖2] because the sub-configuration describes two
points (counted with multiplicity) in P1. To exclude such cases, we only
treat non block-diagonal CICY configuration matrices.

Let us consider the simple case for all ni = 1 and qi
j = 0 or 2.
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Example 5.8. Given a CICY configuration k × (m + 1)-matrix [n‖q] with
ni = 1 and qi

j = 0 or 2 for all i, j. Then k = m + 3. By Remark 5.7, we know
that [n‖q] is non block-diagonal and thus

∑k
i=1 qi

j > 4

for each column of q. According to the Calabi–Yau condition it follows
that

4(k− 3) 6∑i,j qi
j = 2k

and therefore 4 6 k 6 6. When k equals 5 or 6, we get a product of an
elliptic curve and K3 surface or of three elliptic curves respectively. By
Remark 5.7, the CICY configuration matrix must be

1 2
1 2
1 2
1 2


in this simple case. We denote this configuration matrix by C1111.

The following proposition were proved in [17, Lemma 2], for the con-
venience of the readers we give a proof here.

Proposition 5.9. Every CICY configuration matrices can be connected formally.

Proof. Given a (non block-diagonal) CICY configuration matrix

[n‖q] =

 n1 q1
1 · · · q1

m
...

... . . . ...
nk qk

1 · · · qk
m

 .

We perform formal splitting iteratively until we arrive at a configuration
matrix for which each row entries qi

j with ni > 1 are 0 or 1 (for example,
introducing a sub-configuration matrix [1‖11] to split it). Perform next
formal contractions in a way that finally leaves each ni = 1 and qi

j = 0
or 2. Notice that non block-diagonal CICY configuration matrices are pre-
served under formal splitting and contractions. According to Remark 5.8,
it follows that the configuration matrix is the simple configuration C1111.
Hence every CICY configuration matrices connect as claimed.
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We conclude this section by the existence of a smooth Calabi–Yau in
every CICY configuration matrices. The remaining task is to prove that a
general member is irreducible and H1(O) = 0 by using a suitable Lefschetz-
type theorem for an ample reducible divisor, cf. Theorem 2.44.

Proposition 5.10. A general member of a CICY configuration matrix is a smooth
Calabi–Yau 3-fold.

Proof. Given a CICY configuration matrix [n‖q], and let V = ∏m
i=1 Pni . Let

Lj be the line bundle with the multidegree (q1
j , · · · , qk

j ). By Proposition 5.3,
it suffices to prove that a general smooth member X ∈ [n‖q] is connected
and H1(OX) = 0. Note that the canonical bundle of X is trivial by the
adjunction formula. Therefore we only need to prove that H0(X, C) and
H1(X, C) have dimension one and zero respectively.

Pick a general section (sj) ∈
⊕m

j=1 H0(V, Lj) for which the divisor
Dj := Z(sj) is a smooth and connected with all subsets of the Dj’s meeting
transversely. By Theorem 2.44 and ∑m

j=1 Dj is ample divisor, we get exact
sequences, for i = 0, 1,

0→ Hi(V, C) · · · →
⊕
|J|=r

Hi(DJ , C)→ · · ·Hi(X, C)→ 0 (5.1.4)

where DJ := Dj1
⋂ · · ·⋂Djr for a multi-index J = (j1, · · · , jr) of length

|J| = r with 1 6 j1 < · · · < jr 6 m and X =
⋂
|J|=m DJ . Note that

i + m < dim V for i = 0, 1.
We notice that if all qis

j = 0 for some is then DJ is of the form D′J ×Pnis

where D′J is a complete intersection in ∏i 6=is Pni . In particular, H1(Dj, C)
is zero by Lefschetz hyperplane theorem for all 1 6 j 6 m.

By induction, it follows that the dimension of
⊕
|J|=r H0(DJ , C) is (m

r )

and of
⊕
|J|=r H1(DJ , C) is zero for the length r < m. We remark that the

induction process works because every DJ has the form D′J ×∏ Pnl with
D′ = ∑ D′j is ample. Hence the connectedness and simple connectedness
of DJ can be proved in the similar way as shown before. Using the se-
quence (5.1.4) and dimension counting, we get the dimension of H0(X, C)
and H1(X, C) are one and zero respectively.

As a byproduct of Theorem 2.44, we obtain the following second Betti
number formula:
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Proposition 5.11. With the notation as in the proof of Proposition 5.10,

b2(X, C) = (−1)m

m +
m−1

∑
r=1

(−1)r ∑
|J|=r

b2(DJ , C)

 .

Moreover, the second Betti number of X equals the second Betti number of the
ambient space V if b2(DJ , C) = b2(V, C) for each 1 6 |J| < m.

Proof. By V = ∏m
i=1 Pni and Künneth formula, the second Betti number

of V equals m. Since dim V > m + 2, the exact sequence (5.1.4) holds for
i = 2 and the proposition follows.

To know the full topological data of X, including the Hodge number
h1,1(X), h2,1(X) and the Euler number e(X) = 2(h1,1(X) − h2,1(X)), in
a CICY configuration matrix [n‖q], it suffices to compute either one of
these two Hodge numbers. These calculated in [18] for the 7868 CICY
matrices constructed in [3]. Finding those Hodge numbers corresponding
to a given matrix is, in principle, just a matter of looking up the relevant
matrix in the list.

Proposition 5.11 gives a direct calculation of h1,1(X) = b2(X, C) for X
in any given CICY configuration matrix.

Example 5.12. Consider

X ∈

 4 3 1 1 0 0
2 0 1 0 1 1
2 0 0 1 1 1

 ,

which was given in the appendix of [18]. Applying Lefschetz hyperplane
theorem, Künneth formula and Proposition 5.11, we get

b2(X, C) = b2(P
4, C) + b2(D, C)

where D ∈
[

2 1 1
2 1 1

]
is a smooth surface with Euler number 6. There-

fore b2(D) = e(D)− 2 = 4 and the second Betti number of X is 5.
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5.2 Determinantal Contractions

In this section, we will recall the definition of determinantal contractions
between CICY 3-folds in products of projective spaces which is introduced
in [3]. The main tool used in the section is the Bertini-type theorem intro-
duced in the preliminary section.

Let Ĉ be a CICY configuration k× (m + 1)-matrix of the type[
n 1 · · · 1 O
N c1 · · · cn+1 M

]
where M is a matrix and N, cj’s are column vectors. We have the formal
contraction

Ĉ �→ C =
[

N ∑n+1
j=1 cj M

]
.

We are going to define a determinantal contraction for the formal con-
traction Ĉ �→ C and find a morphism π : X̂ → X with each fiber is a
point or a projective line in Pn where π : Pn×Y → Y is the projection and
X̂, X := π(X̂) is a member of the configuration Ĉ , C respectively.

Let N = [nl] and P = ∏ Pnl . We rewrite the configuration

Ĉ =

[
n 1 · · · 1 0 · · · 0
P L1 · · · Ln+1 Ln+2 · · · Lm

]
where Lj’s are line bundles on P corresponding to cl’s and M. Writing
[z0; · · · : zn] ∈ Pn and let X̂ ∈ Ĉ be defined by global sections

n

∑
i=0

si
j(p)zi = 0

and tl(p) = 0 where si
j ∈ H0(P, Lj) and tl ∈ H0(P, Ll) for 1 6 j 6 n + 1

and n + 2 6 l 6 m. Set
∆(p) = det(si

j(p))

which is a global section of the line bundle
⊗n+1

j=1 Lj on P. Since zi cannot
all vanish simultaneously, we have ∆(p) = 0 for (z, p) ∈ Pn × P.

Obviously, the X = π(X̂) is defined by global sections

∆(p) = 0 and tl(p) = 0
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for n + 2 6 l 6 m and thus X belong to the configuration C .

Definition 5.13. We say that a formal contraction Ĉ �→ C gives a deter-
minantal contraction if there is a smooth irreducible member X̂ in Ĉ such
that the morphism π : X̂ → X given in the above process is an isomor-
phism or a small resolution of a normal variety X ∈ C with only isolated
singularities.

It is easy to show that the determinantal contraction π : X̂ → X is an
isomorphism if an only if X is smooth (since X, X̂ are smooth minimal
models).

The following theorem is the main result in this section. The proof will
follow the idea outlined in [3] and apply Theorem 2.36.

Theorem 5.14. Given a CICY configuration matrices Ĉ and C as above, the
formal contraction Ĉ �→ C gives a determinantal contraction.

Proof. Let

L ′
j =

{
p∗OPn(1)⊗ π∗Lj if 1 6 j 6 n + 1,
π∗Lj if n + 2 6 j 6 m,

where p and π are the projections from Pn× P onto Pn and P respectively.
By Proposition 5.10, there are Zariski open sets Uj in H0(Pn × P, L ′

j )

for each 1 6 j 6 m such that X̂ = Z(σ) is smooth and irreducible for
σ ∈ ∏m

j=1 Uj. Since L ′
j is a line bundle on the product of projective spaces,

we have, for 1 6 j 6 n + 1,

H0(Pn × P, L ′
j ) ' H0(Pn, OPn(1))⊗ H0(P, Lj)

'
⊕n+1

i=1

(
H0(P, Lj) · zi−1

)
and, for n + 2 6 j 6 m,

H0(Pn × P, L ′
j ) ' H0(P, Lj)

where {z0, · · · , zn} is a basis of H0(Pn, OPn(1)). Therefore we can identify
Zariski open sets

Uj '∏n+1
i=1 Uij · zi−1
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where Uij’s are Zariski open sets of H0(P, Lj) for 1 6 j 6 n + 1.
On the other hand, we consider τ :

⊕n+1
1 OP →

⊕n+1
j=1 Lj a morphism

of vector bundles. By Theorem 2.36, there are Zariski open sets Vij of
H0(P, Lj) for 1 6 i, j 6 n + 1 such that the expected codimension of the
degeneracy loci Dn−1(τ) and Dn−2(τ) in P are four and nine for sections
τ = [sij] ∈ ∏n+1

i,j=1 Vij.
Now we define a Zariski open subset

U = ∏n+1
j=1

(
∏n+1

i=1

(
(Uij ∩Vij) · zi−1

))
×∏m

j=n+2 Uj

of the space
⊕m

j=1 H0(Pn× P, L ′
j ). It remains to show that there is a deter-

minantal contraction π of X̂ = Z(σ) for some section σ ∈ U.
Pick a section σ = (∑i si

jzi, tj) ∈ U, we notice that, for p ∈ P, the
dimension of π−1(p) is less than two if and only if the corank of the matrix
[si

j(p)] is less than or equal to two, i.e. rank[si
j(p)] > n − 1. Since the

number of sections tj’s is equal to dim P− 4 and the expected codimension
Dn−2([si

j]) and Dn−1([si
j]) are nine and four, we may assume that Y :=

Z(tn+2, · · · , tm) is smooth and the intersection of Y with Dn−2([si
j]) and

Dn−1([si
j]) are empty and isolated points respectively (by taking a suitable

(tl) ∈ ∏ Ul).
According to that X = π(X̂) is defined by ∆|Y = det(si

j)|Y on the
smooth variety Y and is irreducible, it follows that X is integral. Since
X̂ = Z(σ) is a smooth variey, we have now derived that, for such sec-
tion σ = (∑i si

jzi, tj), the morphism π : X̂ → X is a small resolution
of the normal variety X with only isolated singularities (which equals
Y ∩ Dn−1([si

j])). Hence the formal contraction Ĉ �→ C gives a deter-
minantal contraction.

Remark 5.15. If corank of [si
j(p)] is 1 or 2 then the solution space of the

matrix defines a point or a projective line in Pn respectively. Namely, each
fiber of π is a point or a projective line in Pn.

Corollary 5.16. With notation as in the proof of Theorem 5.14. For the determi-
nantal contraction π : X̂ → X, the number of singularities of X is equal to∫

P

(
c2(E )2 − c1(E )c3(E )

)
cm−n−1(F )
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where E =
⊕n+1

i=1 Li and F =
⊕m

i=n+2 Li on P, which are vector bundles of
rank n + 1 and m− n− 1 respectively.

Proof. As in the proof of Theorem 5.14, the number of singularities of X
equals the intersection number [Dn−1([si

j])] ∩ [Z(tn+2, · · · , tm)] ∩ [P]. By

[13, Theorem 14.4, Example 14.4.1], for the smooth general member X̂
which is defined by a general section σ = (∑i si

jzi, tj), the fundamental
classes [Dn−1([si

j])] and [Z(tn+2, · · · , tm)] are
(
c2(E )2 − c1(E )c3(E )

)
∩ [P]

and cm−n−1(F ) ∩ [P] respectively. This completes the proof.

Remark 5.17. If π : X̂ → X is an isomorphism, that is Sing(X) = ∅, the
Ĉ �→ C is referred to as an ineffective splitting in [3, p.512]. By Proposi-
tion 3.10, it is ineffective iff X and X̂ have the same Euler characteristic iff
the intersection

Dn−1([si
j]) ∩ Z(tn+2, · · · , tm)

is empty. In the case n = 1, the intersection is defined by dim P sections
si

j and tl. Therefore the (formal) splitting is ineffective iff the intersection
number

c2(E )2 ∩ [P] = D1. · · · .Ddim P = 0

where D1, · · · , Ddim P is Cartier divisors defined by s0
1, s1

1, s0
2, s1

2, tl’s respec-
tively.

5.3 Connecting the CICY Web

We are now ready to prove the connectedness of parameter spaces of CICY
configuration matrices.

Theorem 5.18. Any two (parameter spaces of) complete intersection Calabi–Yau
3-folds in products of projective spaces are connected by a finite sequence of coni-
fold transitions.

Proof. By Proposition 5.9 and Theorem 5.14, every CICY configuration ma-
trices connect formally and each formal contraction gives a determinantal
contraction X̂ → X, which is an isomorphism or a small projective res-
olution, say X ∈ C . According to Proposition 5.4 and Corollary 5.16, it
follows that e(X̂)− e(X̃) = 2 |Sing(X)|, where X̃ ∈ C is a general smooth
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member. By Proposition 4.8, the singularities of X are ODPs. Hence each
parameter space [n‖q] connects to the simple one C1111 by conifold transi-
tions.

Example 5.19. Consider the smooth CICY 3-fold X̂ in P1 ×P4 defined by

p0
j (z)t0 + p1

j (z)t1 = 0 for j = 1, 2,

where t0, t1 are homogeneous coordinates on P1, p0
1(z), p1

1(z) are two gen-
eral quartic polynomials and p0

2(z), p1
2(z) are two linear polynomials on

P4. Since ti’s can not both vanish, it must be the case that the determinant
∆(z) := det(pi

j(z)) resulting from the projection along P1 vanishes. If we
take pi

2(z) = zi for i = 0, 1 and suitable quartic polynomials p0
1(z), p1

1(z),
then the quintic X defined by ∆(z) has 16 ODPs, where pi

j(z)’s vanish si-

multaneously, along a projective plane in P4. Let X̃ be a smooth quntic in
P4. Note that all quntics in P4 are deformation equivalent inside a flat fam-
ily (c.f. Proposition 5.2). Hence we get a conifold transition X̂ → X  X̃
which connects parameter spaces of X̂ and X.
Example 5.20 (Fiber products of elliptic surfaces). We consider

Ĉ :=

 2 3 0
2 0 3
1 1 1

�→ C :=
[

2 3
2 3

]
.

It shall be related to the fiber products of rational elliptic surfaces which
was investigated in [47].

Let fi : Si → P1 be a relatively minimal, rational, elliptic surface with
section for i = 1, 2. Then Si is the 9-fold blowing up of P2 at the base points
of a cubic pencil which induces the fibration fi [32, IV.1.2], that is, there are
generic homogeneous cubic polynomials ai and bi such that Si ⊆ P2 ×P1

is a resolution of indeterminacy of the rational map Ci : P2 99K P1 defined
by Ci(x) = [ai(x) : bi(x)]. Obviously, Si is defined by

Pi(z, x) = z1ai(x)− z0bi(x) = 0

where [z0 : z1] ∈ P1 and x ∈ P2.
Let W = S1×P1 S2. It is well known that W is a Calabi–Yau 3-fold [47].

It is easy to see that W can be obtained as a CICY in P2 ×P2 ×P1 defined
by P1 and P2. Therefore W ∈ Ĉ and is birational to a member in C which
is defined by the bicubic polynomial a0(x)b1(x)− a1(x)b0(x) = 0.
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The final remark is that we prefer to identify Calabi–Yau 3-folds which
can be connected by a sequence of flops. The reason is that many in-
variants are preserved under flops, e.g. quantum invariance [30, 29] (see
also [49] for a survey on recent development), the miniversal deformation
spaces [25, (12.6)], analytic type of singularities [23, (4.11)], integral coho-
mology groups, etc. (see [24, (3.2.2)]). Here is an example to illustrate the
principle.
Example 5.21 (Double solid). Consider the CICY configuration matrix

C :=
[

3 4
1 2

]
.

Let x, y be a basis of H0(OP1(1)). Let L be the line bundle of multidegree
(3, 2) on P := P3 ×P1 and Γ = H0(OP3(3)). By Proposition 5.10, there is
a Zariski open subset of

H0(P, L ) ' (Γ · x2)⊕ (Γ · xy)⊕ (Γ · y2)

such that each section in the open set defines a smooth Calabi–Yau 3-fold.
Choose general cubic polynomials A, B and C on P3 so that the Calabi–

Yau X ∈ C defined by

Ax2 + Bxy + Cy2 = 0

is smooth and the octic hypersurface S in P3 defined by ∆ := B2 − 4AC ∈
H0(P3, OP3(8)) is smooth. Let X̂ be the double cover of P3 branched over
S. Since S is smooth, we can show that X̂ is a smooth Calabi–Yau 3-fold.
The Calabi–Yau X̂, called double solids, was firstly studied by Clemens.

We are going to prove that the Calabi–Yau X and the double solid X̂
are birational smooth Calabi–Yau 3-folds. Indeed, we choose a open set
U in P3 such that OP3(4)|U ' OU and A|U, ∆|U are nowhere zero. Let
V = {[x : y] ∈ P1 | y 6= 1}. On W := U ×V, we rewrite the equation

Ax2 + Bxy + Cy2 =
A
4

[
(2x +

B
A

y)2 − ∆y2
]

.

Then we get a commutative diagram

X W ∩ X? _oo

!!

Spec U
O

P3 (U)[T]
(T2−∆)

� � //

yy

X̂

U
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and thus X and X̂ are birational, smooth minimal models. We know that
birational, Q-factorial 3- dimensional minimal models can be connected
by a sequence of flops [21, 23]. Hence we do not distinguish between the
smooth Calabi-Yau hypersurface X of multidegree (4, 2) in P3 × P1 and
the double solid X̂.

57



Bibliography
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