Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 藥學專業學院
  4. 藥學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44468
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor顧記華(Jih-Hwa Guh)
dc.contributor.authorPo-Cheng Chiangen
dc.contributor.author江柏政zh_TW
dc.date.accessioned2021-06-15T02:59:25Z-
dc.date.available2014-09-15
dc.date.copyright2009-09-15
dc.date.issued2009
dc.date.submitted2009-07-31
dc.identifier.citation1. Kerr JF, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br. J. Cancer. 1972, 26:239-257.
2. Mizushima N, Levine B, Cuervo AM, Klionsky DJ. Autophagy fights disease through cellular self-digestion. Nature 2008, 451:1069-1075.
3. Gottesman MM, Fojo T, Bates SE. Multidrug resistance in cancer: role of ATP-dependent transporters. Nat. Rev. Cancer 2002, 2:48-58.
4. Dalerba P, Cho RW, Clarke MF. Cancer stem cells: models and concepts. Annu. Rev. Med. 2007, 58:267-284.
5. Rinehart KL Jr., Gloer JB, Hughes RG Jr., Renis HE, McGovren JP, Swynenberg EB, Stringfellow DA, Kuentzel SL, Li LH. Didemnins: antiviral and antitumor depsipeptides from a caribbean tunicate. Science 1981, 212:933-935.
6. Amador ML, Jimeno J, Paz-Ares L, Cortes-Funes H, Hidalgo M. Progress in the development and acquisition of anticancer agents from marine sources. Ann. Oncol. 2003, 14:1607-1615.
7. Newman DJ, Cragg GM. Marine natural products and related compounds in clinical and advanced preclinical trials. J. Nat. Prod. 2004, 67:1216-1238.
8. Méric JB, Rottey S, Olaussen K, Soria JC, Khayat D, Rixe O, Spano JP. Cyclooxygenase-2 as a target for anticancer drug development. Crit. Rev. Oncol. Hematol. 2006, 59:51-64.
9. Ishihara S, Rumi MA, Okuyama T, Kinoshita Y. Effect of prostaglandins on the regulation of tumor growth. Curr. Med. Chem. Anticancer. Agents. 2004, 4:379-387.
10. Straus DS, Glass CK. Cyclopentenone prostaglandins: new insights on biological activities and cellular targets. Med. Res. Rev. 2001, 21:185-210.
11. Mutoh M, Takahashi M, Wakabayashi K. Roles of prostanoids in colon carcinogenesis and their potential targeting for cancer chemoprevention. Curr. Pharm. Des. 2006, 12:2375-2382.
12. Chen YC, Shen SC, Tsai SH. Prostaglandin D2 and J2 induce apoptosis in human leukemia cells via activation of the caspase 3 cascade and production of reactive oxygen species. Biochim. Biophys. Acta. 2005, 1743:291-304.
13. Su RY, Chi KH, Huang DY, Tai MH, Lin WW. 15-deoxy-Delta12, 14-prostaglandin J2 up-regulates death receptor 5 gene expression in HCT116 cells: involvement of reactive oxygen species and C/EBP homologous transcription factor gene transcription. Mol. Cancer. Ther. 2008 Oct, 7:3429-3440.
14. Han H, Shin SW, Seo CY, Kwon HC, Han JY, Kim IH, Kwak JY, Park JI. 15-Deoxy-delta 12, 14-prostaglandin J2 (15d-PGJ 2) sensitizes human leukemic HL-60 cells to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis through Akt downregulation. Apoptosis. 2007, 12:2101-2114.
15. Wei S, Yang J, Lee SL, Kulp SK, Chen CS. PPARgamma-independent antitumor effects of thiazolidinediones. Cancer Lett. 2009, 276:119-124.
16. Kobayashi M, Yasuzawa T, Yoshihara M, Akutsu H, Kyogoku Y, Kitagawa I. Four new prostanoids: Claviridenone-A, -B, -C, and –D from the Okinawan soft coroal Clavularia viridis. Tetrahedron Lett. 1982, 23:5331-5334.
17. Kikuchi H, Tsukitani Y, Iguchi K, Yamada Y. Clavulone, new type of prostanoids from the stolonifer Clavularia viridis Quoy abd Gaimard. Tetrahedron Lett. 1982, 23:5171-5174.
18. Honda A, Yamamoto Y, Mori Y, Yamada Y, and Kikuchi H. Antileukemic effect of coral-prostanoids clavulones from the stolonifer Clavularia viridis on human myeloid leukemia (HL-60) cells. Biochem. Biophys. Res. Commun. 1985, 130: 515-523.
19. Honda A, Mori Y, Iguchi K, and Yamada Y. Antiproliferative and cytotoxic effects of newly discovered halogenated coral prostanoids from the Japanese stolonifer Clavularia viridis on human myeloid leukemia cells in culture. Mol. Pharmacol. 1987, 32: 530-535.
20. Iwashima M, Okamoto K, Konno F, Iguchi K. New marine prostanoids from the okinawan soft coral, clavularia viridis. J. Nat. Prod. 1999, 62: 352-354.
21. Watanabe K, Sekine M, Takahashi H, Iguchi K. New halogenated marine prostanoids with cytotoxic activity from the Okinawan soft coral Clavularia viridis. J. Nat. Prod. 2001, 64: 1421-1425.
22. Duh CY, El Gamal AA, Chu CJ, Wang SK, Dai CF. New cytotoxic constituents from the Formosan soft corals Clavularia viridis and Clavularia violacea. J. Nat. Prod. 2002, 65: 1535-1539.
23. Watanabe K, Sekine M, Iguchi K. Isolation and structures of new halogenated prostanoids from the Okinawan soft coral Clavularia viridis. J. Nat. Prod. 2003, 66:1434-1440.
24. Shen YC, Cheng YB, Lin YC, Guh JH, Teng CM, Ko CL. New prostanoids with cytotoxic activity from Taiwanese octocoral Clavularia viridis. J. Nat. Prod. 2004, 67: 542-546.
25. Di Giacomo M, Leggeri, P, Papeo G, Pirillo D, Traverso G. Synthesis of a 11-deoxyprostanoid in the area of preclavulones: (+,-)-8,12-trans- (5Z-14Z)-9- oxo-prosta-5,14-dienoic acid from 2-allyl-2-cyclopenten-1-one. Farmaco 1992, 47: 379-385.
26. Yamada Y. Studies on discovery and synthesis of bioactive marine organic molecules]. Yakugaku Zasshi 2002, 122: 727-743.
27. Blanquart C, Barbier O, Fruchart JC, Staels B, Glineur C. Peroxisome proliferator-activated receptors: regulation of transcriptional activities and roles in inflammation. J. Steroid Biochem. Mol. Biol. 2003, 85:267-273.
28. Ondrey F. Peroxisome proliferator-activated receptor gamma pathway targeting in carcinogenesis: implications for chemoprevention. Clin. Cancer Res. 2009, 15:2-8.
29. Zieleniak A, Wójcik M, Woźniak LA. Structure and physiological functions of the human peroxisome proliferator-activated receptor gamma. Arch. Immunol. Ther. Exp. 2008, 56:331-345.
30. Krishnan A, Nair SA, Pillai MR. Biology of PPAR gamma in cancer: a critical review on existing lacunae. Curr. Mol. Med. 2007, 7:532-540.
31. Na HK, Surh YJ. Peroxisome proliferator-activated receptor (PPAR) ligands as bifunctional regulators of cell proliferation. Biochem. Pharmacol. 2003, 66:1381-1391.
32. Thornberry NA, Lazebnik Y. Caspases: Enemies within. Science 1998, 281: 1312-1316.
33. Shi YG. Mechanisms of caspase activation and inhibition during apoptosis. Molecular Cell 2002, 9: 459-470.
34. Van de, C. M., Declercq, W., Van, d. b., I, Fiers, W., and Vandenabeele, P. The proteolytic procaspase activation network: an in vitro analysis. Cell Death Differ. 1999, 6: 1117-1124.
35. Papoff G, Hausler P, Eramo A, Pagano MG, Di Leve G, Signore A, Ruberti G. Identification and characterization of a ligand-independent oligomerization domain in the extracellular region of the CD95 death receptor. J. Biol. Chem. 1999, 274:38241-38250.
36. Siegel RM, Frederiksen JK, Zacharias DA, Chan FK, Johnson M, Lynch D, Tsien RY, Lenardo MJ. Fas preassociation required for apoptosis signaling and dominant inhibition by pathogenic mutations. Science 2000, 288:2354-2357.
37. Mollinedo F, Gajate C. Fas/CD95 death receptor and lipid rafts: new targets for apoptosis-directed cancer therapy. Drug Resist. Updat. 2006, 9:51-73.
38. Nagata S. Biddable death. Nat. Cell Biol. 1999, 1:E143-145.
39. Herrant M, Jacquel A, Marchetti S, Belhacène N, Colosetti P, Luciano F, Auberger P. Cleavage of Mcl-1 by caspases impaired its ability to counteract Bim-induced apoptosis. Oncogene. 2004, 23:7863-7873.
40. Hengartner MO. The biochemistry of apoptosis. Nature 2000, 407:770-776.
41. Berridge MJ., Irvine RF. Inositol trisphosphate, a novel second messenger in cellular signal transduction. Nature1984, 312: 315-321.
42. Berridge MJ. Inositol trisphosphate and calcium signalling. Nature1993, 361: 315-325.
43. Berridge MJ, Lipp P, Bootman MD. The versatility and universality of calcium signaling. Nat. Rev. Mol. Cell Biol. 2000, 1: 11-21.
44. Orrenius, S, Zhivotovsky B, Nicotera P. Regulation of cell death: the calcium- apoptosis link. Nat. Rev. Mol. Cell Biol. 2003, 4: 552-565.
45. Droin N, Bichat F, Rébé C, Wotawa A, Sordet O, Hammann A, Bertrand R, Solary E. Involvement of caspase-2 long isoform in Fas-mediated cell death of human leukemic cells. Blood 2001, 97:1835-1844.
46. Lassus P, Opitz-Araya X, Lazebnik Y. Requirement for caspase-2 in stress-induced apoptosis before mitochondrial permeabilization. Science 2002, 297:1352-1354.
47. Perchellet EM, Wang Y, Weber RL, Lou K, Hua DH, Perchellet JP. Antitumor triptycene bisquinones induce a caspase-independent release of mitochondrial cytochrome c and a caspase-2-mediated activation of initiator caspase-8 and -9 in HL-60 cells by a mechanism which does not involve Fas signaling. Anticancer Drugs. 2004, 15:929-946.
48. Korade Z, Kenworthy AK. Lipid rafts, cholesterol, and the brain. Neuropharmacology 2008, 55:1265-1273.
49. Pike LJ. The challenge of lipid rafts. J. Lipid Res. 2009, 50:S323-8.
50. Fantini J, Garmy N, Mahfoud R, Yahi N. Lipid rafts: structure, function and role in HIV, Alzheimer's and prion diseases. Expert. Rev. Mol. Med. 2002, 4:1-22
51. Gajate C, Mollinedo F. The antitumor ether lipid ET-18-OCH3 induces apoptosis through translocation and capping of Fas/CD95 into membrane rafts in human leukemic cells. Blood. 2001, 98:3860-3863.
52. Delmas D, Rébé C, Lacour S, Filomenko R, Athias A, Gambert P, Cherkaoui-Malki M, Jannin B, Dubrez-Daloz L, Latruffe N, Solary E. Resveratrol-induced apoptosis is associated with Fas redistribution in the rafts and the formation of a death-inducing signaling complex in colon cancer cells. J. Biol. Chem. 2003, 278:41482-41490.
53. Delmas D, Rébé C, Micheau O, Athias A, Gambert P, Grazide S, Laurent G, Latruffe N, Solary E. Redistribution of CD95, DR4 and DR5 in rafts accounts for the synergistic toxicity of resveratrol and death receptor ligands in colon carcinoma cells. Oncogene. 2004, 23:8979-8986.
54. Reis-Sobreiro M, Gajate C, Mollinedo F.Involvement of mitochondria and recruitment of Fas/CD95 signaling in lipid rafts in resveratrol-mediated antimyeloma and antileukemia actions. Oncogene. 2009 Jun 29.
55. Lacour S, Hammann A, Grazide S, Lagadic-Gossmann D, Athias A, Sergent O, Laurent G, Gambert P, Solary E, Dimanche-Boitrel MT. Cisplatin-induced CD95 redistribution into membrane lipid rafts of HT29 human colon cancer cells. Cancer Res. 2004, 64:3593-3598.
56. Gajate C, Mollinedo F. Cytoskeleton-mediated death receptor and ligand concentration in lipid rafts forms apoptosis-promoting clusters in cancer chemotherapy. J. Biol. Chem. 2005, 280:11641-11647.
57. Honda A, Mori Y, Iguchi K, Yamada Y. Structure requirements for antiproliferative and cytotoxic activities of marine coral prostanoids from the Japanese stolonifer Clavularia viridis against human myeloid leukemia cells in culture. Prostaglandins 1988, 36:621-630.
58. Chiang PC, Chien CL, Pan SL, Chen WP, Teng CM, Shen YC, Guh JH. Induction of endoplasmic reticulum stress and apoptosis by a marine prostanoid in human hepatocellular carcinoma. J. Hepatol. 2005, 43:679-686.
59. Price NP, Tsvetanova B. Biosynthesis of the tunicamycins: a review. J. Antibiot. 2007, 60:485-491
60. Dobson CM. Protein folding and misfolding. Nature. 2003, 426:884-890.
61. Rutkowski DT, Kaufman RJ. A trip to the ER: coping with stress. Trends Cell Biol. 2004, 14:20-28.
62. Kim R, Emi M, Tanabe K, Murakami S. Role of the unfolded protein response in cell death. Apoptosis 2006, 11:5-13.
63. Yoneda T, Imaizumi K, Oono K, Yui D, Gomi F, Katayama T, Tohyama M. Activation of caspase-12, an endoplastic reticulum (ER) resident caspase, through tumor necrosis factor receptor-associated factor 2-dependent mechanism in response to the ER stress. J. Biol. Chem. 2001, 276:13935-13940.
64. Nakagawa T, Yuan JY. Cross-talk between two cysteine protease families: Activation of caspase-12 by calpain in apoptosis. J. Cell Biol. 2000, 150:887-894.
65. Lamkanfi M, Kalai M, Vandenabeele P. Caspase-12: an overview. Cell Death Differ. 2004, 11:365-368.
66. Hitomi J, Katayama T, Taniguchi M, Honda A, Imaizumi K, Tohyama M. Apoptosis induced by endoplasmic reticulum stress depends on activation of caspase-3 via caspase-12. Neurosci. Lett. 2004, 357:127-130.
67. Wang XZ, Lawson B, Brewer JW, Zinszner H, Sanjay A, Mi LJ, Boorstein R, Kreibich G, Hendershot LM, Ron D. Signals from the stressed endoplasmic reticulum induce C/EBP-homologous protein (CHOP/GADD153). Mol. Cell Biol. 1996, 16:4273-4280.
68. Tombal B, Weeraratna AT, Denmeade SR, Isaacs JT. Thapsigargin induces a calmodulin/calcineurin-dependent apoptotic cascade responsible for the death of prostatic cancer cells. Prostate 2000, 43:303-317.
69. McCullough KD, Martindale JL, Klotz LO, Aw TY, Holbrook NJ. Gadd153 sensitizes cells to endoplasmic reticulum stress by down- regulating Bcl2 and perturbing the cellular redox state. Mol. Cell Biol. 2001, 21:1249-1259.
70. Malumbres M, Barbacid M. Cell cycle kinases in cancer. Curr. Opin Genet. Dev. 2007, 17:60-65.
71. Malumbres M, Barbacid M. To cycle or not to cycle: a critical decision in cancer. Nat. Rev. Cancer 2001, 1:222-231.
72. Sherr CJ, Roberts JM. CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev. 1999, 13:1501-1512.
73. Cheng M, Olivier P, Diehl JA, Fero M, Roussel MF, Roberts JM, Sherr CJ. The p21(Cip1) and p27(Kip1) CDK 'inhibitors' are essential activators of cyclin D-dependent kinases in murine fibroblasts. EMBO J. 1999, 18:1571-1583.
74. Coqueret O. New roles for p21 and p27 cell-cycle inhibitors: a function for each cell compartment? Trends Cell Biol. 2003, 13:65-70.
75. Timchenko NA, Harris TE, Wilde M, Bilyeu TA, Burgess-Beusse BL, Finegold MJ, Darlington GJ. CCAAT/enhancer binding protein alpha regulates p21 protein and hepatocyte proliferation in newborn mice. Mol. Cell. Biol. 1997, 17: 7353-7361.
76. Wang H, Iakova P, Wilde M, Welm A, Goode T, Roesler WJ, Timchenko NA. C/EBPalpha arrests cell proliferation through direct inhibition of Cdk2 and Cdk4. Mol. Cell. 2001, 8:817-828.
77. Wang H, Goode T, Iakova P, Albrecht JH, Timchenko NA. C/EBPalpha triggers proteasome-dependent degradation of cdk4 during growth arrest. EMBO J. 2002, 21:930-941.
78. Lee TH, Lee CK, Tsou WL, Liu SY, Kuo MT, Wen WC. A new cytotoxic agent from solid-state fermented mycelium of Antrodia camphorata. Planta. Med. 2007, 73:1412-1415.
79. Asnaghi L, Bruno P, Priulla M, Nicolin A. mTOR: a protein kinase switching between life and death. Pharmacol. Res. 2004, 50:545-549.
80. Shaw RJ, Cantley LC. Ras, PI(3)K and mTOR signalling controls tumour cell growth. Nature 2006, 441:424-430.
81. Ruvinsky I, Meyuhas O. Ribosomal protein S6 phosphorylation: from protein synthesis to cell size. Trends Biochem. Sci. 2006, 31:342-348.
82. Averous J, Proud CG. When translation meets transformation: the mTOR story. Oncogene 2006, 25:6423-6435.
83. Sarbassov DD, Ali SM, Sabatini DM. Growing roles for the mTOR pathway. Curr. Opin. Cell Biol. 2005, 17:596-603.
84. Sabatini DM. mTOR and cancer: insights into a complex relationship. Nat. Rev. Cancer 2006, 6:729-734.
85. Proud CG. mTORC1 signalling and mRNA translation. Biochem. Soc. Trans. 2009, 37:227-231.
86. Nobukuni T, Kozma SC, Thomas G. hvps34, an ancient player, enters a growing game: mTOR Complex1/S6K1 signaling. Curr. Opin. Cell Biol. 2007, 19: 135-141.
87. Chiang GG, Abraham RT. Targeting the mTOR signaling network in cancer. Trends Mol. Med. 2007, 13:433-442.
88. Kwiatkowski DJ, Manning BD. Tuberous sclerosis: a GAP at the crossroads of multiple signaling pathways. Hum. Mol. Genet. 2005, 14:R251-258.
89. Huang J, Manning BD. The TSC1-TSC2 complex: a molecular switchboard controlling cell growth. Biochem. J. 2008, 412:179-190.
90. Vignot S, Faivre S, Aguirre D, Raymond E. mTOR-targeted therapy of cancer with rapamycin derivatives. Ann. Oncol. 2005, 16:525-537.
91. Hue L, Beauloye C, Bertrand L, Horman S, Krause U, Marsin AS, Meisse D, Vertommen D, Rider MH. New targets of AMP-activated protein kinase. Biochem. Soc. Trans. 2003, 31:213-215.
92. Hardie DG. AMP-activated/SNF1 protein kinases: conserved guardians of cellular energy. Nat. Rev. Mol. Cell Biol. 2007, 8:774-785.
93. Kuhajda FP. AMP-activated protein kinase and human cancer: cancer metabolism revisited. Int. J. Obes. 2008, 32 Suppl 4:S36-41.
94. Bolster DR, Crozier SJ, Kimball SR, Jefferson LS. AMP-activated protein kinase suppresses protein synthesis in rat skeletal muscle through down-regulated mammalian target of rapamycin (mTOR) signaling. J. Biol. Chem. 2002, 277: 23977-23980.
95. Bolster DR, Crozier SJ, Kimball SR, Jefferson LS. Glucagon represses signaling through the mammalian target of rapamycin in rat liver by activating AMP-activated protein kinase. J. Biol. Chem. 2004, 279:54103-54109.
96. Reiter AK, Bolster DR, Crozier SJ, Kimball SR, Jefferson LS. Repression of protein synthesis and mTOR signaling in rat liver mediated by the AMPK activator aminoimidazole carboxamide ribonucleoside. Am. J. Physiol. Endocrinol. Metab. 2005, 288:E980-988.
97. Kimura N, Tokunaga C, Dalal S, Richardson C, Yoshino K, Hara K, Kemp BE, Witters LA, Mimura O, Yonezawa K. A possible linkage between AMP-activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR) signalling pathway. Genes Cells. 2003, 8:65-79.
98. Tokunaga C, Yoshino K, Yonezawa K. mTOR integrates amino acid- and energy-sensing pathways. Biochem. Biophys. Res. Commun. 2004, 313:443-446.
99. Kimball SR. Interaction between the AMP-activated protein kinase and mTOR signaling pathways. Med. Sci. Sports Exerc. 2006, 38:1958-1964.
100. Cheng SW, Fryer LG, Carling D, Shepherd PR. Thr2446 is a novel mammalian target of rapamycin (mTOR) phosphorylation site regulated by nutrient status. J. Biol. Chem. 2004, 279:15719-15722.
101. Nisgida N, Fukuda Y, Komeda T, Kita R, Sando T, Furukawa M, Amenomori M, Shibaqaki I, Nakao K, Ikenaqa M, Ishizaki K. Amplification and overexpression of the cyclin D1 gene in aggressive human hepatocellular carcinoma. Cancer Res. 1994, 54:3107-3110.
102. Sahin F, Kannangai R, Adegbola O, Wang J, Su G, Torbenson M. mTOR and P70 S6 kinase expression in primary liver neoplasms. Clin. Cancer Res. 2004, 10:8421-8425.
103. Schumacher G, Oidtmann M, Rueggeberg A, Jacob D, Jonas S, Langrehr JM, Neuhaus R, Bahra M, Neuhaus P. Sirolimus inhibits growth of human hepatoma cells alone or combined with tacrolimus, while tacrolimus promotes cell growth. World J. Gastroenterol. 2005, 11:1420-1425.
104. Villanueva A, Chiang DY, Newell P, Peix J, Thung S, Alsinet C, Tovar V, Roayaie S, Minguez B, Sole M, Battiston C, Van Laarhoven S, Fiel MI, Di Feo A, Hoshida Y, Yea S, Toffanin S, Ramos A, Martignetti JA, Mazzaferro V, Bruix J, Waxman S, Schwartz M, Meyerson M, Friedman SL, Llovet JM. Pivotal role of mTOR signaling in hepatocellular carcinoma. Gastroenterology 2008, 135:1972-1983.
105. Sieghart W, Fuereder T, Schmid K, Cejka D, Werzowa J, Wrba F, Wang X, Gruber D, Rasoul-Rockenschaub S, Peck-Radosavljevic M, Wacheck V. Mammalian target of rapamycin pathway activity in hepatocellular carcinomas of patients undergoing liver transplantation. Transplantation 2007, 83:425-432.
106. Semela D, Piguet AC, Kolev M, Schmitter K, Hlushchuk R, Djonov V, Stoupis C, Dufour JF. Vascular remodeling and antitumoral effects of mTOR inhibition in a rat model of hepatocellular carcinoma. J. Hepatol. 2007, 46:840-848.
107. Grewe M, Gansauge F, Schmid RM, Adler G, Seufferlein T. Regulation of cell growth and cyclin D1 expression by the constitutively active FRAP-p70s6K pathway in human pancreatic cancer cells. Cancer Res. 1999, 59:3581-3587.
108. Gao N, Flynn DC, Zhang Z, Zhong XS, Walker V, Liu KJ, Shi X, Jiang BH. G1 cell cycle progression and the expression of G1 cyclins are regulated by PI3K/AKT/mTOR/p70S6K1 signaling in human ovarian cancer cells. Am. J. Physiol. Cell Physiol. 2004, 287:C281-291.
109. Law M, Forrester E, Chytil A, Corsino P, Green G, Davis B, Rowe T, Law B. Rapamycin disrupts cyclin/cyclin-dependent kinase/p21/proliferating cell nuclear antigen complexes and cyclin D1 reverses rapamycin action by stabilizing these complexes. Cancer Res. 2006, 66:1070-1080.
110. Navé BT, Ouwens M, Withers DJ, Alessi DR, Shepherd PR. Mammalian target of rapamycin is a direct target for protein kinase B: identification of a convergence point for opposing effects of insulin and amino-acid deficiency on protein translation. Biochem. J. 1999, 344:427-431.
111. Sekulić A, Hudson CC, Homme JL, Yin P, Otterness DM, Karnitz LM, Abraham RT. A direct linkage between the phosphoinositide 3-kinase-AKT signaling pathway and the mammalian target of rapamycin in mitogen-stimulated and transformed cells. Cancer Res. 2000, 60:3504-3513.
112. Inoki K, Zhu T, Guan KL. TSC2 mediates cellular energy response to control cell growth and survival. Cell 2003, 115:577-590.
113. Corradetti MN, Inoki K, Bardeesy N, DePinho RA, Guan KL. Regulation of the TSC pathway by LKB1: evidence of a molecular link between tuberous sclerosis complex and Peutz-Jeghers syndrome. Gene Dev. 2004, 18:1533-1538.
114. Shaw RJ, Bardeesy N, Manning BD, Lopez L, Kosmatka M, DePinho RA, Cantley LC. The LKB1 tumor suppressor negatively regulates mTOR signaling. Cancer Cell 2004, 6:91-99.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44468-
dc.description.abstract癌症是一種複雜且死亡率高的慢性疾病,於醫療上是個尚未被解決的棘手問題,雖然對於癌症的研究發展日新月異,然而對於癌症的治療,依然只能抱以「可以治療,無法治癒」的想法,抗癌藥物的研發,仍是一條漫漫長路。目前用於治療癌症的藥品中超過60%是來自天然物,如長春花生物鹼(Vinca alkaloids)、紫杉醇(Paclitaxel)與喜樹鹼(Camptothecin)等。新藥的開發往往是從天然物的活性成分尋找先導藥物,經由半合成修飾與活性測試探討其結構與活性之關係(structure- activity relationship (SAR)),以這些數據做基礎進而設計出更有潛力的抗癌藥物。以往對於天然物活性的研究,受限於對天然物資源的開發與應用,多侷限在陸生植物,直到近代科技發達後,海洋的生物資源才獲得較多的發展。本篇論文將針對數種天然物產物,探討其在人類前列腺癌與肝癌中的抗癌機轉。 第一篇研究主要在探討海洋羽珊瑚Clavularia viridis所萃取出之類前列腺素Bromovulone III,對荷爾蒙不依賴型前列腺癌所引發的細胞凋亡機轉。PGA1、PGA2與∆12-PGJ2等具有Cyclopentenone結構的前列腺素已在許多的研究中發現具有抑制前列腺癌細胞生長與促進細胞凋亡的能力。本篇研究證實,從海洋羽珊瑚Clavularia viridis中分離出的類前列腺素Bromovulone III相較於PGA1、PGA2與∆12-PGJ2,在荷爾蒙不依賴型前列腺癌細胞PC3中展現出30到100倍的抑制細胞生長活性。根據本實驗室之前的研究,Bromovulone III在人類肝癌細胞Hep3B,會藉由引發內質網迫力(endoplasmic reticulum (ER) stress)造成細胞凋亡。然而於人類荷爾蒙不依賴型前列腺癌PC3細胞中,卻發現Bromovulone III藉由不同於引發內質網迫力之途徑造成細胞凋亡。機轉方面,caspase-8的活化最早被觀測到,接著caspase-9、caspase-3與Bid的活化型隨處理時間增加也有明顯的表現, Mcl-1的裂解亦明顯產生。值得一提的是,Bromovulone III於不增加各死亡受器與其配體表現的情況下,利用共軛焦顯微鏡可以在短時間30分鐘開始觀測到Fas叢聚於脂筏(lipid raft)的現象,推測Bromovulone III是藉由活化Fas所調控之細胞凋亡。此外,caspase-2在Bromovulone III處理下也有活化的情形產生,利用csapase-2的抑制劑也證明caspase-2於caspase-8與caspase-3的活化有部分的貢獻。雖然許多研究已經指出DNA損傷會藉由caspse-2的活化啟動Fas/caspase-8調控的細胞凋亡機轉,然而經由Comet實驗與DNA裂解實驗證實Bromovulone III沒有造成DNA損傷的能力,對於topoisomerase IIα的活性也沒有影響。因此,Bromovulone III所引起的caspase-2活化與Fas/caspase-8細胞凋亡機轉應與DNA損傷無關。總結來說,Bromovulone III會藉由造成Fas重新分布叢聚活化外生性細胞凋亡(extrinsic apoptosis)機轉,再藉由Bid以及Mcl-1的裂解引發粒線體調控的內生性凋亡機轉,進而產生抗癌的活性。 內質網迫力的誘發被認為在肝癌生成的過程具有一定的影響力,然而對於其是在腫瘤新生還是死亡中有較重要的貢獻,依然是個混沌未清的難題,因此,於第二篇的研究中利用Tunicamycin抑制細胞內蛋白質的醣化(N-glycosylation)以造成內質網迫力,藉此探討內質網迫力之引發對於抑制人類肝癌細胞生長所扮演的角色。實驗結果顯示,Tunicamycin在人類肝癌細胞Hep3B與HepG2中抑制細胞生長的GI50分別為0.19與0.62 µg/ml,並可明顯的造成細胞週期於G1期累積以及細胞週期調控因子的減少,其中又以Cyclin D1與Cyclin A的表現最易受影響。此外p27與Cyclin D1/Cdk4複合物間的結合亦隨著Tunicamycin的處理而增加,對Tunicamycin引起的細胞週期G1期停滯提供了另一種解釋。於內質網迫力所引發的蛋白不完全摺疊反應方面,GRP78與CHOP這兩個標的蛋白表現亦明顯的增加,推測細胞週期調控因子的減少為內質網迫力造成細胞週期停滯與抑制肝癌細胞生長的主要原因。進一步利用antisense CHOP與GRP78 siRNA探討CHOP與GRP78的角色,結果顯示抑制GADD153的誘發無法回復Tunicamycin所造成的G1期停滯,對Cyclins與Cdks的表現下降亦沒有影響。抑制GRP78的表現,則可增加Tunicamycin在Hep3B中所引起的細胞凋亡,對於抑制細胞生長的能力亦有些微的促進。簡單來說,Tunicamycin造成細胞週期停滯在G1期的原因,推測是因為cyclin D1與cyclin A的表現量下降以及p27與Cyclin D1/Cdk4複合物之間的結合增加。內質網迫力所引發的兩個標的蛋白GRP78與GADD153對Tunicamycin抑制人類肝癌細胞Hep3B增生的能力沒有太大的貢獻,反倒是GRP78似乎還提供了點保護的角色。綜合來看,調控細胞週期的因子於內質網迫力造成之抑制癌細胞生長似乎扮演了最敏感的角色。 第三篇的研究是關於由牛樟芝分離出的antroquinonol於HepG2細胞所引起的抗癌機轉探討。本研究利用antroquinonol在多種肝癌細胞株以及人類肝臟胚胎細胞WRL-68中進行抑制細胞生長的活性測試,結果顯示,antroquinonol對於肝癌細胞與正常細胞有不錯的選擇性,於HepG2細胞中展現出最好的抑制細胞生長活性,活性之相對關係為HepG2> HepG2.2.15>Mahlavu> PLC/PRF/5>SK- Hep1>WRL-68。antroquinonol明顯的引發細胞週期停滯於G1期,並於沒有影響mRNA表現的情況下,造成多種調控G1期的細胞週期調控因子之表現與核內轉移的下降。進一步探討其成因,發現antroquinonol於不影響DNA轉錄與蛋白質降解的機制下,藉由抑制細胞內蛋白轉譯造成細胞週期調控因子的表現下降。Antroquinonol在短時間可以明顯的抑制p70S6K (Thr421、Ser424與 Thr389)與 4E-BP1 (Thr37、Thr46與Thr70)的磷酸化,進而阻斷蛋白質合成,此外TSC1與TSC2間的結合也在antroquinonol處理下有增加的現象。這些現象在併用AMPK抑制劑後,都可得到回復,推測AMPK在antroquinonol所引起的作用中扮演了重要的角色。此外粒線體的破裂與膜電位喪失也提供了AMPK活化的可能原因。簡單來說,antroquinonol利用活化AMPK阻斷mTOR訊息途徑,導致細胞內蛋白質生成受到抑制,最後造成細胞週期停滯進而產生抗癌效果。zh_TW
dc.description.abstractCancer is a high-risk malignant chronic disease worldwide. Although investigations of cancer progresses with each passing day, the treatment for cancer remains a tricky unsolved problem. There’s still a long way to go in the development of anticancer agents. Clinical therapeutic strategies are only made to treat but not cure cancer patients. There are good precedents for looking to nature for drug discovery. Over 60 percent of current anticancer drugs, such as vinca alkaloids, camptothecin and taxol, are derived in one way or another from natural sources. During new drug discovery, scientists usually aspire to get the lead compounds from natural sources and semi-synthesis, and use them as the templates to design derivatives with more potent activity base on the structure-activity relationship (SAR). Original investigations of natural products were limited to terrestrial resources through the exploitation and application of natural materials. However, with the improvement of technology, scientists paid more and more attentions to marine aquatic biological resources for the last several decades. In this thesis, we tried to identify the anticancer mechanism of several natural products in prostate cancer and human hepatocellular carcinoma. In the first study, we tried to identify the anticancer mechanism of Bromovulone III, isolated from soft coral Clavularia viridis, in hormone-independent prostate cancer. Cyclopentenone prostaglandins (PGs) such as PGA1, PGA2 and ∆12-PGJ2 have been shown to suppress tumor cell growth and to induce apoptosis in prostate cancer cells. Bromovulone III, which is isolated from the soft coral Clavularia viridis, is a cyclopentenone prostanoid. In this study, Bromovulone III displayed anti-tumor activity of 30 to 100 times more effective than PGA1, PGA2 and ∆12-PGJ2 in PC-3 cells. In our previous study, Bromovulone III triggered cell apoptosis in human hepatocellular carcinoma Hep3B cells via inducing ER stress. However, in this study,Bromovulone III displayed a totally different anticancer mechanism in prostate cancer PC3 cells. Several targets of caspases and Bcl-2 family of proteins were detected and the data demonstrated that Bromovulone III induced the activation of caspase-8, -9 and -3, and Bid cleavage in which the caspas-8 activation occurred first. Bromovulone III did not up-regulate the protein levels of death receptors and ligands. Of note, the Fas clustering in PC-3 cells responsive to bromovulone III was observed by confocal immunofluorescence microscopy suggesting the involvement of Fas-mediated pathway. Bromovulone III also induced the cleavage of Mcl-1 in this study. The cleavage fragments (24, 19 and 17 kDa) may partly share the apoptotic insult. Although it has been suggested that Fas-mediated signaling may contribute to the caspase-8 activation induced by DNAdamaging agents; however, bromovulone III did not induce any DNA breakage, suggesting that bromovulone III-induced Fas/caspase-8-dependent signaling is not through the direct target on DNA damage. In summary, the data suggest that bromovulone III causes a rapid redistribution and clustering of Fas in PC-3 cells. Subsequently, the Fas event causes the activation and interaction of caspase-8/Bid/caspase-9 signaling cascades, and the activation of executor caspase-3. The initiation of endoplasmic reticulum (ER) stress has been suggested to play potential roles in hepatocarcinogenesis. However, many obstacles remain as to whether ER stress plays a role in carcinogenesis or tumoricide. This secondary study sought to identify the signals that can serve as anticancer effectors in cells in response to ER stress. Tunicamycin (an N-glycosylation inhibitor) inhibited cell proliferation with IC50 values of 0.19 and 0.62 µg/ml in Hep3B and HepG2 cells, respectively. It induced G1 arrest of the cell cycle in both cell lines. The anticancer mechanism of tunicamycin was investigated in Hep3B cells. Tunicamycin induced a rapid decline of cyclin D1 and cyclin A expression and an early increase of glucose-related protein (GRP) 78 and growth arrest and DNA damage-inducible transcription factor (GADD) 153 levels. Cyclin D1 and was the most sensitive regulator to tunicamycin-triggered degradation mechanism. The association of p27 with cyclin D1/ Cdk 4 was also increased by tunicamycin. The inhibition of GADD153 expression by transfection of GADD153 antisense did not modify tunicamycin-induced G1 arrest and cyclin/Cdk expressions. The knockdown of GRP78 expression by the siRNA transfection technique moderately increased tunicamycin-induced apoptosis and the antiproliferative effect by sulforhodamine B assay. We suggest that tunicamycin induces G1 arrest through downregulation of cyclins and Cdks, in which cyclin A is more susceptible to ER stress-triggered degradation mechanism in Hep3B cells. The increased association of p27 with cyclin D1/Cdk4 may also contribute to tunicamycin-induced cell-cycle arrest. GADD153 and GRP78 play a minor role in tunicamycin-mediated antiproliferative effect, although GRP78 moderately inhibits apoptosis in Hep3B cells. These data provide evidence that cell-cycle regulators are susceptible factors in hepatocellular carcinoma (HCC) responsive to ER stress. In the third study, we tried to identify the anticancer mechanism of antroquinonol, isolated from Antrodia camphorate, In this study, antroquinonol presented great selectivity between HCCs and human liver embryonic cells, and induced anti-proliferative effect with the rank order of potency against HCCs being HepG2>HepG2.2.15>Mahlavu> PLC/PRF/5>SK-Hep1>WRL-68. Antroquinonol caused G1 arrest of the cell-cycle. The data were supported by down-regulation and reduced nuclear translocation of G1-cyclins and Cdks and further analysis showed the inhibition of translational but not transcriptional and protein degradational levels. Antroquinonol blocked cellular protein synthesis through inhibition of phosphorylation of p70S6K (Thr421/Ser424 and Thr389) and 4E-BP1 (Thr37/Thr46 and Thr70). The TSC1/TSC2 association was also increased by antroquinonol. These effects were significantly reversed by selective AMPK inhibitor, suggesting the central role of AMPK to antroquinonol action. The cellular stress on mitochondria may partly explain antroquinonol-mediated AMPK activation. Taken together, the data suggest that antroquinonol displays anticancer activity against HCCs through AMPK activation and inhibition of translational pathway that induce G1-arrest of the cell-cycle and subsequent apoptosis.en
dc.description.provenanceMade available in DSpace on 2021-06-15T02:59:25Z (GMT). No. of bitstreams: 1
ntu-98-D93423002-1.pdf: 3413763 bytes, checksum: aa1995f561e7310dc84b7f293ce1cad6 (MD5)
Previous issue date: 2009
en
dc.description.tableofcontents縮寫表……………………………………………………………………I
中文摘要…………………………………………………………………II
英文摘要…………………………………………………………………V
緒論………………………………………………………………………1
第一章、珊瑚類前列腺素在人類荷爾蒙不依賴型前列腺癌細胞引發Fas叢聚與細胞凋亡之機轉探討…………………………………………3
背景………………………………………………………………………4
實驗材料與方法…………………………………………………………10
實驗結果…………………………………………………………………15
實驗討論…………………………………………………………………18
結論………………………………………………………………………22
附圖………………………………………………………………………23
圖…………………………………………………………………………25
第二章、探討內質網迫力於人類肝細胞癌所引發之抗癌感受因子…33
背景………………………………………………………………………34
實驗材料與方法…………………………………………………………39
實驗結果…………………………………………………………………41
實驗討論…………………………………………………………………43
結論………………………………………………………………………46
附圖………………………………………………………………………47
圖…………………………………………………………………………50
第三章、牛樟芝分離出之antroquinonol於人類肝癌細胞的抗癌機轉:AMPK與蛋白質轉譯訊息扮演之角色探討…………………………57
背景………………………………………………………………………58
實驗材料與方法…………………………………………………………62
實驗結果…………………………………………………………………65
實驗討論…………………………………………………………………68
結論………………………………………………………………………72
附表………………………………………………………………………73
附圖………………………………………………………………………74
圖…………………………………………………………………………77
結論與未來展望…………………………………………………………84
參考文獻…………………………………………………………………86
dc.language.isozh-TW
dc.title天然物經由調控胞內訊息傳遞而抑制前列腺癌與肝癌之抗癌機轉探討zh_TW
dc.titleIdentification of Anticancer Mechanism of Natural Products via Modulating Signaling Transduction in Human Prostate and Hepatocellular Carcinomaen
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree博士
dc.contributor.oralexamcommittee孔繁璐(Fan-Lu Kung),蕭哲志(George Hsiao),黃聰龍(Tsong-Long Hwang),楊家榮(Chia-Ron Yang)
dc.subject.keyword類前列腺素,死亡受器叢聚,內質網迫力,細胞週期停滯,zh_TW
dc.subject.keywordProstanoid,Fas clustering,ER stress,cell cycle arrest,mTOR,en
dc.relation.page97
dc.rights.note有償授權
dc.date.accepted2009-07-31
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept藥學研究所zh_TW
顯示於系所單位:藥學系

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  目前未授權公開取用
3.33 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved