Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43922
Title: 智慧型家庭下以偏好模型輔助之行為辨識
Preference Model Assisted Activity Recognition in a Smart Home Environment
Authors: Yi-Han Chen
陳意函
Advisor: 傅立成
Keyword: 行為辨識,動態貝氏網路,偏好推論,
Activity Recognition,Dynamic Bayesian Network,Preference Inference,
Publication Year : 2009
Degree: 碩士
Abstract: 在一個智慧家庭裡,理解使用者的喜好並提供相對應的服務是相當重要地。另一方面,從環境中的資訊辨識出使用者當下的行為是一項艱鉅的挑戰,為了提供使用者更合適的服務,了解使用者的行為將能更正確地提供使用者所需要的服務。在過去的研究裡,使用者的偏好以及其行為的辨識在智慧家庭中通常是分開被討論,在這篇論文裡,我們首次嘗試發展出一個整合性系統來建立出個人喜好模型和其行為模型之間的關聯性,透過了解使用者的偏好去提升行為辨識在動態環境下的準確度。更明確地說,也就是透過了解使用者當下的行為,我們可以藉由這項資訊來學習使用者的偏好,並根據學習好的模型來提供更準確地服務給使用者,另外,使用者對所提供服務的反應則可回饋給系統用來修正並調整已經學習好的模型,行為模型也同時透過分析使用者的反應來做調整。除此之外,我們進一步從單人的整合系統中設計出一個多人的整合系統,其成果皆呈現在實驗中。
Understanding a user’s preferences and then providing corresponding services is substantial in a smart home environment nowadays. On the other hand, reliable recognition of activities from cluttered sensory data is challenging and important as well for a smart home to provide more desirable services. Traditionally, preference learning and activity recognition for a smart home system were dealt with separately. In this thesis, we aim to develop a hybrid system which is the first trial to model the relationship of a preference model and an activity model so that the causal relation among activities and personal preferences can assist to recover the accuracy of activity recognition in the dynamic environment. Specifically, on-going activity which a user performs in this work is regarded as high level contexts to assist in learning the user’s preference model, Based on the learned model, the smart home system provides services to the user so that the hybrid system can better interact with the user and also gain his/her feedback to adjust the learned preference model. Afterwards, both of the activity model and preference model will be simultaneously adapted by the analysis of the feedback. In addition, we further design a multi-user hybrid system, which is extended from single-user hybrid system, to deal with the interactions among users in a multi-user environment. The experimental results are provided to show the effectiveness of the proposed approach.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43922
Fulltext Rights: 有償授權
Appears in Collections:資訊工程學系

Files in This Item:
File SizeFormat 
ntu-98-1.pdf
  Restricted Access
4.81 MBAdobe PDF
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved