請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43778
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 沈麗娟(Li-Jiuan Shen) | |
dc.contributor.author | Kelly Huang | en |
dc.contributor.author | 黃克理 | zh_TW |
dc.date.accessioned | 2021-06-15T02:28:22Z | - |
dc.date.available | 2014-09-15 | |
dc.date.copyright | 2009-09-15 | |
dc.date.issued | 2009 | |
dc.date.submitted | 2009-08-17 | |
dc.identifier.citation | 1. C.-Y. Wu and L. Z. Benet. Predicting Drug Disposition via Application of BCS: Transport/Absorption/Elimination Interplay and Development of a Biopharmaceutics Drug Disposition Classification System. Pharmaceutical Research. 22:11-23 (2005).
2. E. Soussan, S. Cassel, M. Blanzat, and I. Rico-Lattes. Drug delivery by soft matter: matrix and vesicular carriers. Angew Chem Int Ed Engl. 48:274-288 (2009). 3. N. Onetto, R. Canetta, B. Winograd, R. Catane, M. Dougan, J. Grechko, J. Burroughs, and M. Rozencweig. Overview of Taxol safety. J Natl Cancer Inst Monogr:131-139 (1993). 4. A. Mahmud, X.-B. Xiong, H. M. Aliabadi, and A. Lavasanifar. Polymeric micelles for drug targeting. Journal of Drug Targeting. 15:553-584 (2007). 5. R. Gref, A. Domb, P. Quellec, T. Blunk, R. Muller, J. Verbavatz, and R. Langer. The controlled intravenous delivery of drugs using PEG-coated sterically stabilized nanospheres. Advanced Drug Delivery Reviews. 16:215-233 (1995). 6. K. Letchford and H. Burt. A review of the formation and classification of amphiphilic block copolymer nanoparticulate structures: micelles, nanospheres, nanocapsules and polymersomes. European Journal of Pharmaceutics and Biopharmaceutics. 65:259-269 (2007). 7. V. P. Torchilin. Polymer-coated long-circulating microparticulate pharmaceuticals. J Microencapsul. 15:1-19 (1998). 8. J. Wood. Synthesis of nanoparticles with 1 nm size accuracy: Nanotechnology. Materials Today. 8:18-18. 9. D. Liu, A. Mori, and L. Huang. Role of liposome size and RES blockade in controlling biodistribution and tumor uptake of GM1-containing liposomes. Biochimica et Biophysica Acta (BBA) - Biomembranes. 1104:95-101 (1992). 10. H. Maeda, J. Wu, T. Sawa, Y. Matsumura, and K. Hori. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. Journal of controlled release. 65:271-284 (2000). 11. H. Maeda, G. Y. Bharate, and J. Daruwalla. Polymeric drugs for efficient tumor-targeted drug delivery based on EPR-effect. European Journal of Pharmaceutics and Biopharmaceutics. 71:409-419 (2009). 12. C. L. Zhao, M. A. Winnik, G. Riess, and M. D. Croucher. Fluorescence probe techniques used to study micelle formation in water-soluble block copolymers. Langmuir. 6:514-516 (1990). 13. K. L. Mittal. Determination of CMC of polysorbate 20 in aqueous solution by surface tension method. Journal of Pharmaceutical Sciences. 61:1334-1335 (1972). 14. Z. Tuzar and P. Kratochv璱. Block and graft copolymer micelles in solution. Advances in Colloid and Interface Science. 6:201-232 (1976). 15. B. Ecanow and F. P. Siegel. Ferguson Principle and the Critical Micelle Concentration. J Pharm Sci. 52:812-813 (1963). 16. L. Zhao and S. S. Feng. Effects of lipid chain unsaturation and headgroup type on molecular interactions between paclitaxel and phospholipid within model biomembrane. J Colloid Interface Sci. 285:326-335 (2005). 17. R. B. Campbell, S. V. Balasubramanian, and R. M. Straubinger. Phospholipid-cationic lipid interactions: influences on membrane and vesicle properties. Biochimica et Biophysica Acta (BBA) - Biomembranes. 1512:27-39 (2001). 18. D. Hirsch-Lerner and Y. Barenholz. Hydration of lipoplexes commonly used in gene delivery: follow-up by laurdan fluorescence changes and quantification by differential scanning calorimetry. Biochimica et Biophysica Acta (BBA) - Biomembranes. 1461:47-57 (1999). 19. H. Komatsu and S. Okada. Ethanol-induced aggregation and fusion of small phosphatidylcholine liposome: participation of interdigitated membrane formation in their processes. Biochimica et Biophysica Acta (BBA) - Biomembranes. 1235:270-280 (1995). 20. L. Zhang and A. Eisenberg. Multiple Morphologies of 'Crew-Cut' Aggregates of Polystyrene-b-poly(acrylic acid) Block Copolymers. Science. 268:1728-1731 (1995). 21. W. S. Shim, S. W. Kim, E. K. Choi, H. J. Park, J. S. Kim, and D. S. Lee. Novel pH sensitive block copolymer micelles for solvent free drug loading. Macromol Biosci. 6:179-186 (2006). 22. H. M. Burt, X. Zhang, P. Toleikis, L. Embree, and W. L. Hunter. Development of copolymers of poly(,-lactide) and methoxypolyethylene glycol as micellar carriers of paclitaxel. Colloids and Surfaces B: Biointerfaces. 16:161-171 (1999). 23. W. Johnson, Jr. and P. Cosmetic Ingredient Review Expert. Final report on the safety assessment of PEG-25 propylene glycol stearate, PEG-75 propylene glycol stearate, PEG-120 propylene glycol stearate, PEG-10 propylene glycol, PEG-8 propylene glycol cocoate, and PEG-55 propylene glycol oleate. Int J Toxicol. 20 Suppl 4:13-26 (2001). 24. C. Fruijtier-Polloth. Safety assessment on polyethylene glycols (PEGs) and their derivatives as used in cosmetic products. Toxicology. 214:1-38 (2005). 25. D. D. Lasic. Doxorubicin in sterically stabilized liposomes. Nature. 380:561 (1996). 26. D. Papahadjopoulos, T. Allen, A. Gabizon, E. Mayhew, K. Matthay, S. Huang, K. Lee, M. Woodle, D. Lasic, and C. Redemann. Sterically stabilized liposomes: improvements in pharmacokinetics and antitumor therapeutic efficacy. Proceedings of the National Academy of Sciences. 88:11460-11464 (1991). 27. T. M. Allen, C. Hansen, F. Martin, C. Redemann, and A. Yau-Young. Liposomes containing synthetic lipid derivatives of poly(ethylene glycol) show prolonged circulation half-lives in vivo. Biochimica et Biophysica Acta (BBA) - Biomembranes. 1066:29-36 (1991). 28. V. P. Torchilin, V. G. Omelyanenko, M. I. Papisov, A. A. Bogdanov Jr, V. S. Trubetskoy, J. N. Herron, and C. A. Gentry. Poly(ethylene glycol) on the liposome surface: on the mechanism of polymer-coated liposome longevity. Biochimica et Biophysica Acta (BBA) - Biomembranes. 1195:11-20 (1994). 29. P. S. Uster, T. M. Allen, B. E. Daniel, C. J. Mendez, M. S. Newman, and G. Z. Zhu. Insertion of poly(ethylene glycol) derivatized phospholipid into pre-formed liposomes results in prolonged in vivo circulation time. FEBS Letters. 386:243-246 (1996). 30. V. Torchilin. Micellar Nanocarriers: Pharmaceutical Perspectives. Pharmaceutical Research. 24:1-16 (2007). 31. J. Wang, D. Mongayt, and V. P. Torchilin. Polymeric micelles for delivery of poorly soluble drugs: preparation and anticancer activity in vitro of paclitaxel incorporated into mixed micelles based on poly(ethylene glycol)-lipid conjugate and positively charged lipids. J Drug Target. 13:73-80 (2005). 32. S. Giatrellis, G. Nikolopoulos, Z. Sideratou, and G. Nounesis. Calorimetric study of the interaction of binary DMTAP/DOTAP cationic liposomes with plasmid DNA. Journal of Liposome Research. 99999:1 - 11 (2009). 33. M. Liong, J. Lu, M. Kovochich, T. Xia, S. G. Ruehm, A. E. Nel, F. Tamanoi, and J. I. Zink. Multifunctional Inorganic Nanoparticles for Imaging, Targeting, and Drug Delivery. ACS Nano. 2:889-896 (2008). 34. P. Debbage and W. Jaschke. Molecular imaging with nanoparticles: giant roles for dwarf actors. Histochem Cell Biol. 130:845-875 (2008). 35. T. Islam and L. Josephson. Current state and future applications of active targeting in malignancies using superparamagnetic iron oxide nanoparticles. Cancer Biomark. 5:99-107 (2009). 36. M. Yokoyama, P. Opanasopit, T. Okano, K. Kawano, and Y. Maitani. Polymer Design and Incorporation Methods for Polymeric Micelle Carrier System Containing Water-insoluble Anti-cancer Agent Camptothecin. Journal of Drug Targeting. 12:373-384 (2004). 37. R. Panchagnula. Pharmaceutical aspects of paclitaxel. International journal of pharmaceutics. 172:1-15 (1998). 38. C. Runowicz, P. Wiernik, A. Einzig, G. Goldberg, and S. Horwitz. Taxol in ovarian cancer. CANCER-PHILADELPHIA-. 71:1591-1591 (1993). 39. F. A. Holmes, R. S. Walters, R. L. Theriault, A. D. Forman, L. K. Newton, M. N. Raber, A. U. Buzdar, D. K. Frye, and G. N. Hortobagyi. Phase II trial of taxol, an active drug in the treatment of metastatic breast cancer. J Natl Cancer Inst. 83:1797-1805 (1991). 40. N. Kumar. Taxol-induced polymerization of purified tubulin. Mechanism of action. J Biol Chem. 256:10435-10441 (1981). 41. T. Strobel, L. Swanson, S. Korsmeyer, and S. A. Cannistra. BAX enhances paclitaxel-induced apoptosis through a p53-independent pathway. Proc Natl Acad Sci U S A. 93:14094-14099 (1996). 42. A. K. Singla, A. Garg, and D. Aggarwal. Paclitaxel and its formulations. International journal of pharmaceutics. 235:179-192 (2002). 43. S. H. Jang, M. G. Wientjes, and J. L. S. Au. Determinants of Paclitaxel Uptake, Accumulation and Retention in Solid Tumors. Investigational New Drugs. 19:113-123 (2001). 44. D. Sonnichsen, Q. Liu, E. Schuetz, J. Schuetz, A. Pappo, and M. Relling. Variability in human cytochrome P450 paclitaxel metabolism. J Pharmacol Exp Ther. 275:566-575 (1995). 45. H. Masuyama, N. Suwaki, Y. Tateishi, H. Nakatsukasa, T. Segawa, and Y. Hiramatsu. The Pregnane X Receptor Regulates Gene Expression in a Ligand- and Promoter- Selective Fashion. Mol Endocrinol. 19:1170-1180 (2005). 46. H. Gelderblom, J. Verweij, K. Nooter, and A. Sparreboom. Cremophor EL: the drawbacks and advantages of vehicle selection for drug formulation. European Journal of Cancer. 37:1590-1598 (2001). 47. F. A. Hayes, M. Abromowitch, and A. A. Green. Allergic reactions to teniposide in patients with neuroblastoma and lymphoid malignancies. Cancer Treat Rep. 69:439-441 (1985). 48. M. J. Hawkins, P. Soon-Shiong, and N. Desai. Protein nanoparticles as drug carriers in clinical medicine. Adv Drug Deliv Rev. 60:876-885 (2008). 49. W. J. Gradishar, S. Tjulandin, N. Davidson, H. Shaw, N. Desai, P. Bhar, M. Hawkins, and J. O'Shaughnessy. Phase III trial of nanoparticle albumin-bound paclitaxel compared with polyethylated castor oil-based paclitaxel in women with breast cancer. J Clin Oncol. 23:7794-7803 (2005). 50. T. C. Chao, Z. Chu, L. M. Tseng, T. J. Chiou, R. K. Hsieh, W. S. Wang, C. C. Yen, M. H. Yang, L. T. Hsiao, J. H. Liu, and P. M. Chen. Paclitaxel in a novel formulation containing less Cremophor EL as first-line therapy for advanced breast cancer: a phase II trial. Invest New Drugs. 23:171-177 (2005). 51. A. C. Mita, A. J. Olszanski, R. C. Walovitch, R. P. Perez, K. MacKay, D. P. Tuck, C. Simmons, S. Hammond, M. M. Mita, M. Beeram, A. J. Stone, E. K. Rowinsky, and L. D. Lewis. Phase I and pharmacokinetic study of AI-850, a novel microparticle hydrophobic drug delivery system for paclitaxel. Clin Cancer Res. 13:3293-3301 (2007). 52. S. C. Kim, D. W. Kim, Y. H. Shim, J. S. Bang, H. S. Oh, S. Wan Kim, and M. H. Seo. In vivo evaluation of polymeric micellar paclitaxel formulation: toxicity and efficacy. J Control Release. 72:191-202 (2001). 53. K. S. Lee, H. C. Chung, S. A. Im, Y. H. Park, C. S. Kim, S. B. Kim, S. Y. Rha, M. Y. Lee, and J. Ro. Multicenter phase II trial of Genexol-PM, a Cremophor-free, polymeric micelle formulation of paclitaxel, in patients with metastatic breast cancer. Breast Cancer Res Treat. 108:241-250 (2008). 54. A. Ehrlich, S. Booher, Y. Becerra, D. L. Borris, W. D. Figg, M. L. Turner, and A. Blauvelt. Micellar paclitaxel improves severe psoriasis in a prospective phase II pilot study. J Am Acad Dermatol. 50:533-540 (2004). 55. T. Hamaguchi, K. Kato, H. Yasui, C. Morizane, M. Ikeda, H. Ueno, K. Muro, Y. Yamada, T. Okusaka, K. Shirao, Y. Shimada, H. Nakahama, and Y. Matsumura. A phase I and pharmacokinetic study of NK105, a paclitaxel-incorporating micellar nanoparticle formulation. Br J Cancer. 97:170-176 (2007). 56. T. Hamaguchi, Y. Matsumura, M. Suzuki, K. Shimizu, R. Goda, I. Nakamura, I. Nakatomi, M. Yokoyama, K. Kataoka, and T. Kakizoe. NK105, a paclitaxel-incorporating micellar nanoparticle formulation, can extend in vivo antitumour activity and reduce the neurotoxicity of paclitaxel. Br J Cancer. 92:1240-1246 (2005). 57. G. A. DuVall, D. Tarabar, R. H. Seidel, N. L. Elstad, and K. D. Fowers. Phase 2: a dose-escalation study of OncoGel (ReGel/paclitaxel), a controlled-release formulation of paclitaxel, as adjunctive local therapy to external-beam radiation in patients with inoperable esophageal cancer. Anticancer Drugs. 20:89-95 (2009). 58. F. Gagnadoux, J. Hureaux, L. Vecellio, T. Urban, A. Le Pape, I. Valo, J. Montharu, V. Leblond, M. Boisdron-Celle, S. Lerondel, C. Majoral, P. Diot, J. L. Racineux, and E. Lemarie. Aerosolized chemotherapy. J Aerosol Med Pulm Drug Deliv. 21:61-70 (2008). 59. D. K. Armstrong, G. F. Fleming, M. Markman, and H. H. Bailey. A phase I trial of intraperitoneal sustained-release paclitaxel microspheres (Paclimer) in recurrent ovarian cancer: a Gynecologic Oncology Group study. Gynecol Oncol. 103:391-396 (2006). 60. S. A. Veltkamp, H. Rosing, A. D. Huitema, M. R. Fetell, A. Nol, J. H. Beijnen, and J. H. Schellens. Novel paclitaxel formulations for oral application: a phase I pharmacokinetic study in patients with solid tumours. Cancer Chemother Pharmacol. 60:635-642 (2007). 61. A. K. Singla, A. Garg, and D. Aggarwal. Paclitaxel and its formulations. Int J Pharm. 235:179-192 (2002). 62. M. Purcell, J. F. Neault, and H. A. Tajmir-Riahi. Interaction of taxol with human serum albumin. Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology. 1478:61-68 (2000). 63. Krisztina Paal, Jozsef Muller, and Lajos Hegedus. High affinity binding of paclitaxel to human serum albumin. European Journal of Biochemistry. 268:2187-2191 (2001). 64. C. Zhang, G. Qu, Y. Sun, X. Wu, Z. Yao, Q. Guo, Q. Ding, S. Yuan, Z. Shen, Q. Ping, and H. Zhou. Pharmacokinetics, biodistribution, efficacy and safety of N-octyl-O-sulfate chitosan micelles loaded with paclitaxel. Biomaterials. 29:1233-1241 (2008). 65. O. Meyer, O. Roch, D. Elmlinger, and H. V. J. Kolbe. Direct lipid quantitation of cationic liposomes by reversed-phase HPLC in lipoplex preparation process. European Journal of Pharmaceutics and Biopharmaceutics. 50:353-356 (2000). 66. W. R. Morrison. A fast, simple and reliable method for the microdetermination of phosphorus in biological materials. Analytical Biochemistry. 7:218-224 (1964). 67. Di Song, Li-Fen Hsu, and Jessie L.-S. Au. Binding of taxol to plastic and glass containers and protein under in vitro conditions. Journal of Pharmaceutical Sciences. 85:29-31 (1996). 68. T. J. Giezen, A. K. Mantel-Teeuwisse, S. M. J. M. Straus, H. Schellekens, H. G. M. Leufkens, and A. C. G. Egberts. Safety-Related Regulatory Actions for Biologicals Approved in the United States and the European Union. JAMA. 300:1887-1896 (2008). 69. S. Hauptman and T. Tomasi Jr. A monoclonal IgM protein with antibody-like activity for human albumin. J Clin Invest. 53:932-940 (1974). 70. J. Trotter, E. Pieramici, and G. Everson. Chronic Albumin Infusions to Achieve Diuresis in Patients with Ascites Who Are Not Candidates for Transjugular Intrahepatic Portosystemic Shunt (TIPS). Digestive Diseases and Sciences. 50:1356-1360 (2005). 71. M. Mahmoudi, A. Simchi, A. S. Milani, and P. Stroeve. Cell toxicity of superparamagnetic iron oxide nanoparticles. Journal of Colloid and Interface Science. 336:510-518 (2009). 72. A. Moreno-Aspitia and E. A. Perez. Nanoparticle albumin-bound paclitaxel (ABI-007): a newer taxane alternative in breast cancer. Future Oncol. 1:755-762 (2005). | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43778 | - |
dc.description.abstract | 紫杉醇(paclitaxel)具顯著抗癌效果卻因其疏水性而不易在人體中遞送,故開發適當劑型已廣為研究。本研究以生物可分解之脂類1,2-二油醯基-3-三甲基氨基丙烷(DOTAP)和外圍接有聚乙二醇長鍊的二硬脂酰磷脂醯乙醇胺(PEG-DSPE)構成兩性高分子微胞(micelle),並在其中混入具鐵磁性的四氧化三鐵(iron (II,III) oxide, Fe3O4)顆粒,當高分子在一定濃度以上時,可在水相溶液中形成粒徑約100-200奈米之磁性顆粒。
以75% DOTAP和25% PEG-DSPE組成之微胞(D75),在臨界微胞濃度(critical micelle concentration)18 μg/mL以上可形成粒徑約200奈米、表面電位50毫伏特的帶正電磁性奈米粒子。D75微胞在第0天時,於攝氏4度的0.5% 白蛋白水溶液中可包覆65% 加入的紫杉醇。而在相同條件下,相較於第0天時D75的包覆量,D75微胞可攜帶包覆量40% 以上的紫杉醇並維持六天以上,且其紫杉醇含量在六天內不隨時間改變。而相較於趨近電中性的D50微胞(DOTAP和PEG-DSPE各50%),其攜帶藥品效率則降低至1% 以下。這可能由於電性相吸使帶負電荷的白蛋白和帶正電荷的D75微胞黏合,可捕捉自微胞洩漏出的紫杉醇使釋放速率降低。 在儲存方面,D75和D50微胞在水、5% 葡萄糖溶液或0.5% 白蛋白溶液中冷凍乾燥(lyophilization)處理後,可維持相似的紫杉醇包覆量;而D75微胞以冷凍乾燥後回溶、或是經過反覆結凍解凍(freeze-and -thawing)處理,其紫杉醇包覆量均相似。 D75微胞具有高包覆量、適當粒徑大小、在特定條件下相當穩定,可望成為紫杉醇藥品的適當載體。 | zh_TW |
dc.description.abstract | Paclitaxel is an anticancer drug with poor water solubility. The micelles that consist of poly (ethylene glycol)-distearoyl phosphoethanolamine conjugates (PEG-DSPE), iron (II, III) oxide nanoparticles (Fe3O4), and cationic lipids 1,2-dioleoyloxy-3-trimethylammoniumpropane (DOTAP) were prepared as a carrier of hydrophobic drugs.
Micelles with 75% DOTAP and 25% PEG-DSPE in the molar ratio (D75 micelles) had average size of about 200 nm, zeta potential of about 50 mV, and the critical micelle concentration of about 18 μg/mL. The paclitaxel encapsulation ratio was 65% of loading in 0.5% albumin solution under 4°C at day 0. More than 40% of encapsulated paclitaxel in micelles comparing to the amount at day 0 could be reserved in D75 micelles for 6 days, but only 20% of paclitaxel were left in D50 micelles (containing 50% DOTAP and 50% PEG-DSPE). D50 and D75 micelles were lyophilized and rehydration in deionized water, 5% glucose solution, and 0.5% albumin solution, the paclitaxel amounts in different medium were similar. Paclitaxel amounts in D75 micelles treated with lyophilization and freeze-and-thawing were also similar. D75 micelles had properties of high encapsulation ratio, long-circulation size, slow release, and magnetic targeting possibility. It could be an ideal drug carrier for paclitaxel in cancer chemotherapy. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T02:28:22Z (GMT). No. of bitstreams: 1 ntu-98-R96423021-1.pdf: 2636976 bytes, checksum: a8415139e4a49cbc1547838bb32c68eb (MD5) Previous issue date: 2009 | en |
dc.description.tableofcontents | 口試委員會審定書.......................................................................... I
謝誌 ................................................................................................. II 中文摘要 ......................................................................................... III Abstract ............................................................................................ IV Index................................................................................................. V Figure Index...................................................................................... VII Table Index ....................................................................................... VII List of Abbreviations ......................................................................... VIII 1. Introduction 1 1.1. Drug carrier 1 1.1.1. Nanoparticles property 1 1.1.2. Components 4 1.1.3. Preparation 7 1.2. Paclitaxel 9 1.2.1. Mechanism of action 9 1.2.2. Formulations in paclitaxel 10 2. Hypothesis and purpose of the study 13 3. Materials and methods 14 3.1. Materials 14 3.2. Methods 14 3.2.1. Preparation of micelles 14 3.2.2. Drug encapsulation 15 3.2.3. Micelle property 15 3.2.4. Quantification 17 3.2.5. Stability studies 18 3.2.6. Statistics 20 4. Results 21 4.1. Quantification 21 4.2. Particle size and zeta potential 21 4.3. Medium and stability 22 4.4. PEG ratio of micelle and drug carrying ability 23 4.5. Transmission electron microscopy 23 4.6. Temperature and stability 24 4.7. Lyophilization 24 4.8. Freeze and thaw 25 5. Discussion 26 5.1. Micelle properties 26 5.2. Micelle stability 28 5.3. Limitations of studies 30 5.4. Future outlooks 31 6. Conclusion 32 References 33 Appendices i | |
dc.language.iso | en | |
dc.title | 聚乙二醇含量對磁性微胞攜帶紫杉醇能力之影響 | zh_TW |
dc.title | Study on the Amount of Poly(ethylene glycol) and Magnetic Micelle Carrying Paclitaxel | en |
dc.type | Thesis | |
dc.date.schoolyear | 97-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 張富雄(Fu-Shiung Chang),林文貞(Wen-Jen Lin),邱士娟(Shih-Jiuan Chiu),黃惠中(Huey-Chung Huang) | |
dc.subject.keyword | 微胞,聚乙二醇,安定性,白蛋白,紫杉醇, | zh_TW |
dc.subject.keyword | micelle,DOTAP,PEG,DSPE,stability,albumin,paclitaxel, | en |
dc.relation.page | 39 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2009-08-17 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 藥學研究所 | zh_TW |
顯示於系所單位: | 藥學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-98-1.pdf 目前未授權公開取用 | 2.58 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。