Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 食品科技研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43448
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor葉安義
dc.contributor.authorWei-Ta Loen
dc.contributor.author駱威達zh_TW
dc.date.accessioned2021-06-15T02:21:51Z-
dc.date.available2014-08-21
dc.date.copyright2009-08-21
dc.date.issued2009
dc.date.submitted2009-08-19
dc.identifier.citation于達元。濃度對介質研磨纖維素流變性質的影響。國立臺灣大學食品科技研究所碩士論文:臺北市,2008。
林金雀、郭東瀛、葉仰哲。奈米科技市場與發展概況。工研院產業經濟與資訊服務中心:新竹縣,2003;1。
高逢時。奈米科技。科學發展。行政院國家科學委員會:臺北市,2005;386,67-71。
徐敬添。濕式珠磨分散技術在奈米機能性產品之應用。產業奈米應用資訊園地-奈米粉體專刊。產業奈米技術應用促進會:新竹市,2001;1,86-99。
陳時欣。蔗糖酯對奈米/次微米纖維素懸浮液穩定性之研究。國立臺灣大學食品科技研究所碩士論文:臺北市,2006。
許瑞婷。研磨對臭氧降解纖維素的影響。國立臺灣大學食品科技研究所碩士論文:臺北市,2005。
黃書政。膳食纖維的功能性及在食品工業應用。食品工業。食品工業發展研究所:新竹市,2007a;39,1-2。
黃仁毅。纖維素於介質研磨下之破碎模式。國立臺灣大學食品科技研究所碩士論文:臺北市,2007b。
葉安義。奈米科技與食品(一)。科學發展。行政院國家科學委員會:臺北市,2004;384,44-49。
葉安義。奈米科技與食品(二)。科學發展。行政院國家科學委員會:臺北市,2007;418,42-47。
趙明煜。奈米纖維製備方法之研究。國立臺灣大學食品科技研究所碩士論文:臺北市,2004。
臺灣地區食品營養成份資料庫。行政院衛生署-食品衛生處:臺北市,1998。http:// www.doh.gov.tw/FoodAnalysis/ingredients.htm, accessed on May 29, 2009.
劉盈吟。奈米/次微米纖維製之特性及安全性。國立臺灣大學食品科技研究所碩士論文:台北市,2007。
American Society for Testing and Materials. Zeta potential of colloids in water and waste water, ASTM Standard D4187-82, 1985.
Beguin, P.; Aubert, J. P. The biological degradation of cellulose. FEMS Microbiol. Rev. 1994, 13, 25-58.
Chambarelli, L. L.; Pinho, M. A.; Abracado, L. G.; Esquivel, D. M. S.; Wajnberg, E. Temporal and preparation effects in the magnetic nanoparticles of Apis mellifera body parts. J. Magn. Magn. Mater. 2008, 320, E207-E210.
Chan, J. M.; Zhang, L. F.; Yuet, K. P.; Liao, G.; Rhee, J. W.; Langer, R.; Farokhzad, O. C. PLGA-lecithin-PEG core-shell nanoparticles for controlled drug delivery. Biomaterials 2009, 30, 1627-1634.
Cheng, Y. T.; Rodak, D. E.; Wong, C. A.; Hayden, C. A. Effects of micro- and nano-structures on the self-cleaning behaviour of lotus leaves. Nanotechnology 2006, 17, 1359-1362.
Cotton Incorporated. Cotton Technical Guide, 2009; http://www.cottoninc.com/ Cotton-Nonwoven-Technical-Guide/, accessed on May 25, 2009.
Chronakis, I. S.; Kasapis, S.; Richardson, R. K. Small deformation rheological properties of maltodextrin-milk protein systems. Carbohyd. Polym. 1996, 29, 137-148.
de Leeuw, J. A.; Jongbloed, A. W.; Verstegenl, M. W. A. Dietary fiber stabilizes blood glucose and insulin levels and reduces physical activity in sows (Sus scrofa). J. Nutr. 2004, 134, 1481-1486.
de Oliveira, M. A.; Maia, G. A.; de Figueiredo, R. W.; de Souza, A. C. R.; de Brito, E. S.; de Azeredo, H. M. C. Addition of cashew tree gum to maltodextrin-based carriers for spray drying of cashew apple juice. Int. J. Food Sci. Tech. 2009, 44, 641-645.
Dokic-Baucal, L.; Dokic, P.; Jakovljevic, J. Influence of different maltodextrins on properties of O/W emulsions. Food Hydrocolloid. 2004, 18, 233-239.
Dourado, F.; Mota, M.; Pala, H.; Gama, F. M. Effect of cellulase adsorption on the surface and interfacial properties of cellulose. Cellulose 1999, 6, 265-282.
Dukas, L.; Willett, W. C.; Giovannucci, E. L. Association between physical activity, fiber intake, and other lifestyle variables and constipation in a study of women. Am. J. Gastroenterol. 2003, 98, 1790-1796.
Frances, C. On modelling of submicronic wet milling processes in bead mills. Powder Technol. 2004, 143-4, 253-263.
genomics.energy.gov genome programs of the U.S. Department of Energy Office of Science, August, 2005; http://genomics.energy.gov/gallery/gtl/view.np/ view-36.html, accessed on May 25, 2009.
Han, J.; Su, H. L.; Zhang, C. F.; Dong, Q.; Zhang, W.; Zhang, D. Embedment of ZnO nanoparticles in the natural photonic crystals within peacock feathers. Nanotechnology 2008, 19, article 365602.
He, M. Z.; Wang, Y. M.; Forssberg, E. Parameter effects on wet ultrafine grinding of limestone through slurry rheology in a stirred media mill. Powder Technol.2006, 161, 10-21.
Hu, E. L.; Shaw, D. T. Ch. 2 Synthesis and assembly. Nanostructure Science and Technology 1999, p. 16.
Klinkesorn, U.; McClements, D. J. Influence of chitosan on stability and lipase digestibility of lecithin-stabilized tuna oil-in-water emulsions. Food Chem. 2009, 114, 1308-1315.
Klinkesorn, U.; Sophanodora, P.; Chinachoti, P.; McClements, D. J. Stability and rheology of corn oil-in-water emulsions containing maltodextrin. Food Res. Int. 2004, 37, 851-859.
Kumar, R.; Katare, O. P. Lecithin organogels as a potential phospholipid-structured system for topical drug delivery: A review. Aaps Pharmscitech 2005, 6, article 40.
Lairon, D. Dietary fiber and control of body weight. Nutr. Metab.Cardiovas. 2007, 17, 1-5.
Lee, M. H.; Yoo, J. S.; Lee, G. H. Analysis of lecithin in cosmetics by reversed-phase liquid chromatography electrospray tandem mass spectrometry. Rapid Commun. Mass Sp. 1998, 12, 1709-1714.
Li, J.; Kaneko, T.; Qin, L. Q.; Wang, J.; Wang, Y.; Sato, A. Long-term effects of high dietary fiber intake on glucose tolerance and lipid metabolism in GK rats: Comparison among barley, rice, and cornstarch. Metabolism. 2003, 52, 1206-1210.
Liu, K. Soybeans as functional foods and ingredients. AOCS Press: Champaign, Ill. 2005; p xi, 331.
Livesey, G.; Tagami, H. Interventions to lower the glycemic response to carbohydrate foods with a low-viscosity fiber (resistant maltodextrin): meta-analysis of randomized controlled trials. Am. J. Clin. Nutr. 2009, 89, 114-125.
Martinez-Flores, H. E.; Chang, Y. K.; Martinez-Bustos, F.; Sgarbieri, V. Effect of high fiber products on blood lipids and lipoproteins in hamsters. Nutr. Res. 2004, 24, 85-93.
McPhersonkay, R. Fiber, stool bulk, and bile-acid output-implications for colon cancer risk. Prev. Med. 1987, 16, 540-544.
McSweeney, S. L.; Healy, R.; Mulvihill, D. M. Effect of lecithin and monoglycerides on the heat stability of a model infant formula emulsion. Food Hydrocolloid. 2008, 22, 888-898.
Merisko-Liversidge, E.; Liversidge, G. G.; Cooper, E. R. Nanosizing: a formulation approach for poorly-water-soluble compounds. Eur. J. Pharm. Sci. 2003, 18, 113-120.
Mezdour, S.; Lepine, A.; Erazo-Majewicz, P.; Ducept, F.; Michon, C. Oil/water surface rheological properties of hydroxypropyl cellulose (HPC) alone and mixed with lecithin: Contribution to emulsion stability. Colloid. Surface. A. 2008, 331, 76-83.
Meziani, M. J.; Pathak, P.; Hurezeanu, R.; Thies, M. C.; Enick, R. M.; Sun, Y. P. Supercritical-fluid processing technique for nanoscale polymer particles. Angew. Chem. Int. Edit. 2004, 43, 704-707.
Nakaji, S.; Ishiguro, S.; Iwane, S.; Ohta, M.; Sugawara, K.; Sakamoto, J.; Fukuda, S. The prevention of colon carcinogenesis in rats by dietary cellulose is greater than the promotive effect of dietary lard as assessed by repeated endoscopic observation. J. Nutr. 2004, 134, 935-939.
Neinhuis, C.; Barthlott, W. Characterization and distribution of water-repellent, self-cleaning plant surfaces. Ann. Bot.-London 1997, 79, 667-677.
Niwa, T.; Nakao, M.; Hoshi, S.; Yamada, K.; Inagaki, K.; Nishida, M.; Nabeshima, T. Effect of dietary fiber on morphine-induced constipation in rats. Biosci. Biotech. Bioch. 2002, 66, 1233-1240.
Oakenfull, D. G.; Fenwick, D. E. Adsorption of bile-salts from aqueous-solution by plant fiber and cholestyramine. Brit. J. Nutr. 1978, 40, 299-309.
Pilch, S. M. Physiological Effects and Health Consequences of Dietary Fiber, Life Sciences Research Office. Federation of American Societies for Experimental Biology. Bethesda, Maryland. Contract Number FDA 223-84-2059, 1987; pp. 162-163.
Ranhotra, G. S.; Gelroth, J. A.; Glaser, B. K.; Schoening, P.; Brown, S. E. Cellulose and calcium lower the incidence of chemically-induced colon tumors in rats. Plant Food. Hum. Nutr. 1999, 54, 295-303.
Reddy, B. S. Dietary fiber and colon cancer-animal-model studies. Prev. Med. 1987, 16, 559-565.
Roland, A. M.; Phillips, L. G.; Boor, K. J. Effects of fat replacers on the sensory properties, color, melting, and hardness of ice cream. J. Dairy Sci. 1999, 82, 2094-2100.
Sanguansri, P.; Augustin, M. A. Nanoscale materials development - a food industry perspective. Trends Food Sci. Tech. 2006, 17, 547-556.
Schilling, C. H.; Tomasik, P.; Kim, J. C. Processing technical ceramics with maltodextrins: crosslinking by acetalation. Starch/Stärke 1999, 51, 397-405.
Slavin, J. L. Dietary fiber and body weight. Nutrition 2005, 21, 411-418.
Stana-Kleinschek, K.; Strnad, S.; Ribitsch, V. Surface characterization and adsorption abilities of cellulose fibers. Polym. Eng. Sci. 1999, 39, 1412-1424.
Steffe, J. F. Rheological methods in food process engineering. 2nd ed.; Freeman Press: East Lansing, MI, 1996; p xiii, 418.
Su, Y. L.; Fu, Z. Y.; Zhang, J. Y.; Wang, W. M.; Wang, H.; Wang, Y. C.; Zhang, Q. J. Microencapsulation of Radix salvia miltiorrhiza nanoparticles by spray-drying. Powder Technol. 2008, 184, 114-121.
Varinot, C.; Hiltgun, S.; Pons, M. N.; Dodds, J. Identification of the fragmentation mechanisms in wet-phase fine grinding in a stirred bead mill. Chem. Eng. Sci. 1997, 52, 3605-3612.
U. S. Food and Drug Administration. FDA Readies for More 'Nanoscale' Challenges. Consumer Health Information, 2007; http://www.fda.gov/downloads/ ScienceResearch/SpecialTopics/Nanotechnology/UCM153731.pdf, accessed on May 28, 2009.
Wan, Y. Z.; Hong, L.; Jia, S. R.; Huang, Y.; Zhu, Y.; Wang, Y. L.; Jiang, H. J. Synthesis and characterization of hydroxyapatite-bacterial cellulose nanocomposites. Compos. Sci. Technol. 2006, 66, 1825-1832.
Watanabe, A.; Morita, S.; Ozaki, Y. A study on water adsorption onto microcrystalline cellulose by near-infrared spectroscopy with two-dimensional correlation spectroscopy and principal component analysis. Appl. Spectrosc. 2006, 60, 1054-1061.
Yuan, Y.; Gao, Y. X.; Zhao, J.; Mao, L. Characterization and stability evaluation of beta-carotene nanoemulsions prepared by high pressure homogenization under various emulsifying conditions. Food Res. Int. 2008, 41, 61-68.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43448-
dc.description.abstract纖維素是自然界中分布最廣、含量最多的多醣,絕大多數存在於植物體內,且廣泛存在於食品中,屬於非水溶性膳食纖維的一種。膳食纖維已被證實可促進人體健康,例如:促進腸胃蠕動、預防便秘及結腸癌、降低膽固醇、穩定血糖及減重。本論文之目的在探討纖維素微粒於水中之懸浮穩定性,及其凍乾粉末之復水性。藉由添加卵磷脂作為乳化劑,改善經介質研磨後奈米/次微米纖維素懸浮液之穩定性;添加麥芽糊精作為賦形劑,改善其凍乾粉末之復水性。經由物性分析、顯微觀察確認其穩定性及復水效果。
  纖維素20 g加入400 mL去離子水混勻,添加不同比例之卵磷脂及麥芽糊精,研磨90分鐘。結果顯示,未添加卵磷脂的樣品,體積平均粒徑下降至0.66 µm,奈米/次微米之微粒佔總體積的78.9%,比表面積與表面能大幅提升,微粒間的聚集現象嚴重,物性皆不穩定。有添加卵磷脂的樣品,濁度變化都在± 1%以內,表面電位均小於-30 mV,無離水現象,呈穩定狀態,其中添加1.25%的樣品保水性最好。以添加1.25%卵磷脂的樣品添加麥芽糊精進行復水性實驗,結果顯示,將研磨樣品之凍乾粉末復水後,未添加麥芽糊精的樣品,已無奈米/次微米微粒存在,濁度變化高達-89%,離水嚴重,極不穩定;而添加50及100%麥芽糊精的樣品,奈米/次微米微粒分別佔總體積的7%及10%,濁度變化為-8%及33%,表面電位為-17及-12 mV,有輕微離水,整體物性比未添加麥芽糊精的樣品穩定。
  適量添加卵磷脂可促進奈米/次微米纖維素懸浮液之穩定性,其中又以添加1.25%的樣品效果最好。添加麥芽糊精雖然使穩定性下降,卻可提升奈米/次微米纖維素凍乾粉末之復水性,且有效減緩凍乾前及凍乾復水後樣品之物性變化,其中添加50%的樣品穩定性較好,而添加100%的樣品復水性較佳。此外,經實驗證明適量添加卵磷脂可幫助麥芽糊精提升奈米/次微米纖維素懸浮液之復水性。
zh_TW
dc.description.abstractCellulose is the most broadly-distributed and abundant polysaccharide in nature. It is also known as dietary fiber in food. It has been proved that dietary fiber can improve human health, such as promoting gastrointestinal peristalsis, preventing constipation and colon cancer, reducing cholesterol, stabilizing blood sugar level and reducing weight. In this study, the stability of nano/submicron cellulose particles suspending in water and the rehydration ability of the lyophilized powder were investigated. Addition of lecithin worked as an emulsifier improved the stability of nano/submicron cellulose suspension, while the addition of maltodextrin worked as an excipient to improve the rehydration ability of the lyophilized powder.
Samples of nano/submicron cellulose particles adding different amount of lecithin and maltodextrin were milled for 90 min. Suspension without the addition of lecithin was unstable because of the increase in specific surface area and surface energy, which resulted in the aggregation of particles. For samples with the addition of lecithin, stability over time was observed, turbidity variations were all within ± 1%, no syneresis was found, and zeta potentials were under -30 mV. The addition of 1.25% lecithin performed the best water holding capacity, and this condition was chose to proceed with the experiments of rehydration ability. After rehydrating the lyophilized powder without the addition of maltodextrin, no nano/submicron cellulose particles was found in the sample and the suspensions was very unstable. For the samples with the addition of 50% and 100% maltodextrin to the cellulose suspension with 1.25% lecithin, 7% and 10% nano/submicron particles were present in the samples, turbidity variations were -8% and 33%, and zeta potentials were -17 and -12 mV, respectively. Slight syneresis occurred but the samples were more stable than the ones without the addition of maltodextrin.
Adding appropriate amount of lecithin enhanced the stability of nano/submicron cellulose suspension; sample with 1.25% lecithin was found to be the most stable. The addition of maltodextrin improved the rehydration ability of nano/submicron cellulose lyophilized powder, but decreased the stability. It can effectively delay the change in physical characteristics after lyophilizing. The addition of 50% maltodextrin showed better stability and the rehydration ability with 100% maltodextrin performed well. The addition of lecithin can enhance stability and the addition of maltodextrin can improve rehydration.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T02:21:51Z (GMT). No. of bitstreams: 1
ntu-98-R96641026-1.pdf: 3956902 bytes, checksum: e47cd4182a63cc64fa48f54ae286ed91 (MD5)
Previous issue date: 2009
en
dc.description.tableofcontents摘要…………………………………………………………………………………i
Abstract……………………………………………………………………………ii
目錄…………………………………………………………………………………iv
圖目錄………………………………………………………………………………vii
表目錄………………………………………………………………………………x
壹、 前言……………………………………………………………………………1
貳、 文獻回顧……………………………………………………………………3
2.1. 奈米科學與技術………………………………………………………3
2.1.1. 奈米的定義…………………………………………………………3
2.1.2. 奈米科技的定義……………………………………………………4
2.1.3. 奈米科技與食品……………………………………………………6
2.1.4. 材料特性及製備……………………………………………………8
2.2. 纖維素與膳食纖維……………………………………………………11
2.2.1. 纖維素………………………………………………………………11
2.2.2. 膳食纖維……………………………………………………………14
2.3. 乳化劑-卵磷脂………………………………………………………16
2.4. 賦形劑-麥芽糊精……………………………………………………19
2.5. 介質研磨………………………………………………………………21
2.6. 實驗目的………………………………………………………………25
參、 材料與方法…………………………………………………………………26
3.1. 材料……………………………………………………………………26
3.2. 儀器設備………………………………………………………………27
3.3. 實驗流程及方法………………………………………………………31
3.3.1. 原料濃度……………………………………………………………33
3.3.2. 卵磷脂添加量………………………………………………………33
3.3.3. 麥芽糊精添加量……………………………………………………33
3.3.4. 介質研磨……………………………………………………………34
3.3.5. pH值量測…………………………………………………………35
3.3.6. 粒徑量測……………………………………………………………35
3.3.7. 濁度量測……………………………………………………………36
3.3.8. 離水觀察……………………………………………………………36
3.3.9. 界面電位量測………………………………………………………36
3.3.10. 保水性量測…………………………………………………………38
3.3.11. 黏度量測……………………………………………………………38
3.3.12. 冷凍乾燥……………………………………………………………39
3.3.13. 凍乾粉末復水………………………………………………………39
3.3.14. 光學顯微鏡觀察……………………………………………………39
3.3.15. 掃描式電子顯微鏡觀察……………………………………………39
3.3.16. 穿透式電子顯微鏡觀察……………………………………………39
肆、 結果與討論…………………………………………………………………40
4.1. 纖維素原料……………………………………………………………40
4.1.1. 物理性質…………………………………………………………40
4.1.2. 懸浮液性質………………………………………………………41
4.2. 添加卵磷脂之纖維素懸浮液………………………………………43
4.2.1. pH值分析…………………………………………………………43
4.2.2. 黏度分析……………………………………………………………43
4.2.3. 粒徑分析……………………………………………………………44
4.2.4. 濁度分析……………………………………………………………46
4.2.5. 離水觀察……………………………………………………………50
4.2.6. 界面電位分析………………………………………………………51
4.2.7. 保水性分析…………………………………………………………51
4.2.8. 顯微觀察……………………………………………………………53
4.3. 添加麥芽糊精及1.25%卵磷脂之纖維素懸浮液…………………56
4.3.1. pH值分析…………………………………………………………57
4.3.2. 黏度分析……………………………………………………………57
4.3.3. 粒徑分析……………………………………………………………58
4.3.4. 濁度分析……………………………………………………………60
4.3.5. 離水觀察……………………………………………………………63
4.3.6. 界面電位分析………………………………………………………63
4.3.7. 保水性分析…………………………………………………………63
4.3.8. 顯微觀察……………………………………………………………65
4.4. 纖維素懸浮液凍乾粉末之復水性(有添加卵磷脂)………………66
4.4.1. pH值分析…………………………………………………………66
4.4.2. 黏度分析……………………………………………………………66
4.4.3. 粒徑分析……………………………………………………………67
4.4.4. 濁度分析……………………………………………………………70
4.4.5. 離水觀察……………………………………………………………73
4.4.6. 界面電位分析………………………………………………………73
4.4.7. 保水性分析…………………………………………………………73
4.4.8. 顯微觀察……………………………………………………………75
4.5. 纖維素懸浮液凍乾粉末之復水性(無添加卵磷脂)………………77
伍、 結論…………………………………………………………………………78
參考文獻…………………………………………………………………………81
附錄…………………………………………………………………………………88
dc.language.isozh-TW
dc.title卵磷脂與麥芽糊精對奈米/次微米纖維素懸浮液穩定性及其凍乾粉末復水性之研究zh_TW
dc.titleThe Effect of Lecithin and Maltodextrin on the Stability of Nano/Submicron Cellulose Suspension and Its Rehydration of Lyophilized Powderen
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree碩士
dc.contributor.oralexamcommittee盧訓,張克亮,陳時欣,賴喜美
dc.subject.keyword纖維素,介質研磨,卵磷脂,穩定性,麥芽糊精,復水性,zh_TW
dc.subject.keywordcellulose,media milling,lecithin,stability,maltodextrin,rehydration,en
dc.relation.page92
dc.rights.note有償授權
dc.date.accepted2009-08-19
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept食品科技研究所zh_TW
顯示於系所單位:食品科技研究所

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  目前未授權公開取用
3.86 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved