請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43321
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 馬小康 | |
dc.contributor.author | Kuo-Lun Tseng | en |
dc.contributor.author | 曾國倫 | zh_TW |
dc.date.accessioned | 2021-06-15T01:49:27Z | - |
dc.date.available | 2014-07-14 | |
dc.date.copyright | 2009-07-14 | |
dc.date.issued | 2009 | |
dc.date.submitted | 2009-07-06 | |
dc.identifier.citation | 1.M. Grätzel, “Powering the planet” ,Nature.,403,363 ,(2000).
2.M.Grätzel, “Photoelectrochemical cells”, Nature., 414, 338, (2001). 3.M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Müller, P. Liska, N.Vlachopoulos, M. Grätzel, “Conversion of Light to Electricity by cis-X2Bis(2,2’-bipyridyl-4,4’-dicarboxylate) ruthenium(II) Charge-Transfer Sensitizers (X = Cl-,Br-, I-, CN-, and SCN-) on Nanocrystalline TiO2 Electrodes”, J. Am. Chem. Soc., 115,6382, (1993). 4.M. K. Nazeeruddin, P. Pechy, T. Renouard, S. M. Zakeerudin, R. Humphry-Baker, P.Comte, P. Liska, L. Cevey, E. Costa, V. Shklover, L. Spiccia, G. B. Deacon, C. A.Bignozzi, M. Grätzel, “Engineering of Efficient Panchromatic Sensitizers for Nanocrystalline TiO2-Based Solar cells”, J. Am. Chem. Soc., 123, 1613, (2001). 5.STUT,MEMS and Nano Technology . http://elearning.stut.edu.tw/m_facture/Nanotech/Web/index.htm 6.李國鼎,“添加有機化合物TTIP與AIP在甲烷預混火焰中合成TiO2與Al2O3微粒之研究”,國立台灣大學機械工程研究所碩士論文,(2004). 7.廖思翰,“利用有機化合物TTIP於預混平板火燄中合成TiO2奈米微粒之研究”,國立台灣大學機械工程研究所碩士論文,(2005) 8.楊雄安,“在甲烷預混與擴散火焰中合成奈米級鈦化合物顆粒之研究”,國立台灣大學機械工程研究所碩士論文,(2006) 9.林宏章,“燃燒合成法製備TiO2應用於敏化太陽能電池之研製” ,國立台灣大學機械工程研究所碩士論文,(2008) 10.K.-I. Iuchi, Y. Ohko, T. Tatsuma, A. Fujishima, “Cathode-Separated TiO2 Photocatalysts Applicable to a Photochromic Device Responsive to Backside Illumination”, Chem. Mater., 16 , 1165-1167,(2004). 11.A. Fujishima, T. N. Rao, D. A. Tryk, “Titanium dioxide photocatalysis”,J. Photochem. Photobiol. C,1, 1-21, (2000). 12.沈偉韌,趙文寬,賀飛,方佑齡, “TiO2光催化反應及其在廢水處理中的應用” 化學進展,4, (1998). 13.M. R. Hoffmann, S. T. Martin, W. Choi , D. W. Bahnemann, “Environmental Applications of Semiconductor Photocatalysis”, Chem. Rev. ,95, 69-96,(1995). 14.C. Anderson , A. J. Bard, “An Improved Photocatalyst of TiO2/SiO2 Prepared by a Sol-Gel Synthesis”, J. Phys. Chem. ,99, 9882-9885,(1995). 15.H.C. Chan, K. Chan, P. Barford, F. Porter, “Solar photocatalytic thin film cascade reactor for treatment of benzoic acid containing wastewater”, Water Research ,37 ,1125-1135, (2003). 16.M. Cho, H. Chung, W. Choi, J. Yoon, “Linear correlation between inactivation of E. coli and OH radical concentration in TiO2 photocatalytic disinfection” Water Research ,38, 1069-1077 ,(2004). 17.中國大百科全書智慧藏,http://140.128.103.1/web/Default.htm 18.R. A.,Spurr, H. Myers, “Quantitative Analysis of Anatase- Rutile Mixtures With An X-ray Diffractometer” , J. Anal. Chem., 29,760-762,(1957). 19.Y. Suyama, A. Kato, “Effect of Additives on the Formation of TiO2 Particles by Vapor Phase Reaction” , J. Am. Ceram. Soc., 68, 154-156, (1985). 20.M. K.Akhtar, Y.Xiong, S. E.Pratsinis, “Vapor Synthesis of Titania Powder by Titanium Tetrachloride Oxidation” , AIChE J., 37, 1561-1570,(1991). 21.C. H.Hung, J. L. Katz, “Formation of Mixed Oxide Powders in Flames: PartⅠ. TiO2-SiO2 ” ,J. Mater. Res., 7, 1861,(1992). 22.C. H.Hung, P. F.Miquel, J. L. Katz, “Formation of Mixed Oxide Powders in Flames: PartⅡ. TiO2-SiO2 ” , J. Mater. Res., 7, 1870, (1992). 23.J. A.Eng, D. L.Zhu, C. K.Law, “On the structure, Stabilization, and Dual Response of Flat-Burner Flames”, Combust. Flame, 100, 645 (1995). 24.S. E.Pratsinis, W. Zhu, S.Vemury, “The Role of Gas Mixing in Flame Synthesis of Titania Powders ” , Powder Technol., 86, 87 (1996). 25.A. J.Rulison, P. F.Miquel, J. L. Katz, “Titania and Silica Powders Produced in A Counterflow Diffusion Flame” , J. Mater. Res., 11, 3083 (1996). 26.Y. J.Chen, N.Glumac, B. H.Kear , G.Skandan , “High Rate Synthesis of Nanophase Materials” , Nanostruct. Mater., 9, 101 (1997). 27.M. S.Wooldridge, “Gas-Phase Combustion Synthesis of Particles” , Prog. Energy Combust. Sci., 24, 63 (1998). 28.S. E.Pratsinis, “Flame Aerosol Synthesis of Ceramic Powders ” , Prog. Energy Combust. Sci., 24, 197 (1998). 29.S. H.Ehrman, S. K.Friedlander, M. R.Zachariah, “Characteristics of SiO2/TiO2 Nanocomposite Particles Formed in A Premixed Flat Flame ” , J. Aerosol Sci, 29, 687 (1998). 30.G.Skandan , Y. J.Chen, N.Glumac, B. H.Kear, “Synthesis of Oxide Nanoparticles in Low Pressure Flames ” , Nanostruct. Mater., 2, 149 (1999). 31.N .Glumac, G.Skandan, Y. J. Chen, B. H.Kear , “ Particle Size Control During Flat Flame Synthesis of Nanophase Oxide Powders ” , Nanostruct. Mater., 12, 253 (1999). 32.A.Singhal, G.Skandan, A.Wang, N.Glumac, B.H.Kear, “ On Nanoparticle Aggregation during Vapor Phase Synthesis ” , Nanostruct. Mater., 4, 545 (1999). 33.A.Singhal, G.Skandan , N. Glumac, B.H.Kear , “ Minimizing Aggregation Effects in Flame Synthesized Nanoparticles ” , Scripta Mater., 44, 2203 (2001). 34.O. I.Arabi-Katbi, S. E.Pratsinis, “Monitoring the Flame Synthesis of TiO2 Particles by in-situ FTIR Spectroscopy and Thermophoretic Sampling”, Combust. Flame, 124,560-572 (2001). 35.H. K.Kammler, S. E .Pratsinis, “Flame Temperature Measurements during Electrically Assisted Aerosol Synthesis of Nanoparticles”,Combust. Flame,128,369-381 (2002). 36.葉山豪,“TTIP 於火焰中合成TiO2奈米顆粒之研究”,國立台灣大學機械工程研究所碩士論文,(2003). 37.林原輝,“預混平板甲烷火焰以有機矽化合物HMDSA與HMDSO燃燒合成矽化物奈米粉體之研究”,國立台灣大學機械工程研究所碩士論文,(2004). 38.K.Kranthi Akurati ,A. Vital ,G. Fortunato ,R. Hany,F. Nueesch,T. Graule,“Flame synthesis of TiO2 nanoparticles with high photocatalytic activity”, Solid State Sci. ,9, 247-257, (2007). 39.B. O’Regan, M. Grätzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films”, Nature, ,353, 737, (1991). 40.W.J. Lee, A. Wakahara, A. Yoshida, “Structural and photoelectrochemical characteristics of nanocrystalline ZnO electrode with Eosin-Y”, Ceram. Int, 32, 495-498,(2006). 41.K. Kakiuchi, S. Fujihara, “Enhanced photoelectrochemical performance of ZnO electrodes sensitized with N-719”, J. Photochem.Photobiol. A-Chem 179, 83-86, (2006). 42.K.Funabiki, Ji-Ye Jin, T. Yoshida, H. Minoura, “Application of near-infrared absorbing heptamethine cyanine dyes as sensitizers for zinc oxide solar cell”, Synth. Met 148, 147-153, (2005). 43.J. E. Kroeze, “The application of a low-bandgap conjugated oligomer for the sensitization of SnO2 and TiO2”, Thin Solid Films ,451-452, 54-59, (2003). 44.M. A. Aegerter, “Sol-gel niobium pentoxide: A promising material for electrochromic coatings, batteries, nanocrystalline solar cells and catalysis”, Sol. Energy Mater. Sol. Cells, 68, 401-422, (2001). 45.M. Lira-Cantu, F. C. K, “Hybrid solar cells based on MEH-PPV and thin film semiconductor oxides (TiO2, Nb2O5, ZnO, CeO2 and CeO2-TiO2): Performance improvement during long-time irradiation”,Sol. Energy Mater. Sol. Cells, 90, 2076-2086, (2006). 46.Y.Li, J.Hagen, W.Schaffrath, P.Otschik , D.Haarer, “Titanium dioxide films for photovoltaic cells derived from a sol-gel process,” Sol. Energy Mater. Sol. Cells, 56, 167-174, (1999). 47.郝三存,“天然色素敏化TiO2多孔膜太陽能電池的研究”,華橋大學研究生學位論文,(2001) 48.郝三存 等人,“染料敏話奈米晶TiO2太陽能電池研究進展”,材料導報,17,(2003). 49.J. Barbe, F. Arendse, P. Comte, M. Jirousek, F. Lenzmann, V.Shklover, M Grätzel, “Nanocrystalline Titanium Oxide Electrode for Photovoltaic Application,” J. Am. Ceram. Soc. 80, 3157, (1997) 50.Ashraful Islam, H. Sugihara, H. Arakawa“Molecular design of ruthenium(II) polypyridyl photosensitizers for efficient nanocrystalline TiO2 solar cells” J. Photochem. Photobiol., A- Chem, 158, 131–138, (2003) 51.M. K.Nazeeruddin, P.Péchy, M.Grätzel, “Efficient panchromatic sensitization of nanocrystalline TiO2 films by a black dye based on a trithiocyanato-ruthenium complex,” Chem. Commun., 1705-1706, (1997). 52.徐勇前,孫世國,彭孝軍,“太陽能電池用多聯吡啶釕光敏劑”,化學通報, 17,(2006). 53.J.Wu, P. Li, S. Hao, H. Yang, Z. Lan “A polyblend electrolyte (PVP/PEG+KI+I2) for dye-sensitized nanocrystalline TiO2 solar cells” Electrochim. Acta,52, 5334–5338,(2007). 54.L.Brus, “Model for carrier dynamics and photoluminescence quenching in wet and dry porous silicon thin films,” Phys. Rev. B, 53,4649-4656, (1996). 55.H. Usui, H. Matsui, “Improved dye-sensitized solar cells using ionic nanocomposite gel electrolytes,” J. Photochem. Photobiol., Chem. A ,164, 97-101, (2004). 56.U. Bach, D. Lupo, P. Comte, J. E. Moser, F. Weissortel, J. Salbeck, H. Spreitzer, M. Grätzel, Nature 395, 583, (1998). 57.D. Cahen, G. Hodes, M. Grtzel, J. F. Guillemoles, I. Riess, “Nature of Photovoltaic Action in Dye-Sensitized Solar Cells”, J. Phys. Chem. B , 104, 2053-2059, (2000). 58.A.Zaban, S. Ferrere, B. A. Gregg, “Relative energetics at the semiconductor/sensitizing dye/electrolyte interface”, J. Phys. Chem. B, 102, 452-460, (1998). 59.A. Zaban, A. Meier, B.A. Gregg., “Electric potential distribution and short-range screening in nanoporous TiO2 electrodes”, J. Phys. Chem. B, 101 (1997) 7985-7990. 60.F. Hurd, R. Livingston, “The quantum yields of some dye-sensitized photooxidations” J. Phys. Chem. 44, 865-873, (1940). 61.萬海保,曹立新,王麗穎,曾廣賦,席時權, “染料敏化的TiO2納米晶多孔膜的性質及其光電轉換” 化學通報 1999(6) 62.H. Tsubomura, M. Matsumura, Y. Nomura, T. Amamiya, “Dye sensitised zinc xide/aqueous electrolyte/platinum photocell”, Nature 261, 402, (1976). 63.N.Vlachopoulos, P. Liska, J. Augustynski, M. Graetzel, “Very high visible light energy harvesting and conversion by spectral sensitization of high surface area polycrystalline titanium dioxide films”, J. Am. Chem. Soc. 110, 1216-1220, (1988). 64.M. Grätzel, “Conversion of sunlight to electric power by nanocrystalline DSSCs”, J. Photochem. & Photobio. A: Chem. 164, 3-14, (2004). 65.N.G. Park, J. van de Lagemaat, A. J. Frank, “Comparison of dye-sensitized rutile- and anatase-based TiO2 solar cells” J. Phys. Chem. B, 104, 8989-8994, (2000). 66.N.G. Park, G. Schlichtho1rl, J. van de Lagemaat, H. M. Cheong, A. Mascarenhas, A. J. Frank, “Dye-sensitized TiO2 solar cells: structural and photoelectrochemical characterization of nanocrystalline electrodes formed from the hydrolysis of TiCl4” J. Phys. Chem. B,103, 3308-3314, (1999) . 67.S .Ito, T. Kitamura, Y .Wada, S. Yanagida, “Facile fabrication of mesoporous TiO2 electrodes for dye solar cells: chemical modification and repetitive coating” Sol. Energy Mater. Sol. Cells, 76,3-13,(2003). 68.S. Nakade, M. Matsuda, S. Kambe, Y. Saito, T. Kitamura, T. Sakata, Y. Wada, H. Mori, S. Yanagida, “Dependence of TiO2 nanoparticle preparation methods and annealing temperature on the efficiency of dye-sensitized solar cells” J. Phys. Chem. B, 106,10004-10010, (2002). 69.T. Pauport, T. Yoshida, R. Corts, M. Froment, D. Lincot, “Electrochemical growth of epitaxial Eosin/ZnO hybrid films” J. Phys. Chem. B, 107, 10077-10082, (2003). 70.R. Katoh, A. Furube, T. Yoshihara, K. Hara, G.Fujihashi, S. Takano, S. Murata, H.Arakawa, M. Tachiya, “Efficiencies of electron injection from excited N3 dye into nanocrystalline semiconductor (ZrO2, TiO2, ZnO, Nb2O5, SnO2, In2O3) films” J. Phys. Chem. B, 108,4818-4822, (2004) 71.A. Zaban, J. Zhang,Y. Diamant, O. Melemed, J. Bisquert, “Internal reference electrode in dye sensitized solar cells for three-electrode electrochemical characterizations” J. Phys. Chem. B, 107, 6022-6025, (2003) . 72.A.Kay and M. Grätzel, “Low cost photovoltaic modules based on dye sensitized nanocrystalline titanium dioxide and carbon powder” Sol. Energy Mater. Sol. Cells, 44, 99-117, (1996). 73.T. N. Murakami, S. Ito, Q. Wang, Md. K. Nazeeruddin,T. Bessho, I. Cesar, P. Liska, R. Humphry-Baker, P. Comte,P. Péchy, M. Grätzelz, “Highly Efficient Dye-Sensitized Solar Cells Based on Carbon Black Counter Electrodes” J. Electrochem. Soc., 153 (12), A2255-A2261, (2006). 74.A.Hagfeldt, M. Grätzel, “Light-Induced Redox Reactions in Nanocrystalline Systems” Chem. Rev. 95, 49-68,(1995) . 75.M. Grätzel, “Mesoporous oxide junctions and nanostructured solar cells” Curr. Opin. Colloid Interface Sci., 4, 314-321,(1999). 76.K. Kalyanasundaram ,M. Grätzel, “Applications of functionalized transition metal complexes in photonic and optoelectronic devices”, Coord. Chem. Rev., 77 , 347-414,(1998) . 77.A.Hinsch, J.M.Kroon, R.Kern, I.Uhlendorf, J.Holzbock, A.Meyer, J.Ferber,“Long Term Stability of Dye Sensitised Solar Cells for large area power applications” Prog. Photovolt: Res. Appl.,9, 425-438,(2001). 78.H. Pettersson , T. Gruszecki, “Long-term stability of low-power dye-sensitized solar cells prepared by industrial methods” Sol. Energy Mater. Sol. Cells ,70, 203-212, (2001) 79.G. Phani, G. Tulloch, D. Vittorio, I. Skryabin, “Titania solar cells: new photovoltaic technology” Renewable Energy, 22 ,303-309, (2001). 80.P. Wang, S. M. Zakeeruddin, J.E. Moser, M. Grtzel, “A new ionic liquid electrolyte enhances the conversion efficiency of DSSCs” J. Phys. Chem. B, 107, 13280-13285,(2003). 81.S. Y. Huang, G. Schlichthörl, A. J. Nozik, M. Grätzel, A. J. Frank, “Charge recombination in dye-sensitized nanocrystalline TiO2 solar cells” J. Phys. Chem. B,101 ,2576-2582, (1997). 82.S. A. Haque, Y. Tachibana, D.R. Klug, J. R. Durrant, “Charge recombination kinetics in dye-sensitized nanocrystalline titanium dioxide films under externally applied bias” J. Phys. Chem. B 102 , 1745-1749,( 1998). 83.J. Nelson, “Continuous-time random-walk model of electron transport in nanocrystalline TiO2 electrodes” J. Phys. Rev. B ,59 , 15374-15380,(1999) 84.J. Rabani, K. Ushida, K. Yamashita, J. Stark, S. Gershuni, A. Kira, “Electron injection, charge recombination, and energy migration in surface-modified TiO2 nanocrystallite layers. A laser photolysis study” J. Phys. Chem. B, 101, 3136-3146, (1997). | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43321 | - |
dc.description.abstract | 本研究為二氧化鈦(TiO2)在染料敏化太陽能電池(dye-sensitized solar cells, DSSCs)上之應用,利用預混式燃燒器火焰,添加鈦系化合物C12H28O4Ti(TTIP),並以氣相燃燒合成奈米級TiO2顆粒,討論其晶相純度及粒徑大小,當O2/N2=30/70、Φ=1.0、TTIP=0.89%,時,粉末粒徑約為50nm,Anatase晶相含量為67%,由於改變收集方式,因此此數據與本實驗室先前所製作之Anatase晶相含量為97.7%相比較差,將本實驗製作之顆粒應用在染料敏化太陽能電池上可得到最佳光電轉換效率1.17%。
DSSCs之製備主要探討電池之工作電極之TiO2薄膜厚度、兩電極間距離以及電解液調配方式等數個研究方向。工作電極方面以刮刀成膜法(doctor blade method)製做,討論TiO2膜厚度,結果發現使用4克的P25 TiO2粉末加上15毫升去離子水,0.5毫升乙醯丙酮與0.5毫升界面活性劑(X-100),塗佈三層TiO¬2薄膜厚度之DSSCs效率最佳;兩電極間厚度以100μm為最佳;在電解液的選用上,使用濃度為0.5M-0.05M 之LiI-I2,溶劑為體積比Propylene carbonate:Acetonitrile為9:1之電解液,再加入濃度為0.5M之 4-tert-butylpyridine(TBP),最佳光電轉換效率可達2.115%。 | zh_TW |
dc.description.abstract | Flame synthesis of nanosized titanium oxide particles with the precursor titanium isopropoxide (TTIP) were used in dye-sensitized solar cells (DSSCs). In this study, particles collected in the premixed flames were studied for their morphology, crystal phase purity, and size. Results from X-ray diffraction (XRD) analyses show that TiO2 crystal phase purity and the size of TiO2 nanoparticles may be effectively controlled by the oxygen concentration and equivalence ratio(Φ). As a result, the anatase purity and the size of TiO2 particle can be 67% and 50nm. TiO2 nanoparticles are formed under the conditions of O2/N2=30/70,Φ=1.0, and TTIP=0.89%. Because of the different collected mothod, this particle anatase purity is lower than 97.7% that collected before. However, DSSCs are developed by using a dye-sensitized nanocrystalline TiO2 film display the photo-energy efficiency of 1.17%.
DSSC is an alternative method for the development of a new generation of photovoltaic devices. DSSC is a combination of several materials, consisting of a transparent electrode coated with a dye-sensitized mesoporous film of nanocrystalline particles of TiO2, an electrolyte containing a suitable redox-couple and a platinum coated counter-electrode. Ruthenium 535-bis TBA (N719) is used as the dyesensitizers. The photo-energy conversion efficiency of DSSCs depends on the properties of its components. The photo-energy conversion efficiency of DSSCs can be optimized up to 2.115%, when the anode electrode made by doctor blade method with three layers. Furthermore, the spacer thickness is 100μm, and the electrolyte condition become [LiI]-[ I2] is 0.5M-0.05M in volume ratio Propylene Carbonate(PC):Acetonitrile is 9:1 with 0.5M 4-tert-butylpyridine(TBP). | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T01:49:27Z (GMT). No. of bitstreams: 1 ntu-98-R96522118-1.pdf: 9557757 bytes, checksum: 004857c9aeb7c8956a021eb453316305 (MD5) Previous issue date: 2009 | en |
dc.description.tableofcontents | 第一章 緒論1
1.1 前言 1 1.2 研究背景2 1.3 太陽能電池3 1.3.1 單晶矽4 1.3.2 多晶矽5 1.3.3 非晶矽5 1.3.4 化合物半導體II-VI 族(CdS, CdTe, CuInSe2)5 1.3.5 化合物半導體III-V 族(GaAs, InP, InGaP) 6 1.3.6 染料敏化太陽能電池6 1.3.7 塑膠太陽能電池6 1.3.8 奈米碳管太陽能電池7 1.4 奈米顆粒7 1.5 研究動機與目的9 第二章 TiO2文獻回顧與理論基礎12 2.1 TiO2基本介紹 12 2.1.1 Anatase/Rutile 晶相之介紹12 2.1.2 光觸媒Photocatalyst13 2.2 奈米微粒的製備14 2.2.1 奈米微粒子的物理製備方法15 2.2.2 奈米微粒子的化學製備方法15 2.3 文獻回顧17 第三章 DSSCs文獻回顧與理論基礎24 3.1 DSSCs發展24 3.2 DSSCs構造24 3.3 DSSCs光電轉換原理29 3.4 光電轉換特性 30 3.5 DSSCs文獻回顧 31 第四章 奈米微粒子實驗研究與方法35 4.1 實驗基本架構與參數定義 35 4.1.1 實驗基本架構35 4.1.2 實驗參數定義35 4.2 TTIP介紹36 4.3 實驗設備36 4.3.1 燃燒器系統 36 4.3.2 氣體流量與燃料輸送系統37 4.3.3 其他設備37 4.4 實驗步驟38 4.4.1 實驗前準備 38 4.4.2 流量計與熱電偶之校正 39 4.4.3 實驗操作條件41 4.4.4 火焰之定量量測及定性觀察41 4.4.5 燃燒產物的收集與分析 42 第五章 DSSCs實驗研究與方法 45 5.1 材料準備45 5.2 實驗設備46 5.3 敏化太陽能電池各部之製備46 5.3.1 工作電極製備46 5.3.2 對電極製備47 5.3.3 敏化染料的配製48 5.3.4 電解液的配置48 5.4 DSSCs組裝與測試48 第六章 結果與討論 50 6.1 燃燒法粉末分析50 6.1.1 火焰的量測與觀察50 6.1.2 產物晶相分析結果51 6.1.3 產物粒徑之分析53 6.1.4 燃燒合成TiO2粉末於敏化太陽能電池之應用 54 6.2 改變DSSCs之變因討論55 6.2.1 薄膜厚度對DSSCs所產生的影響55 6.2.2 兩電極間距離對DSSCs之影響57 6.2.3 不同電解液對於DSSCs之影響57 第七章 結論與建議 60 7.1 結論 60 7.2 建議 61 參考文獻 63 附表72 附圖77 | |
dc.language.iso | zh-TW | |
dc.title | TiO2奈米顆粒應用於DSSCs之研究 | zh_TW |
dc.title | Experimental study on the dye-sensitized solar cells using TiO2 nanoparticles | en |
dc.type | Thesis | |
dc.date.schoolyear | 97-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 王興華,顏溪成 | |
dc.subject.keyword | 奈米,敏化太陽能電池,二氧化鈦,TTIP,燃燒合成, | zh_TW |
dc.subject.keyword | Nanoparticles,TiO2,Synthesis,TTIP,DSSC, | en |
dc.relation.page | 105 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2009-07-06 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
顯示於系所單位: | 機械工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-98-1.pdf 目前未授權公開取用 | 9.33 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。