請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42910完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 郭錦樺(Ching-Hua Kuo) | |
| dc.contributor.author | Wen-Chi Wu | en |
| dc.contributor.author | 吳紋綺 | zh_TW |
| dc.date.accessioned | 2021-06-15T01:28:29Z | - |
| dc.date.available | 2011-09-15 | |
| dc.date.copyright | 2009-09-15 | |
| dc.date.issued | 2009 | |
| dc.date.submitted | 2009-07-22 | |
| dc.identifier.citation | 第一部分
1.M. J. Gordin, X. H. Huang, S. L. Pentoney, Jr., R. N. Zare, Capillary electrophoresis, Science, 242, 224-228 (1988). 2.F. Tagliaro, G. Manetto, F. Crivellente, F. P. Smith, A brief introduction to capillary electrophoresis, Forensic Science International, 92, 75-88 (1998). 3.H. Engelhardt, W. Beck, J. Kohr, T. Schmitt, Capillary electrophoresis: methods and scope, Angew. Chem. Int. Ed. Engl., 32, 69-649 (1993). 4.A. Weston, P. R. Brown, P. Jandik, A. L. Heckenberg, W. R. Jones, Optimization of detection sensitivity in the analysis of inorganic cations by capillary ion electrophoresis using indirect photometric detection, J. Chromatogr., 608, 395-402 (1992). 5.D. R. Baker, Capillary electrophoresis, John Wiley & Sons, Inc., USA, p22-23 (1995). 6.H. A. Bardelmeijer, H. Lingeman, C. de Ruiter, W. J. M. Underberg, Derivatization in capillary electrophoresis, J. Chromatogr. A, 807, 3-26 (1998). 7.K. Swinney, D. J. Bornhop, Detection in capillary electrophoresis, Electrophoresis, 21, 1239-1250, (2002). 8.J. Y. Cai, J. Henion, Capillary electrophoresis-mass spectrometry, J. Chromatogr. A, 703, 667-692 (1995). 9.A.-C. Servais, J. Crommen, M. Fillet, Capillary electrophoresis-mass spectrometry, an attractive tool for drug bioanalysis and biomarker discovery, Electrophoresis, 27, 2616-2629 (2006). 10.C. Haber, I. Silverstri, S. Röösli, W. Simon, Potentiometric detector for capillary zone electrophoresis, Chimia, 45, 117-121 (1991). 11.R. A. Wallingford, A. G. Ewing, Capillary zone electrophoresis with electrochemical detection, Anal. Chem., 59, 1762-1766 (1987). 12.J. W. Jorgenson, K. de A. Lukacs, Zone electrophoresis in open-tubular glass capillaries, Anal. Chem., 53, 1298-1302 (1981). 13.E. Gassmann, J. E. Kuo, R. N. Zare, Electrokinetic separation of chiral compounds, Science, 230, 813-814 (1985). 14.T. Fukushima, N. Usui, T. Santa, K. Imai, Recent progress in derivatization methods for LC and CE analysis, J. Pharm. Biomed. Anal., 30, 1655-1687 (2003). 15.J. C. M. Waterval, H. Lingeman, A. Bult, W. J. M. Underberg, Derivatizatoin trends in capillary electrophoresis, Electrophoresis, 21, 4029-4045 (2000). 16.R. H. Zhu, W. Th. Kok, Post-column reaction system for fluorescence detection in capillary electrophoresis, J. Chromatogr. A, 716, 123-133 (1995). 17.W. J. M. Underberg, J. C. M. Waterval, Derivatizatoin trends in capillary electrophoresis: An update, Electrophoresis, 23, 3922-3933 (2002). 18.X. Y. Chen, B. Song, H. J. Jiang, K. Yu, D. F. Zhong, A liquid chromatography/tandem mass spectrometry method for the simultaneous quantification of isoniazid and ethambutol in human plasma, Rapid Commun. Mass Spectrom., 19, 2591-2596 (2005). 19.P. Chenevier, L. Massias, D. Gueylard, R. Farinotti, Determination of ethambutol in plasma by high-performance liquid chromatography after pre-column derivatization, J. Chromatogr. B, 708, 310-315 (1998). 20.S. Thee, A. Detjen, D. Quarcoo, U. Wahn, K. Magdorf, Ethambutol in paaediatric tuberculosis: aspects of ehtambutol serum concentration, efficacy and toxicity in children, Int. J. Tuberc. Lung Dis., 11 (9), 965-971 (2007). 21.J. B. Bass, Jr., L. S. Farer, P. C. Hopewell, R. O'Brien, R. F. Jacobs, F. Ruben, D.E. Snider. Jr., G. Thornton, Treatment of tuberculosis and tuberculosis infection in adults and children. American Thoracic Society and The Centers for Disease Control and Prevention, Am. J. Respir. Crit. Care Med., 149, 1359-1374 (1994). 22.C. A. Peloquin, A. E. Bulpitt, G. S. Jaresko, R. W. Jeliffe, J. M. Childs, D. E. Nix, Pharmacokinetics of ethambutol under fasting conditions, with food, and with antaxids, Antimicrob. Agents Chemother, 43, 568-572 (1999). 23.J. E. Leibold, The ocular toxicity of ethambutol and its relation to dose, Ann NY Acad. Sci., 135, 904-909 (1966). 24.S. H. Song, S. H. Jun, K. U. Park, Y. Yoon, J. H. Lee, J. Q. Kim, J. Song, Simultaneous determination of first-line anti-tuberculosis drugs and their major metabolic ratios by liquid chromatography/tandem mass spectrometry, Rapid Commun. Mass Spectrom., 21, 1331-1338 (2007). 25.B. M. Richard, J. E. Manno, B. R. Manno, Gas chromatographic determination of ethambutol, J. Chromatogr., 89, 80-83 (1974). 26.C. S. Lee, L. Z. Benet, Micro and macro GLC determination of ethambutol in biological fluids, J. Pharm. Sci., 67, 470-473 (1978). 27.C. S. Lee, L. Z. Benet, Gas-liquid chromatographic determination of ethambutol in plasma and urine of man and monkey, J. Chromatogr., 128, 188-192 (1976). 28.C. Lacroix, F. Cerutti, J. Nouveau, S. Menager, O. Lafont, Determination of ethambutol in plasma by liquid chromatography and ultraviolet spectrophotometric detection, J. Chromatogr., 415, 85-94 (1987). 29.Z. Jiang, H. Wang, D. C. Locke, Determination of ethambutol by ion-pair reversed phase liquid chromatography with UV detection, Analytica Chimica Acta, 456, 189-192 (2002). 30.M. Suzuki, T. Ono, S. Takitani, Determination of ethambutol in plasma by high-performance liquid chromatography with fluorescence detection, Analytical Sciences, 7, 949-950 (1991). 31.M. Breda, P. Marrari, E. Pianezzola, M. S. Benedetti, Determination of ethambutol in human plasma and urine by high-performance liquid chromatography with fluorescence detection, J. Chromatogr. A, 729, 301-307 (1996). 32.Y. Nakano, H. Nohta, H. Yoshida, K. Todoroki, T. Saita, H. Fujito, M. Mori, M. Yamaguchi, Liquid chromatographic determination of ethambutol in serum samples based on intramolecular excimer-forming fluorescence derivatization, Analytical Sciences, 20, 489-493 (2004). 33.J. E. Conte, Jr., E. Lin, Y. P. Zhao, E. Zurlinden, A high-pressure liquid chromatographic-tandem mass spectrometric method for the determination of ethambutol in human plasma, bronchoalveolar lavage fluid, and alveolar cells, Journal of Chromatographic Science, 40, 113-118 (2002). 34.L. Jia, J. E. Tomaszewski, P. E. Noker, G. S. Gorman, E. Glaze, M. Protopopova, Simultaneous estimation of pharmacokinetic properties in mice of three anti-tubercular ethambutol analogs obtained from combinatorial lead optimization, J. Pharm. Biomed. Anal., 37, 793-799 (2005). 35.M. Yan, T. Guo, H. T. Song, Q. C. Zhao, Y. Sui, Determination of ethambutol hydrochloride in the combination tablets by precolumn derivatization, Journal of Chromatographic Science, 45, 269-272 (2007). 36.R. Ragonese, M. Macka, J. Hughes, P. Petocz, The use of Box-Behnken experimental design in the optimization and robustness testing of a capillary electrophoresis method for the analysis of ethambutol hydrochloride in a pharmaceutical formulation, J. Pharm. Biomed. Anal., 27, 995-1007 (2002). 37.X. Lin, C. Zhu, A. Hao, Enantioseparation in capillary electrophoresis using 2-O-(2-hydroxybutyl)-β-CD as a chiral selector, Electrophoresis, 26, 3890-3896 (2005). 38.Y. C. Hsieh, C. W. Whang, Analysis of ethambutol and methoxyphenamine by capillary electrophoresis with electrochemiluminescence detection, J. Chromatogr. A, 1122, 279-282 (2006). 39.U. B. Soetebeer, M.-O. Schierenberg, J.-G. Möller, H. Schulz, G. Grünefeld, P. Andresen, G. Blaschke, G. Ahr, Capillary electrophoresis with laser-induced fluorescence in clinical drug development: Routine application and future aspects, J. Chromatogr. A, 895, 147-155 (2000). 40.S. McWhorter, S. A. Soper, Near-infrared laser-induced fluorescence detection in capillary electrophoresis, Electrophoresis, 21, 1267-1280 (2000). 41.X. L. Zhang, Q. Yang, B. H. Jiao, J. Dai, J. X. Zhang, W. Z. Ni, Sensitive determination of pheomelanin after 5-carboxyfluorescein succinimidyl ester precapillary derivatization and micellar electrokinetic capillary chromatography with laser-induced fluorescence detection, J. Chromatogr. B, 861, 136-139 (2008). 42.R. P. Haugland, Handbook of fluorescent probes and research chemicals, 6 th ed., Molecular Probes, Eugene, OR, p.20 (1996). 43.Y. F. Lin, Y. C. Wang, S. Y. Chang, Capillary electrophoresis of aminoglycosides with argon-ion laser-induced fluorescence detection, J. Chromatogr. A, 1188, 331-333 (2008). 44.A. Musenga, R. Mandrioli, I. Comin, E. Kenndler, M. A. Raggi, Determination of vigabatrin in human plasma by means of CE with LIF detection, Electrophoresis, 28, 3535-3541 (2007). 45.M. Molina, M. Silva, Analytical potential of fluorescein analogues for ultrasensitive determinations of phosphorus-containing amino acid herbicides by micellar electrokinetic chromatography with laser-induced fluorescence detection, Electrophoresis, 23, 1096-1103 (2002). 46.Y. S. Gu, C. W. Whang, Capillary electrophoresis of baclofen with argon-ion laser-induced fluorescence detection, J. Chromatogr. A, 972, 289-293 (2002). 47.A. Becker, E. Scheuch, U. Bode, U. Jaehde, Simultaneous analysis of sulfur-containing excitatory amino acids using micellar electrokinetic chromatography with diode array and laser-induced fluorescence detection, Electrophoresis, 23, 2457-2464 (2002). 48.S. Terabe, K. Otsuka, K. Ichikawa, A. Tsuchiya, T. Ando, Electrokinetic separations with micellar solutions and open-tubular capillaries, Anal. Chem., 56, 111-113 (1984). 49.H. McIlleron, P. Wash, A. Burger, J. Norman, P. I. Folb, P. Smith, Determinants of rifampin, isoniazid, pyrazinamide, and ethambutol pharmacokinetics in a cohort of tuberculosis patients, Antimicrob. Agents Chemother., 50, 1170-1177 (2006). 第二部分 1.J. H. Zhang, X. P. Wu, W. Zhang, G. N. Chen, A sweeping-micellar electrokinetic chromatography method for direct detection of some aromatic amines in water samples, Electrophoresis, 29, 796–802 (2008). 2.P. Britz-McKibbin, S. Terabe, On-line preconcentration for trace analysis of metabolites by capillary electrophoresis, Journal of Chromatography A, 1000, 917–934 (2003). 3.J. P. Quirino, A. Terabe, Exceeding 5000-fold concentration of dilute analytes in micellar electrokinetic chromatography, Science, 282, 465-468 (1998). 4.J. P. Quirino, J. -B. Kim, S. Terabe, Sweeping: concentration mechanism and applications to high-sensitivity analysis in capillary electrophoresis, J. Chromatogr. A, 965, 357-373 (2002). 5.J. P. Quirino, A. Terabe, Sweeping of analyte zones in electrokinetic chromatography, Anal. Chem., 71, 1638-1644 (1999). 6.J. -B. Kim, S. Terabe, On-line sample preconcentration techniques in micellar electrokinetic chromatography, J. Pharm. Biomed. Anal., 30, 1625-1643 (2003). 7.Y. X. Zhao, Y. Kong, B. Wang, Y. Y. Wu, H. Wu, On-line concentration and determination of all-trans- and 13-cis- retinoic acids in rabbit serum by application of sweeping technique in micellar electrokinetic chromatography, Journal of Chromatography A, 1146, 131–135 (2007). 8.D. M. Osbourn, D. J. Weiss, C. E. Lunte, On-line preconcentration methods for capillary electrophoresis, Electrophoresis, 21, 2768-2779 (2000). 9.A. T. Aranas, A. M. Guidote Jr., J. P. Quirino, Sweeping and new on-line sample preconcentration in capillary electrophoresis, Anal Bioanal Chem, 394, 175-185 (2009). 10.S.S. Chou, D. F. Hwang, H. F. Lee, High performance liquid chromatographic determination of cyromazine and its derivative melamine in poultry meats and eggs, Journal of Food and Drug Analysis, 11, 290-295 (2003). 11.R. Muñiz-Valencia, S. G. Ceballos-Magaña, D. Rosales-Martinez, R. Gonzalo- Lumbreras, A. Santos-Montes, A. Cubedo- Fernandez-Trapiella, R. C. Izquierdo-Hornillos, Method development and validation for melamine and its derivatives in rice concentrates by liquid chromatography. Application to animal feed samples, Anal. Bioanal. Chem., 392, 523-531 (2008). 12.R. L. M. Dobson, S. Motlagh, M. Quijano, R. T. Cambron, T. R. Baker, A. M. Pullen, B. T. Regg, A. S. Bigalow-Kern, T. Vennard, A. Fix, R. Reimschuessel, G. Overmann, Y. Shan, G. P. Daston, Identification and characterization of toxicity of contaminants in pet food leading to an outbreak of renal toxicity in cats and dogs, Toxicological Sciences, 106, 251-262 (2008). 13.N. Yan, L. Zhou, Z. F. Zhu, X. G. Chen, Determination of melamine in dairy products, fish feed, and fish by capillary zone electrophoresis with diode array detection, J. Agric. Food Chem., 57, 807-811 (2009). 14.D. N. Heller, C. B. Nochetto, Simultaneous determination and confirmation of melamine and cyanuric acid in animal feed by zwitterionic hydrophilic interaction chromatography and tandem mass spectrometry, Rapid Commun. Mass Spectrom., 22, 3624-3632 (2008). 15.W. C. Andersen, S. B. Turnipseed, C. M. Karbiwnyk, S. B. Clark. M. R. Madson, C. M. Gieseker, R. A. Miller, N. G. Rummel, R. Reimschuessel, Determination and confirmation of melamine residues in catfish, trout, tilapia, salmon, and shrimp by liquid chromatography with tandem mass spectrometry, J. Agric. Food Chem., 56, 4340-4347 (2008). 16.Interim safety and risk assessment of melamine and its analogues in food for human, http://www.cfsan.fda.gov/~dms/melamra3.html (2008). 17.Update interim safety and risk assessment of melamine and its analogues in food for humans, http://www.cfsan.fda.gov/~dms/melamra4.html (2008). 18.J. Litzau, G. Mercer, K. Mulligan, GC-MS screen for the presence of melamine, ammeline, ammelide and cyanuric acid (version 2.1), http://www.fda.gov/cvm/GCMSMelamine.htm (2007). 19.Y. Lu, Y. Shu, C. Zhao, Determination of melamine residue in foods using gas chromatography-tandem mass spectrometry, Se Pu, 26, 749-751 (2008). 20.S. Ehling, S. Tefera, I. P. Ho, High-performance liquid chromatographic method for the simultaneous detection of the adulteration of cereal flours with melamine and related triazine by-products ammeline, ammelide, and cyanuric acid, Food Additives & Contaminants, 24, 1319-1325 (2007). 21.R. A. Yokley, L. C. Mayer, R. Rezaaiyan, M. E. Manuli, M. W. Cheung, Analytical method for the determination of cyromazine and melamine residues in soil using LC-UV and GC-MSD, J. Agric. Food Chem., 48, 3352-3358 (2000). 22.M. Lin, L. He, J. Awika, L. Yang, D. R. Ledoux, H. Li, A. Mustapha, Detection of melamine in gluten, chicken feed, and processed foods using surface enhanced raman spectroscopy and HPLC, Journal of Food Science, 73, 129-134 (2008). 23.B. Kim, L. B. Perlins, R. J. Bushway, S. Nesbit, T. Fan, R. Sheridan, V. Greene, Determination of melamine in pet food by enzyme immunoassay, high-performance liquid chromatography with diode array detection, and ultra-performance liquid chromatography with tandem mass spectrometry, Journal of AOAC INTERNATIONAL, 91, 408-412 (2008). 24.M. S. Ali, S. Rafiuddin, M. Ghori, A. R. Khatri, Simultaneous determination of metformin hydrochloride, cyanoguanidine and melamine in tablets by mixed-mode HILIC, Chromatographia, 67, 517-525 (2008). 25.M. S. Filigenzi, B. Puschner, L. S. Aston, R. H. Poppenga, Diagnostic determination in kidney tissue by liquid chromatography/tandem mass spectrometry, J. Agric. Food Chem., 56, 7593-7599 (2008). 26.J. V. Sancho, M. Ibáñez, S. Grimalt, Ó. J. Pozo, F. Hernández, Residue determination of cyromazine and its metabolite melamine in chard samples by ion-pair liquid chromatography coupled to electrospray tandem mass spectrometry, Analytica Chimica Acta, 530, 237-243 (2005). 27.M. Smoker, A. J. Krynitsky, Interim method for determination of melamine and cyanuric acid residues in food using LC-MS/MS (version 1.0), http://www.cfsan.fda.gov/~frf/lib4422.html (2008). 28.Determination of melamine and cyanuric acid residues in infant formula using LC-MS/MS, http://www.cfsan.fda.gov/~frf/lib4421.html (2008). 29.J. A. Campbell, D. S. Wunschel, C. E. Petersen, Analysis of melamine, cyanuric acid, ammelide, and ammeline using matrix-assisted laser desorption ionization/time-of-flight mass spectrometry (MALDI/TOFMS), Analytical Letters, 40, 3107-3118 (2007). 30.J. Shia, D. Diehl, Protecting the food supply: rapid, specific analysis of melamine and cyanuric acid in infant formula by LC/MS/MS, Waters Application Note No. 720002865en (2008). 31.A rapid and sensitive method for the simultaneous determination of melamine and cyanuric acid in infant formulas, adult nutritional products, and protein powders, Waters Application Note No. 720002889 (2009). 32.Liu, K. Chao, M. S. Kim, D. Tuschel, O. Olkhovyk, R. J. Priore, Potential of Raman spectroscopy and imaging methods for rapid and routine screening of the presence of melamine in animal feed and foods, Applied Spectroscopy, 63, 477-480 (2009). 33.T. M. Vail, P. R. Jones, O. D. Sparkman, Rapid and unambiguous identification of melamine in contaminated pet food based on mass spectrometry with four degrees of confirmation, Journal of Analytical Toxicology, 31, 304-312 (2007). 34.H. A. Cook, C. W. Klampfl, W. Buchberger, Analysis of melamine resins by capillary zone electrophoresis with electrospray ionization-mass spectrometric detection, Electrophoresis, 26, 1576-1583 (2005). 35.I. L. Tsai, S. W. Sun, H. W. Liao, S. C. Lin, C. H. Kuo, Rapid analysis of melamine in infant formula by sweeping-micellar electrokinetic chromatography, J. Chromatogr. A (2009), doi:10.1016/j.chroma.2009.06.008. 36.M. A. Bezerra, R. E. Santelli, E. P. Oliveira, L. S. Villar, L. A. Escaleira, Response surface methodology (RSM) as a tool for optimization in analytical chemistry, Talanta, 76, 965-977 (2008). 37.H. Fabre, Robustness testing in liquid chromatography and capillary electrophoresis, J. Pharm. Biomed. Anal., 14, 1125-1132 (1996). 38.B. Dejaegher, Y. V. Heyden, Ruggedness and robustness testing, J. Chromatogr. A, 1158, 138-157 (2007). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42910 | - |
| dc.description.abstract | 本論文研究目的在建立具高靈敏度的毛細管電泳法以分析樣品中之微量成分。毛細管電泳具有高選擇性、高分離效率、分析時間短及所需樣品和溶劑量少等的優點,因此在近年被廣泛應用於各個領域之分析上。
本論文包含兩部分,第一部分為毛細管電泳連接雷射誘導激發螢光偵測器 (capillary electrophoresis-laser induced fluorescence)分析血漿中ethambutol的含量。先利用固相萃取方法 (solid phase extraction, SPE)移除血液樣品中的干擾物並濃縮分析物,再使用6-carboxyfluorescein succinimidyl ester (CFSE)與不具螢光性質的ethambutol進行管柱前衍生化。分析方法開發過程針對緩衝溶液酸鹼值、界面活性劑濃度、有機溶媒添加量、施加電壓及注射時間等參數進行探討,最適化條件為:毛細管內徑為75 μm,偵測長度為63 cm,所搭配之LIF激發波長和發射波長分別為488 nm和520 nm;緩衝液為50 mM 四硼酸鈉,10 mM SDS所組成,pH 9.0;施加電壓為15 kV;注射時間為8秒 (hydrodynamic mode, 50 mbar),ethambutol可於13.5分鐘內完成分析,此條件可有效地將ethambutol與血液中內生性物質分離。本分析方法的精密度於峰面積,在一日內重複性及異日間再現性之RSD值分別為2.97 %及6.09 %;準確度由添加0.5、2.5及7.5 μg/mL ethambutol之血液樣品進行測試,所獲得之回收百分率分別為110.74 ± 1.04 %、97.33 ± 1.61 %和102.73 ± 1.45 %;偵測極限 (S/N= 3)為0.055 μg/mL。本研究並將此最適化分析條件應用於分析肺結核病人血漿,結果證實所開發之方法可以有效的定量病患血中ethambutol之濃度。 第二部分則是開發毛細管電泳法結合掃集法線上濃縮技術,以定量不同食物基質中的三聚氰胺。首先透過陽離子交換固相萃取法,移除部份食物基質中的干擾物,再利用掃集法 (sweeping)提高檢測靈敏度。本研究使用中心混成設計法進行最適化分析條件找尋,所得之最適化條件為:緩衝液為45 mM H3PO4,175 mM SDS,15 % MeOH所組成,pH值為2.15;施加電壓為– 22 kV;注射時間為5分鐘 (hydrodynamic mode, 50 mbar);偵測波長為218 nm;溫度為25 ℃,最適化條件可於13分鐘內使三聚氰胺與食物基質中其他成分達基線分離,此條件於三聚氰胺標準品之偵測極限 (S/N= 3)為5 ng/mL。最後將確效之條件應用於多種食物樣品和實際含有三聚氰胺之樣本分析,準確度介於92.83 ± 3.32 - 108.29 ± 1.71%。本分析方法可提供一快速、準確且靈敏之三聚氰胺定量方法,且可廣泛應用於各種食物檢測,以確保食物之使用安全。 | zh_TW |
| dc.description.abstract | Due to its high selectivity, high resolution, short analytical time, and low sample and reagent consumption, capillary electrophoresis has become a useful tool in many analytical fields in recent years. This study aimed to establish high sensitive capillary electrophoresis methods to analyze the trace amounts of analytes.
The thesis is composed of two parts. In the first part, we used capillary electrophoretic – laser induced fluorescence (CE-LIF) detection for the determination of ethambutol in patient plasma. Solid-phase extraction with Oasis HLB cartridge was used to remove the interference in plasma samples and concentrate the analyte. Owing to lack of intrinsic fluorescence characteristic of ethambutol, pre-capillary derivatization with 6-carboxyfluorescein succinimidyl ester (CFSE) was required for LIF detection. The derivatized product was then analyzed by micellar electrokinetic chromatography (MEKC). By using 50 mM sodium tetraborate (pH 9.0) containing 10 mM SDS as background electrolyte (BGE), ethambutol could be baseline separated with endogenous plasma components within 13.5 min. The capillary inner diameter was 75 μm, detection length was 63 cm, and the LIF excitation and emission wavelength were 488 nm and 520 nm, respectively. The limit of detection (LOD) (S/N= 3) of ethambutol was 0.055 μg/mL. 2’,7’-dichlorofluorescein was used as internal standard for the quantitative analysis. The run-to-run repeatability (n = 3) and intermediate precision (n = 3) of peak area ratios were less than 2.97 % and 6.09 % relative standard deviation (RSD), respectively. The accuracy was tested by spiking 0.5, 2.5 and 7.5 μg/mL of ethambutol into blank human plasma, and the recoveries were 110.74 ± 1.04 %, 97.33 ± 1.61 % and 102.73 ± 1.45 %, respectively. The developed method has been applied to analyze several plasma samples of tuberculosis patients. The result shows that the developed CE-LIF method is sensitive, efficient and accurate for the determination of plasma ethambutol concentration in tuberculous patients. The second part of this thesis developed a new approach for the determination of melamine in dietary products by sweeping-MEKC. We used cation-exchange solid-phase extraction to clean-up the ingredients in dietary products, and applied sweeping-micellar electrokinetic chromatography (sweeping-MEKC) for melamine determination. In order to have the best resolution, sweeping efficiency and separation speed, we used central composite designs (CCD) to search for the optimum sweeping-MEKC conditions. The optimum conditions used 45 mM H3PO4 containing 175 mM SDS with the addition of 15 % MeOH as BGE (pH 2.15), and 65 mM H3PO4 as sample solution. The applied voltage was -22 kV and the injection time was 5 min (hydrodynamic mode, 50 mbar). Under optimum sweeping-MEKC conditions, melamine content could be determined within 13 minutes, and the limit of detection (S/N= 3) was 5 ng/mL. The developed approach was validated by spiking melamine in various dietary products including milk, gluten, chicken feed and cookies. Run-to-run repeatability (n= 3) and intermediate precision (n= 3) of peak area were less than 5.65 % RSD. The accuracy were between 92.83 ± 3.32 % - 108.29 ± 1.71%. The developed approach was applied to analyze melamine contaminated milk powder and baking mix provided by the Joint research centre of the European Commission. The result reveals that the present sweeping-MEKC approach is sensitive, efficient and accurate for the determination of melamine in various dietary products. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T01:28:29Z (GMT). No. of bitstreams: 1 ntu-98-R96423005-1.pdf: 1719289 bytes, checksum: 6f3d1c172a6b5a14a4d07fdbb3d7177b (MD5) Previous issue date: 2009 | en |
| dc.description.tableofcontents | 口試委員審定書.............................................i
誌謝......................................................ii 中文摘要.................................................iii 英文摘要...................................................v 目錄....................................................viii 圖目錄...................................................xii 表目錄....................................................xv 第壹部份 壹、序論...................................................1 1.1毛細管電泳之簡介........................................1 1.1.1毛細管電泳原理概述.................................1 1.1.2毛細管電泳之偵測方法...............................3 1.2螢光衍生化方法之簡介....................................5 貳、研究目的...............................................7 参、實驗部分...............................................8 3.1儀器....................................................8 3.2藥品及試劑..............................................9 3.3標準品溶液及螢光衍生化試劑製備..........................9 3.4檢品溶液前處理.........................................10 3.4.1血漿樣品..........................................10 3.4.2臨床檢品之分析....................................11 3.5衍生化反應.............................................11 3.6毛細管電泳系統.........................................11 3.7毛細管之處理...........................................12 3.8分析方法之確效.........................................13 3.8.1精密度 (precision)................................13 3.8.2線性 (linearity)..................................13 3.8.3靈敏度 (sensitivity)..............................13 3.8.4準確度 (accuracy).................................14 3.8.5選擇性 (selectivity)..............................14 肆、結果與討論............................................14 4.1螢光衍生化系統參數之探討及最適化衍生化條件之尋找.......14 4.1.1衍生化試劑之選擇..................................14 4.1.2衍生化溶液之pH值..................................15 4.1.3衍生化試劑濃度....................................15 4.1.4衍生化試劑與分析物之莫耳數濃度比..................16 4.1.5衍生化時間........................................16 4.2分析方法之發展.........................................16 4.2.1緩衝溶液之選擇....................................16 4.2.2電泳分離模式......................................17 4.2.3界面活性劑之選擇..................................17 4.3固相萃取方法之建立.....................................17 4.4分析方法參數之探討及最適化分離條件之尋找...............19 4.4.1緩衝溶液pH值......................................19 4.4.2界面活性劑濃度....................................19 4.4.3有機溶媒添加......................................19 4.4.4施加電壓..........................................20 4.4.5樣品注射時間......................................20 4.4.6最適化方離條件....................................20 4.5分析方法之確效.........................................21 4.5.1精密度 (precision)................................21 4.5.2線性 (linearity)..................................21 4.5.3靈敏度 (sensitivity)..............................21 4.5.4準確度 (accuracy).................................22 4.5.5選擇性 (selectivity)..............................22 4.6病人血液樣本中ethambutol含量之測定.....................22 伍、結論..................................................24 陸、參考文獻..............................................25 第貳部份 壹、序論..................................................48 1.1毛細管電泳線上濃縮.....................................48 1.1.1掃集法 (sweeping)基本原理.........................48 貳、研究目的..............................................49 参、研究方法與步驟 .......................................53 3.1最適化分析條件之找尋...................................53 3.1.1回應表面法 (Response surface methodology) 設計....53 3.1.2選擇實驗因子及實驗範圍............................53 3.1.3因子影響效應之分析................................54 3.2分析方法之確效.........................................54 3.2.1精密度 (precision)................................55 3.2.2線性 (linearity)..................................55 3.2.3準確度 (accuracy).................................56 3.3分析方法之應用.........................................56 肆、實驗部分..............................................56 4.1儀器...................................................56 4.2藥品及試劑.............................................57 4.3標準品溶液製備.........................................57 4.4檢品溶液製備...........................................57 4.5毛細管電泳系統.........................................58 4.6毛細管之處理...........................................59 伍、結果與討論............................................60 5.1分析條件之最適化.......................................60 5.2最適化分析條件之找尋...................................61 5.3分析方法之確效.........................................63 5.3.1精密度 (precision)................................63 5.3.2線性 (linearity)..................................64 5.3.3準確度 (accuracy).................................64 5.4分析方法之應用.........................................64 陸、結論..................................................67 柒、參考文獻..............................................68 | |
| dc.language.iso | zh-TW | |
| dc.subject | 實驗設計 | zh_TW |
| dc.subject | 毛細管電泳雷射誘導激發螢光偵測法 | zh_TW |
| dc.subject | 三聚氰胺 | zh_TW |
| dc.subject | 掃集法 | zh_TW |
| dc.subject | Ethambutol | zh_TW |
| dc.subject | dietary products | en |
| dc.subject | Ethambutol | en |
| dc.subject | Capillary electrophoretic-laser induced fluorescence (CE-LIF) | en |
| dc.subject | Melamine | en |
| dc.subject | Sweeping-MEKC | en |
| dc.subject | Experimental design | en |
| dc.title | Ethambutol和Melamine的毛細管電泳分析方法開發 | zh_TW |
| dc.title | Method Development for the Analysis of Ethambutol and Melamine by Capillary Electrophoresis | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 97-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 吳秀梅(Shou-Mei Wu),張煥宗(Huan-Tsung Chang) | |
| dc.subject.keyword | Ethambutol,毛細管電泳雷射誘導激發螢光偵測法,三聚氰胺,掃集法,實驗設計, | zh_TW |
| dc.subject.keyword | Ethambutol,Capillary electrophoretic-laser induced fluorescence (CE-LIF),Melamine,Sweeping-MEKC,Experimental design,dietary products, | en |
| dc.relation.page | 92 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2009-07-22 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 藥學研究所 | zh_TW |
| 顯示於系所單位: | 藥學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-98-1.pdf 未授權公開取用 | 1.68 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
