請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42907完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林文澧(Win-Li Lin) | |
| dc.contributor.author | Chiang-Tien Lin | en |
| dc.contributor.author | 林江典 | zh_TW |
| dc.date.accessioned | 2021-06-15T01:28:22Z | - |
| dc.date.available | 2011-07-27 | |
| dc.date.copyright | 2009-07-27 | |
| dc.date.issued | 2009 | |
| dc.date.submitted | 2009-07-22 | |
| dc.identifier.citation | 1.S. Korourian, S. Klimberg, R. Henry-Tillman, D. Lindquist, M. Jones, D.C. Eng, J.C. Helsel, H. Mumtaz, K. Westbrook, and S. Harms, “Assessment of proliferating cell nuclear antigen activity using digital image analysis in breast carcinoma following magnetic resonance-guided interstitial laser photocoagulation,” Breast J, vol. 9, no. 5, 2003, pp. 409-413.
2.C.J. Diederich, “Thermal ablation and high-temperature thermal therapy: overview of technology and clinical implementation,” Int J Hyperthermia, vol. 21, no. 8, 2005, pp. 745-753. 3.S.A. Sapareto, and W.C. Dewey, “Thermal dose determination in cancer therapy,” Int J Radiat Oncol Biol Phys, vol. 10, no. 6, 1984, pp. 787-800. 4.K. Hynynen, O. Pomeroy, D.N. Smith, P.E. Huber, N.J. McDannold, J. Kettenbach, J. Baum, S. Singer, and F.A. Jolesz, “MR imaging-guided focused ultrasound surgery of fibroadenomas in the breast: a feasibility study,” Radiology, vol. 219, no. 1, 2001, pp. 176-185. 5.M. Malinen, T. Huttunen, K. Hynynen, and J.P. Kaipio, “Simulation study for thermal dose optimization in ultrasound surgery of the breast,” Med Phys, vol. 31, no. 5, 2004, pp. 1296-1307. 6.M. Malinen, T. Huttunen, J.P. Kaipio, and K. Hynynen, “Scanning path optimization for ultrasound surgery,” Phys Med Biol, vol. 50, no. 15, 2005, pp. 3473-3490. 7.D. Gianfelice, A. Khiat, M. Amara, A. Belblidia, and Y. Boulanger, “MR imaging-guided focused US ablation of breast cancer: histopathologic assessment of effectiveness-- initial experience,” Radiology, vol. 227, no. 3, 2003, pp. 849-855. 8.F. Wu, Z.B. Wang, Y.D. Cao, W.Z. Chen, J. Bai, J.Z. Zou, and H. Zhu, “A randomised clinical trial of high-intensity focused ultrasound ablation for the treatment of patients with localised breast cancer,” Br J Cancer, vol. 89, no. 12, 2003, pp. 2227-2233. 9.C.S. Ho, K.C. Ju, T.Y. Cheng, Y.Y. Chen, and W.L. Lin, “Thermal therapy for breast tumors by using a cylindrical ultrasound phased array with multifocus pattern scanning: a preliminary numerical study,” Phys Med Biol, vol. 52, no. 15, 2007, pp. 4585-4599. 10.D. Gianfelice, A. Khiat, M. Amara, A. Belblidia, and Y. Boulanger, “MR imaging-guided focused ultrasound surgery of breast cancer: correlation of dynamic contrast-enhanced MRI with histopathologic findings,” Breast Cancer Res Treat, vol. 82, no. 2, 2003, pp. 93-101. 11.S.A. Goss, R.L. Johnston, and F. Dunn, “Comprehensive compilation of empirical ultrasonic properties of mammalian tissues,” J Acoust Soc Am, vol. 64, no. 2, 1978, pp. 423-457. 12.D. Gianfelice, A. Khiat, Y. Boulanger, M. Amara, and A. Belblidia, “Feasibility of magnetic resonance imaging-guided focused ultrasound surgery as an adjunct to tamoxifen therapy in high-risk surgical patients with breast carcinoma,” J Vasc Interv Radiol, vol. 14, no. 10, 2003, pp. 1275-1282. 13.C.S. Ho, K.C. Ju, Y.Y. Chen, and W.L. Lin, “Investigation of a cylindrical ultrasound phased-array with multiple-focus scanning for breast tumor thermal therapy,” Conf Proc IEEE Eng Med Biol Soc, vol. 1, 2006, pp. 6376-6379. 14.H.H. Pennes, “Analysis of tissue and arterial blood temperatures in the resting human forearm,” J Appl Physiol, vol. 1, no. 2, 1948, pp. 93-122. 15.C.A. Damianou, K. Hynynen, and F. Xiaobing, “Evaluation of accuracy of a theoretical model for predicting the necrosed tissue volume during focused ultrasound surgery,” Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on, vol. 42, no. 2, 1995, pp. 182-187. 16.M.G. Skinner, M.N. Iizuka, M.C. Kolios, and M.D. Sherar, “A theoretical comparison of energy sources--microwave, ultrasound and laser--for interstitial thermal therapy,” Phys Med Biol, vol. 43, no. 12, 1998, pp. 3535-3547. 17.X. Fan, and K. Hynynen, “The effects of curved tissue layers on the power deposition patterns of therapeutic ultrasound beams,” Med Phys, vol. 21, no. 1, 1994, pp. 25-34. 18.C.A. Cain, and S. Umemura, “Concentric-Ring and Sector-Vortex Phased-Array Applicators for Ultrasound Hyperthermia,” Microwave Theory and Techniques, IEEE Transactions on, vol. 34, no. 5, 1986, pp. 542-551. 19.K. Sasaki, T. Azuma, K.I. Kawabata, M. Shimoda, E.I. Kokue, and S.I. Umemura, “Effect of split-focus approach on producing larger coagulation in swine liver,” Ultrasound Med Biol, vol. 29, no. 4, 2003, pp. 591-599. 20.D.R. Daum, and K. Hynynen, “Thermal dose optimization via temporal switching in ultrasound surgery,” IEEE Trans Ultrason Ferroelectr Freq Control, vol. 45, no. 1, 1998, pp. 208-215. 21.F.A. Jolesz, and K. Hynynen, “Magnetic resonance image-guided focused ultrasound surgery,” Cancer J, vol. 8 Suppl 1, 2002, pp. S100-112. 22.H. Furusawa, K. Namba, H. Nakahara, C. Tanaka, Y. Yasuda, E. Hirabara, M. Imahariyama, and K. Komaki, “The evolving non-surgical ablation of breast cancer: MR guided focused ultrasound (MRgFUS),” Breast Cancer, vol. 14, no. 1, 2007, pp. 55-58. 23.F. Wu, Z.B. Wang, H. Zhu, W.Z. Chen, J.Z. Zou, J. Bai, K.Q. Li, C.B. Jin, F.L. Xie, and H.B. Su, “Extracorporeal high intensity focused ultrasound treatment for patients with breast cancer,” Breast Cancer Res Treat, vol. 92, no. 1, 2005, pp. 51-60. 24.F. Wu, Z.B. Wang, Y.D. Cao, W.Z. Chen, J.Z. Zou, J. Bai, H. Zhu, K.Q. Li, C.B. Jin, F.L. Xie, H.B. Su, and G.W. Gao, “Changes in biologic characteristics of breast cancer treated with high-intensity focused ultrasound,” Ultrasound Med Biol, vol. 29, no. 10, 2003, pp. 1487-1492. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42907 | - |
| dc.description.abstract | 此研究的目的為探討環形相位陣列超音波換能器搭配多聚焦點掃描之加熱策略應用於乳癌熱手術之可行性。為了避免在治療時傷害過多的正常組織,一個1.2cm*1.2cm*1cm的目標區域(PTV)被選定為單一治療單元。若是目標區域大於單一治療單元的大小,則會將目標區域切割為數個子治療單元,並依序分別進行加熱,並且在各個子治療單元之間給予冷卻時間,以降低對周圍正常組織之傷害。同時亦探討血液灌流率以及腫瘤在不同位置下所造成之影響。除此之外,也針對一個淺層乳房腫瘤在不同周圍冷卻水的狀態下之治療情形進行探討。模擬結果顯示,較高的血液灌流率會減少整體的治療時間,目標區域在偏離乳房中心位置後,熱劑量輪廓有微量的變形。基於環形相位陣列超音波換能器擁有較大的聲窗口搭配上周圍冷卻水所帶來的冷卻效應,由模擬結果可以得知,以本系統進行淺層乳房腫瘤治療時,可以在目標區域產生一個均勻治療單元,且有效減少皮膚上的溫升。本研究中所提出的環形相位陣列超音波換能器系統以及加熱策略為乳房腫瘤之熱手術提供了一個有效的治療方法,並且可以大幅降低肋骨以及皮膚發生過熱之情況。 | zh_TW |
| dc.description.abstract | This study investigated the feasibility of using a 0.5 MHz cylindrical phased-array ultrasound transducer with multifocus patterns scanning to produce uniform heating for breast tumor thermal therapy. The breast was submerged in water and surrounded by the cylindrical phased-array ultrasound transducer. Multifocus patterns are electrically scanned by the phased-array to enlarge the treatment lesion in a single heating. To prevent overheating normal tissues, a large planning target volume (PTV) would be divided into several subunits and sequentially treated with a cooling phase between two successive heatings of the subunit. Heating results for different blood perfusion rates and locations of the PTV have been studied. Furthermore, a superficial breast tumor with different water temperatures was also studied. Simulation results show that perfusion rate reduces the treatment time significantly and the location of PTV affects the thermal lesion shape slightly. Due to large acoustic window and the effect of surrounding cooling water, this system was able to achieve a uniform heating without overheating the skin within a short treatment time. This study demonstrated that the proposed cylindrical phased-array ultrasound transducer can provide effective heating for breast tumor thermal therapy without overheating the skin and ribs within a reasonable treatment time. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T01:28:22Z (GMT). No. of bitstreams: 1 ntu-98-R96548042-1.pdf: 6154920 bytes, checksum: c5f8825e3c8eaf01533197d5fb9bce12 (MD5) Previous issue date: 2009 | en |
| dc.description.tableofcontents | 誌謝 Ⅰ
摘要 Ⅱ Abstract Ⅲ 目錄 Ⅳ 圖目錄 Ⅵ 表目錄 Ⅷ 第一章 序論 1 1.1 乳癌 1 1.2 超音波熱治療的歷史回顧 2 1.3 超音波熱治療應用於乳癌 3 1.4 研究動機與目的 5 第二章 理論分析與模擬方法 7 2.1 序論 7 2.2 聲波物理特性 7 2.3 組織聲學特性 8 2.4 雷利-薩瑪菲爾德繞射積分式 9 2.5 超音波能量在組織中的吸收 11 2.6 溫度場與熱劑量場之計算 12 2.7 行經多層介質之壓力場模擬 14 2.9 針對乳房之壓力場模擬 17 第三章 系統架構與加熱策略 18 3.1 環形相位陣列超音波換能器架構 18 3.2 單次照射熱劑量最佳化 18 3.3 加熱策略原則 21 第四章 模擬結果 23 4.1 各模式聚焦型態之模擬 23 4.2 驅動參數 27 4.3 單一治療單元 – 不同血液灌流率之影響 31 4.4 單一治療單元 – 偏離乳房中心軸3公分加熱結果 35 4.5 單一治療單元 – 乳房側緣淺層腫瘤之治療結果 37 4.6 單一治療單元 – 乳房下緣淺層腫瘤之治療結果 43 4.7 乳房中心位置之大面積治療結果 45 第五章 討論 48 5.1 中心與偏心位置之比較 48 5.2 冷卻水對淺層腫瘤的影響 49 5.3 大面積的治療規化 49 第六章 結論與未來展望 50 參考文獻 52 附錄 Quasi-Newton Method 55 | |
| dc.language.iso | zh-TW | |
| dc.subject | 環形相位陣列超音波換能器 | zh_TW |
| dc.subject | 乳房腫瘤 | zh_TW |
| dc.subject | 多聚焦點 | zh_TW |
| dc.subject | 目標區域。 | zh_TW |
| dc.subject | cylindrical phased-array ultrasound transducer | en |
| dc.subject | planning target volume | en |
| dc.subject | breast tumor | en |
| dc.subject | multifocus patterns | en |
| dc.title | 環形相位陣列式超音波結合多聚焦型態於乳房腫瘤熱手術之研究 | zh_TW |
| dc.title | Cylindrical Phased-array Ultrasound Transducer with Multifocal Patterns for Breast Tumor Thermal Therapy | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 97-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 陳永耀(Yung-Yaw chen) | |
| dc.contributor.oralexamcommittee | 劉浩澧(Hao-Li Liu),江惠華(Hui-Hua Chiang),陳景欣(Ying-Hsin Chen) | |
| dc.subject.keyword | 環形相位陣列超音波換能器,多聚焦點,乳房腫瘤,目標區域。, | zh_TW |
| dc.subject.keyword | cylindrical phased-array ultrasound transducer,multifocus patterns,breast tumor,planning target volume, | en |
| dc.relation.page | 56 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2009-07-22 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-98-1.pdf 未授權公開取用 | 6.01 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
