Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42491
Title: 以評價為基礎之協同過濾
Rate-Based Collaborative Filtering
Authors: Yao-Chuan Wu
吳曜撰
Advisor: 鄭卜壬(Pu-Jen Cheng)
Keyword: 評價,協同過濾,推薦系統,模型,
ratings,collaborative filtering,recommender system,model,
Publication Year : 2009
Degree: 碩士
Abstract: 以商品為基礎的協同過濾系統是一種有名且效能傑出的協同過濾系統。但以商品為基礎的協同過濾系統在遇到打愈多種不同分數的使用者的情況下效能會愈差;在遇到訓練資料不足的情況下效能也會愈差。為了解決此問題,我們提出了一個以評價為基礎的新方法。在此方法的第一步中,對於每一個使用者,將被評價為相同分數的商品群聚在一起。接著,對於每一種評價都為其建立一個預測模型。最後,我們計算出每一個模型之機率期望值,並且藉此來預測評價。藉由此種以評價為基礎的方法,預測之評價是利用每一個評價之模型產生,而非單純使用要被預測商品之相似商品來預測。我們的此種方法在MovieLens的一百萬筆評價資料集中表現得非常好。實驗結果也呈現出我們的方法比傳統的以商品為基礎的協同過濾的方法好,且有達到統計之顯著性。
Item-based collaborative filtering (CF) recommender system is one of famous and well-performed collaborative filtering recommender system. Item-based CF suffers from the problem of various ratings, while users give more different ratings. It also suffers from the problem of insufficient training data. In order to deal with these problems, we propose new methods called rate-based. In the first step, for each user, cluster items with the same rating. Then, build a model for each rating. Finally, make predictions of ratings by calculating the expectation value of models. Through our rate-based methods, predictions are made by utilizing the models of each rating rather than the neighbors of items which are going to be predicted. Our rate-based methods perform great on the million dataset of MovieLens. The experiment results show that our methods outperform the conventional item-based CF with statistically significant.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42491
Fulltext Rights: 有償授權
Appears in Collections:資訊工程學系

Files in This Item:
File SizeFormat 
ntu-98-1.pdf
  Restricted Access
2.72 MBAdobe PDF
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved