請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42210
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 周正俊 | |
dc.contributor.author | Yung-Hsin Huang | en |
dc.contributor.author | 黃詠欣 | zh_TW |
dc.date.accessioned | 2021-06-15T00:53:00Z | - |
dc.date.available | 2010-09-02 | |
dc.date.copyright | 2008-09-02 | |
dc.date.issued | 2008 | |
dc.date.submitted | 2008-08-08 | |
dc.identifier.citation | 太田輝夫。乳腐(I)。日本醬協 1965。60: 32。
林良平、陳勝和、曾憲財。1982。豆腐乳製造過程中黴菌之生長,化學成份及細微構造之關係。臺大農學院研究報告 22: 76。 劉伯文、陳勝和。1965。黴菌Aspergillus sojae所分泌蛋白質水解酵素之分離純化及其性質之研究。中國農化會誌 1: 52。 劉毓秀、周正俊。1992。利用Actinomucor菌株釀造豆腐乳時黴胚酵素活性與熟成浸漬液中一些成分之變化。食品科學 19: 57-67。 劉毓秀、周正俊。1994。熟成期間豆腐乳各類蛋白質與水溶性胜肽之含量及呈味寡胜肽之胺基酸組成。中國農業化學會誌 32: 276-283. 張淑美。2007。紅麴蛋製作過程理化學之變化。國立台灣大學動物科學技術學研究所碩士學位論文。台北。 Adlercreutz, H. Phyto-oestrogens and cancer. Lancet Oncol. 2002, 3, 364–373. Anderson, J. W.; Johnstone, B. M.; Cook-Newell, M. E. Meta-analysis of the effects of soy protein intake on serum lipids. N. Engl. J. Med. 1995, 333, 276-282. Chen, H. M.; Muiamoto, K.; Yamauchi, F. Structural analysis of antioxidative peptides from β-conglycinin. J. Agric. Food Chem. 1995, 43, 574-578. Chen, T. S. Past, present and future of Chinese fermented food products. Food Rev. Int. 1989, 5, 177–208. Chen, Y. C.; Sugiyama, Y.; Abe, N.; Kuruto-Niwa, R.; Nozawa, R.; Hirota, A. DPPH radical-scavenging compounds from dou-chi, a soybean fermented food. Biosci. Biotechnol. Biochem. 2005, 69, 999-1006. Choi, H. K.; Lim, Y. S.; Kim, Y. S.; Park, S. Y.; Lee, C. H.; Hwang, K. W.; Kwon, D. Y. Free-radical-scavenging and tyrosinase-inhibition activities of cheonggukjang samples fermented for various times. Food Chem. 2008, 106, 564-568. Chou, C. C.; Ho, F. M.; Tsai, C. S. Effects of temperature and relative humidity on the growth of and enzyme production by Actinomucor taiwanensis during sufu pehtze preparation. Appl. Environ. Microbiol. 1988, 54, 688-692. Chou, S. T.; Chang, C. T.; Chao, W. W.; Chung, Y.C. Evaluation of antioxidative and mutagenic properties of 50% ethanolic extract from red beans fermented by Aspergillus oryzae. J. Food Prot. 2002, 65, 1463-1469. Coward, L.; Barnes, N. C.; Setchell, K. D. R.; Barnes, S. Genistein, daidzein, and their β-glycoside conjugates: antitumor isoflavones in soybean foods from American and Asian diets. J. Agric. Food Chem. 1993, 41, 1961-1967. Dinis, T. C. P.; Madeira, V. M. C.; Almeida, L. M. Action of phenolic derivatives (acetaminophen, salicylate, and 5-aminosalicylate) as inhibitors of membrane lipid peroxidation and as peroxyl radical scavengers. Arch. Biochem. Biophys. 1994, 315, 161-169. Duncan, A. M.; Phipps, W. R.; Kurzer, M. S. Phyto-oestrogens. Best Pract. Res. Clin. Endocrinol. Metab. 2003, 17, 253-271. Esaki, H.; Onozaki, H.; Kawakishi, S.; Osawa, T. Antioxidant activity and isolation from soybeans fermented with Aspergillus spp. J. Agric. Food Chem. 1997, 45, 2020-2024. Esaki, H.; Onozaki, H.; Kawakishi, S.; Osawa, T. New antioxidant isolated from tempeh. J. Agric. Food Chem. 1996, 44, 696-700. Esaki, H.; Onozaki, H.; Morimitsu, Y.; Kawakishi, S.; Osawa, T. Potent antioxidative isoflavones isolated from soybean fermented with Aspergillus saitoi. Biosci. Biotechnol. Biochem. 1998, 62, 740-746. Esaki, H.; Onozaki, H.; Osawa, T. Antioxidative activity of fermented soybean products. In Food Phytochemicals for Cancer Prevention I, Fruits and Vegetables; Huang, M. T., Ed.; American Chemical Society: Washington, D. C., 1994; pp 353-360. Esaki, H.; Watanabe, R.; Onozaki, H.; Kawakishi, S.; Osawa, T. Formation mechanism for potent antioxidative o-dihydroxyisoflavones in soybeans fermented with Aspergillus saitoi. Biosci. Biotechnol. Biochem. 1999, 63, 851-858. Farmakalidis, E.; Murphy, P. Isolation of 6’-o-acetyldaidzin from toasted defatted soyflakes. J. Agric. Food Chem. 1985, 33, 385–389. Franke, A.; Custer, L.; Cerna, C.; Narala, K. Rapid HPLC analysis of dietary phytoestrogens from legumes and from human urine. Proc. Soc. Exp. Biol. Med. 1995, 208, 18–26. Franzke, C.; Iwanisky, H. Antioxidant capacity of melanoidin. Dtsch. Lebensm. Rundsch. 1954, 50, 251-254. Fred, B. Soya isoflavone: A new and promising ingredient for the health foods sector. Food Res. Int. 2002, 35, 187-193. Gordon, M. H. The mechanism of antioxidant action into vitro. Chapter 1. In Food Antioxdant; Hudson, B. J. F., Eds.; Elsevier Applied Science: London, U. K. and New York, U. S. A., 1990; pp1-18. Ha, Y.; Morr, C.; Seo, A. Isoflavone aglycones and volatile organic compounds in soybeans: Effects of soaking treatment. J. Food Sci. 1992, 57, 414-418. Han, B. Z.; Ma, Y.; Rombouts, F. M.; Nout, M. J. R. Effects of temperature and relative humidity on growth and enzyme production by Actinomucor elegans and Rhizopus oligosporus during sufu pehtze preparation. Food Chem. 2003, 81, 27-34. Han, B. Z.; Rombouts, F. M.; Nout, M. J. R. A Chinese fermented soybean food. Int. J. Food Microbiol. 2001, 65, 1-10. Hesseltine, C. W.; Wang, H. L.Traditional fermented foods. Biotechnol. Bioeng. 1967, 9, 275-288. Hirota, A.; Taki, S.; Kawaii, S.; Yano, M.; Abe, N. 1,1-Diphenyl-2-picrylhydrazyl redical-scavenging compounds from soybean miso and antiproliferative activity of isoflavone from soybean miso toward the cancer cell. Biosci. Biotechnol. Biochem. 2000, 64, 1038-1040. Hubert, J.; Berger, M.; Nepveu, F.; Paul, F.; Dayde, J. Effects of fermentation on the phytochemical composition and antioxidant properties of soy germ. Food Chem. 2008, 109, 709-721. Hwan, C. H.; Chou, C. C. Volatile components of the Chinese fermented soya bean curd as affected by the addition of ethanol in ageing solution. J. Sci. Food Agric. 1999, 79, 243-248. Iwai, K.; Nakaya, N.; Kawasaki, Y.; Matsue, H. Antioxidative functions of natto, a kind of fermented soybeans: Effect on LDL oxidation and lipid metabolism in cholesterol-fed rats. J. Agric. Food Chem. 2002, 50, 3597-3601. Izumi, T.; Piskula, M. K.; Osawa, S.; Tobe, K.; Saito, M.; Kataoka, S.; Kikuchi, M. Soy isoflavone aglycone are absorbed faster and in higher amounts than their glucosides in human. J. Nutr. 2000, 130, 1695-1699. Jong, S. C.; Yuan, G. F. Actinomucor taiwanensis sp. nov, for manufacture of fermented soybean food. Mycotaxon 1985, 23, 261-264. Kao, T. H.; Chen, B. H. Functional components in soybean cake and their effects on antioxidant activity. J. Agric. Food Chem. 2006, 54, 7544-7555. Kennedy, A. R. The evidence for soybean products as cancer preventive agents. J. Nutr. 1995, 125, 733-743. de Kleijn, M. J.; van der Schouw, Y. T.; Wilson, P. W. Dietary intake of phytoestrogens is associated with a favorable metabolic cardiovascular risk profile in post-menopausal U.S. women: the Framingham study. J. Nutr. 2002, 132, 276–282. Koseki, T.; Ito, Y.; Ito, K.; Iwano, K.; Tadenuma, M. Phenolic compounds found in awamori. J. Brew. Soc. Jpn. 1994, 89, 408-411. Kusznierewicz, B.; Smiechowska, A.; Bartoszek, A.; Namiesnik, J. The effect of heating and fermenting on antioxidant properties of white cabbage. Food Chem. 2008, 108, 853-861. Kwak, C. H.; Lee, M. S.; Park, S. C. Higher antioxidant properties of chungkookjang, a fermented soybean paste, may be due to invreased aglycone and malonyglycoside isoflavone during fermentation. Nutr. Res. 2007, 27, 719–727. Lee, I. H.; Chou, C. C. Distribution profiles of isoflavone isomers in black bean kojis prepared with various filamentous fungi. J. Agric. Food Chem. 2006, 54, 1309-1314. Lee, I. H.; Hung, Y. H.; Chou, C. C. Solid-state fermentation with fungi to enhance the antioxidative activity, total phenolic and anthocyanin contents of black bean. Int. J. Food Microbial. 2008, 121, 150-156. Lin, C. H.; Wei, Y. T.; Yu, R. C.; Chou, C. C. Cultivation temperature and length affect the antioxidant activity and total phenolic content of soybean koji prepared with Aspergillus awamori. J. Food Drug Anal. 2006, 14, 74-79. Li, Y. J. Sufu–a health soybean food. J. China Brew. Ind. 1997, 4, 1–4 (in Chinese). Lu, M. P.; Wang, R.; Song, X. Y.; Chibbar, R.; Wang, X.; Wu, L.; Meng, Q. H. Dietary soy isoflavones increase insulin secretion and prevent the development of diabetic cataracts in streptozotocin-induced diabetic rats. Nutr. Res. 2008, 28, 464–471. Mastrocola, D.; Munari, M. Progress of the maillard reaction and antioxidant action of maillard reaction products in preheat model systems during storage. J. Agric. Food Chem. 2000, 48, 3555-3559. Matsuura, M; Obata, A. β-glucosidase from soybeans hydrolyze daidzin and genistin. J. Food Sci. 1993, 58, 144-147. Messina, M.; Barnes, S. The role of soy products in reducing cancer risk. J. Natl. Cancer Inst. 1991, 83, 541-546. Moktan, B.; Saha, J.; Sarkar, P. K. Antioxidant activities of soybean as affected by Bacillis-fermented to kinema. Food Res. Int. 2008, 41, 586-593. Murakami, H. Antioxidative stability of tempeh and liberation of isoflavones fermentation. Agric. Boil. Chem. 1984, 48, 2971-2975. Murphy, P. A.; Song, T.; Buserman, G.; Barua, K.; Beecher, G. R.; Trainer, D., Holden, J. Isoflavone in retail and institutional soy foods. J. Agric. Food Chem. 1999, 47, 2697-2704. Nout, M. J. R.; Aidoo, K. E. Asian fungal fermented food. In The Mycota Volume X - Industrial Applications; Osiewacz, H. D., Ed.; Springer: New York, USA, 2000; pp 23-48. Nagata, C.; Takatsuka, N.; Kurisu, Y.; Shimizu, H. Decreased serum total cholesterol concentration is associated with high intake of soy products in Japanese men and women. J. Nutr. 1998, 128, 209–213. Nguyenle, T.; Wang, E.; Cheung, A. P. An investigation on the extraction and concentration of isoflavones in soy-based products. J. Pharm. Biomed. Anal. 1995, 14, 221-232. Okubo, K.; Kobayzshi, Y.; Takahashi, K. Improvement of soymilk and tofu process on the behavior of undesirable taste component such as glycosides. Up to Date Food Processing. 1983, 18, 16–22. Oyaizu, M. Antioxidative activities of browning products of glucosamine fractionated by organic solvent and thin-layer chromatography. Nippon Shokuhin Kogyo Gakkaishi. 1988, 35, 771-775. Parkin, D. M. Cancers of the breast, endometrium and ovary: geographic correlations. Eur. J. Cancer Clin. Oncol. 1989, 25, 1917–1925. Peralta, E. M.; Hatate, H.; Kawabe D.; Kuwahara, R.; Wakamatsu, S.; Yuki, T.; Murata, H. Improving antioxidant activity and nutritional components of Philippine salt-fermented shrimp paste through prolonged fermentation. Food Chem. 2008, 111, 72–77. Piskula, M. K.; Yamakoshi, J.; Iwai, Y. Daidzein and genistein but not their glucosides are absorbed from rat stomach. FEBS Lett. 1999, 447, 287–291. Ren, H.; Liu, H.; Endo, H.; Takagi, Y.; Hayashi, T. Anti-mutagenic and anti-oxidative activities found in Chinese traditional soybean fermented products furu. Food Chem. 2006, 95, 71-76. Riedl, K. M.; Zhang, Y. C.; Schwartz, S. J.; Vodovotz, Y. Optomizing dough proofing conditions to enhance isoflavone aglycones in soy bread. J. Agric. Food Chem. 2005, 53, 8253-8258. Robbins, R. Medical and nutritional aspects of citrus bioflavonoids. In Citrus Nutrition Quality; Nagy, S.; Attaway, J., Eds.; American Chemical Society: Washington, D. C., 1980; pp 43–59. Romero, D. R.; Dovel, M. M.; Sturla, M. A.; Judis, M. A. Antioxidant properties of polyphenol-containing extract from soybean fermented with sacccharomyces cerevisiae. Eur. J. Lipid Sci. Technol. 2004, 106, 424-431. Rostagno, M. A.; Palma, M.; Barroso, C. G. Fast analysis of soy isoflavones by high-performance liquid chromatography with monolithic columns. Anal. Chim. Acta. 2007, 582, 243-249. Santiago, L. A.; Hiramatsu, M.; Mori, A. Japanese soybean paste miso scavenges free radicals and inhibits lipid peroxidaiton. J. Nutr. Sci. Vitaminol. 1992, 38, 297-304. Setchell, K. D. R.; Brown, N. M.; Kirschner, A. S.; Cassidy, A.; Heubi, J. E. Bioavailability of pure isoflavones in healthy humans and analysis of commercial soy isoflavone supplements. J. Nutr. 2001, 131, 1362-1375. Shieh, Y. S. C.; Beuchat, L. R. Physic and chemical changesin fermented peanut and soybean pastes containing kojis prepared using Aspergillus oryzae and Rhizopus oilgosporous. J. Food Sci. 1982, 47, 523. Su, Y. C. Sufu. In Legume-based Fermented Foods; Reddy, N. R.; Pierson, M. D.; Salunkhe, D. K., Eds.; CRC Press, Boca Raton, Florida, 1986; pp 69–83. Su, Y. C. Traditional fermented food in Taiwan. In Proceedings of the Oriental Fermented Foods; Food Industry Research and Development Institute: Hsinchu, Taiwan, 1980, p 15. Toda, T.; Sakamoto, A.; ,Takayanagi T.; Yokotsuka, K. Changes in isoflavone compositions of soybean foods during cooking process. Food Sci. Technol. Res. 2000, 6, 314–319. Wai, N. A new species of Mono-Mucor, Mucor sufu, on Chinese soybean cheese. Science. 1929, 70, 307. Wang, R. Z.; Du, X. X, Eds, The Production of Sufu in China. China Light Industry Press: Beijing, China (in Chinese). 1998. Wang, H. J.; Murphy, P. A. Isoflavone composition of American and Japanese soybeans in Iowa: effects of variety, crop year, and location. J. Agric. Food Chem.1994a, 42, 1674–1677. Wang, H. J.; Murphy, P. A. Isoflavone content in commercial soybean foods. J. Agric. Food Chem. 1994b, 42, 1666–1673. Wang, H. J.; Murphy, P. A. Mass balance study of isoflavone during soybean processing. J. Agric. Food Chem. 1996, 44, 2377-2383. Wang, H. L.; Hesseltine, C. W. Sufu and Lao-Chao. J. Agric. Food Chem. 1970, 18, 572–575. Wang, H. L. ; Vespa, J. B. ; Hesseltine, C. W. Acid protease production by fungi used in soybean food fermentation. Appl. Microbiol. 1974, 27, 906-911. Wang, L. J.; Saito, M.; Tatsumi, E.; Li, L. T. Antioxidative and angiotensin I-Converting enzyme inhibitory activities of sufu (fermented tofu) extracts. Jpn. Agr. Res. Q. 2003, 37, 129-132. Wang, L. J.; Yin, L. J.; Li, D.; Zou, L.; Saito, M.; Tatsumi, E.; Li, L. T. Influences of processing and NaCl supplementation on isoflavone conetents and compositon during douche manufacturing. Food Chem. 2007, 101, 1247-1253. Wong, E.; Flux, D. S. Oestrogenic activity of red clover isoflavones and some of their degradation products. J. Endocrinol. 1962, 24, 341-348. Yen, G. C.; Chang, Y. C. Production of antioxidant from Aspergillus candidus broth filtrate by fermentor. Proc. Biochem. 2003, 38, 1425-1430. Yin, L. J.; Li, L. T.; Li, Z. G.; Eizo, T.; Masayoshi, S. Changes in isoflavone contents and composition of sufu (fermented tofu) during manufacturing. Food Chem. 2004, 87, 587-592. Yin, L. J.; Li, L. T.; Liu, H.; Masayoshi, S.; Tatsumi, E. Effects of fermentation temperature on the content and composition of isoflavones and β-glucosidase activity in sufu. Biosci. Biotechnol. Biochem. 2005, 69, 267-272. Yoshizawa, K.; Komatsu, S.; Takahashi, I.; Otsuka, K. Phenolic compounds in the fermented products. Agric. Biol. Chem. 1970, 34, 170-180. Ziegler, R. G.; Hoover, R. N.; Pike, M. C. Migration patterns and breast cancer risk in Asian–American women. J. Natl. Cancer Inst. 1993, 85, 1819–1827. Zubik, L.; Meydani, M. Bioavailability of soybean isoflavones from aglycone and glucoside forms in American women. Am. J. Clin. Nutr. 2003, 77, 1459-1465. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42210 | - |
dc.description.abstract | 有別於中式豆腐乳之製程,台灣式豆腐乳之釀造乃先同時進行鹽滷豆干與利用Aspergillus oryzae為菌酛進行米豆麴醪之製備,再將鹽滷過之豆干與米豆麴醪混合進行發酵。本研究根據台灣式豆腐乳之製程在37℃下發酵製備台式豆腐乳,進而探討發酵期間異黃酮素異構物含量及其抗氧化活性(DPPH自由基清除能力、亞鐵離子螯合能力及還原能力)之變化。
結果顯示,經16天發酵完成後之豆腐乳中,其總異黃酮素含量顯著下降 (p<0.05)。其中aglycones形式異黃酮素含量隨發酵天數增加有明顯增加之趨勢,並伴隨β-glucoside及malonylglucoside形式異黃酮素含量之下降。發酵期間,豆腐乳塊中β-glucosidase活性亦隨發酵天數增加而有提升之趨勢。 發酵後之豆腐乳所呈現對DPPH自由基之清除能力、亞鐵離子螯合能力及還原能力皆顯著高於發酵前之鹽漬豆腐。此外,這些活性隨著發酵時間之延長而上升。 | zh_TW |
dc.description.abstract | In the present study, sufu was fermented at 37oC with Taiwanese manufacture process. Changes of isoflavone content, distribution profiles and β-glucosidase activity were investigated during fermentation. The antioxidative activity, including DPPH radical-scavenging effect, Fe2+-chelating ability, and reducing power were also examined.
The results revealed that the fermentation caused the significant decrease (p < 0.05) of total isoflavone content. A marked increase in the content of aglycone (diadzein, glycitein and genistein), and the significant reduction in the content of malonylglucoside and β-glucoside isoflavone, compared with non-fermented salted tofu were also observed. Activity of β-glucosidase detected in sufu was significantly higher (p < 0.05) than that noted in the non-fermented salted tofu. Results also showed that the DPPH free radical-scavenging activity, Fe2+-chelating ability and reducing power of tofu were enhanced after fermentation. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T00:53:00Z (GMT). No. of bitstreams: 1 ntu-97-R95641007-1.pdf: 912459 bytes, checksum: f6d9575b4ce0465ccaf8785f79785515 (MD5) Previous issue date: 2008 | en |
dc.description.tableofcontents | 摘要 i
Abstract ii 目錄 iii 圖目錄 v 表目錄 vi 壹、前言 1 貳、文獻整理 2 一、豆腐乳簡介 2 二、異黃酮素簡介 6 三、發酵食品 8 四、黃豆加工過程對異黃酮素組成影響 9 五、發酵過程對異黃酮素組成影響 11 六、發酵黃豆製品之抗氧化活性 12 參、材料與方法 14 一、實驗架構 14 二、實驗材料 15 1.未發酵之豆腐乳半成品 15 2.試驗藥品 15 3.儀器設備 16 三、樣品製備 18 1.鹽漬豆腐之製備 18 2.米豆麴醪之製作 18 3.豆腐乳發酵熟成 18 4.豆腐乳取樣及前處理方法 18 5.豆腐乳之甲醇萃取物之製備 18 四、分析方法 19 1.異黃酮素之分析方法 19 2.β-glucosidase 活性之測定 20 3.抗氧化活性之檢測 20 4.統計分析 22 肆、結果與討論 23 一、發酵期間台式豆腐乳中異黃酮素之含量及形式變化 23 1.台式豆腐乳於發酵期間其總異黃酮素含量改變 23 2.台式豆腐乳於發酵期間其異黃酮素含量改變 23 二、台式豆腐乳於發酵期間β-葡萄糖苷酶 (β-glucosidase) 之活性變化 29 三、發酵期間台式豆腐乳之抗氧化活性變化 32 1.發酵期間台式豆腐乳之甲醇萃取物DPPH自由基清除能力 32 2.發酵期間台式豆腐乳之甲醇萃取物亞鐵離子螯合能力 34 3.發酵期間台式豆腐乳之甲醇萃取物還原能力 35 伍、結論 41 陸、參考文獻 42 附錄一 51 | |
dc.language.iso | zh-TW | |
dc.title | 以台灣式製程製備豆腐乳時異黃酮素組成及抗氧化活性之變化 | zh_TW |
dc.title | Isoflavone content and antioxidative activity of sufu prepared with Taiwanese manufacture process | en |
dc.type | Thesis | |
dc.date.schoolyear | 96-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 丘志威,潘崇良,李?鈴,游若? | |
dc.subject.keyword | 豆腐乳,異黃酮素,β-glucosidase,抗氧化活性,發酵, | zh_TW |
dc.subject.keyword | sufu,isioflavone,antioxidative activity,β-glucosidase,fermentation, | en |
dc.relation.page | 59 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2008-08-08 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 食品科技研究所 | zh_TW |
顯示於系所單位: | 食品科技研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-97-1.pdf 目前未授權公開取用 | 891.07 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。