請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42187
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林致廷(Chih-Ting Lin) | |
dc.contributor.author | Cheng-Wei Lu | en |
dc.contributor.author | 呂承衛 | zh_TW |
dc.date.accessioned | 2021-06-15T00:51:36Z | - |
dc.date.available | 2009-09-02 | |
dc.date.copyright | 2008-09-02 | |
dc.date.issued | 2008 | |
dc.date.submitted | 2008-08-11 | |
dc.identifier.citation | [1] 石宗憲等作張智芬總編輯,” 蛋白質體學”,醫藥基因生物技術教學資源中心,民國92年12月。
[2] Barry Schweitzer and Stephen F. Kingsmore, “Measuring proteins on microarrays”, Current Opinion in Biotechnology 13 (2002), pp. 14-19. [3] Chao Yung Fan, Katsuo Kurabayashi, and Edgar Meyhöfer, “Protein pattern assembly by active control of a triblock copolymer monolayer”, NANO LETTERS 6(12) (2006), pp.2763-2767 [4] A.S. Blawas and W.M. Reichert, “Review:protein patterning”, Biomaterials 19 (1998), pp.595-609. [5] Zhu H. and Snyder M.,”Protein chip technology.”, Currrent Opinion in Chemical Biology 7(2003), pp.55-63 [6] N. Y. Lee, Ju Ri Lim, and Y. S. Kim, “Selective patterning and immobilization of biomolecules within precisely-defined micro-reservoirs”, Biosensors and Bioelectronics 21 (2006) pp.2188–2193 [7] Takashi Ito and Shinji Okazaki, “Pushing the limits of lithography”, Nature 406(2000), pp.1027-1031. [8] Dong-Sik Shin , Kook-Nyung Lee , Ki-Hoon Jang a Jae-Kwon Kim , Woo-Jae Chung , Yong-Kweon Kim , Yoon-Sik Lee, “Protein patterning by maskless photolithography on hydrophilic polymer-grafted surface”, Biosensors and Bioelectronics 19 (2003), pp.485-/494 [9] E.A. Roth, T. Xu, M. Das, C. Gregory, J.J. Hickman, T. Boland, “Inkjet printing for high-throughput cell patterning”, Biomaterials 25 (2004), pp.3707–3715. [10] Neville E. Sanjana and Sawyer B. Fuller , “A fast flexible ink-jet printing 47 method for patterning dissociated neurons in culture.”, Journal of Neuroscience Methods 136 (2004), pp.151–163. [11] Victor N. Morozov and Tamara Ya. Morozova, “Electrospray deposition as a method for mass fabrication of mono- and multicomponent microarrays of biological and biologically active substances.”, Anal. Chem. 71(1999), pp.3110-3117 [12] Andr Bernard, Jean Philippe Renault,Bruno Michel, Hans Rudolf Bosshard, and Emmanuel Delamarche “Microcontact printing of proteins.”, Adv. Mater. 12, No. 14 (2000), pp.1067-1070 [13] Ki-Bum Lee, So-Jung Park, Chad A. Mirkin, Jennifer C. Smith, and Milan Mrksich, “Protein nanoarrays generated by Dip-Pen nanolithography.”, Science 295 (2002), pp.1702-1075 [14] Dirk R Albrecht, Gregory H Underhill, Travis B Wassermann, Robert L Sah, and Sangeeta N Bhatia, “Probing the role of multicellular organization in three-dimensional microenvironments.”, Nature methods vol.3 No.5 (2006), pp.369-375 [15] Karl F. Böhringer, Huseyin Bilge, Xuanhong Cheng, Buddy Ratner, Shoji Takeuchi, and Hiroyuki Fujita, “Infrared light induced patterning of proteins on ppNIPAM thermoresponsive thin films: a “protein laser printer”.”, Technical Digest, IEEE Conference on Micro Electro Mechanical Systems(MEMS), Istanbul, Turkey, Jan. 22-26 (2006) [16] Dale L. Huber, Ronald P. Manginell, Michael A. Samara, Byung-Il Kim, and Bruce C. Bunker, “Device programmed adsorption and release of proteins in a microfluidic Device.” Science 301(2003), pp.352-354 [17] Hui Ge,” UPA, a universal protein array system for quantitative detection of protein-protein, protein-DNA, protein-RNA and protein-ligand interactions.”, 48 Nucleic Acids Res. 28 (2000), p. e3 [18] Helmut Thissen, Graham Johnson, Patrick G. Hartley, Peter Kingshott, Hans J. Griesser, “Two-dimensional patterning of thin coatings for the control of tissue outgrowth.” Biomaterials 27 (2006), pp.35–43 [19] Haleem J. Issaq, Timothy D. Veenstra, Thomas P. Conrads, and Donna Felschow, “The SELDI-TOF MS approach to proteomics: Protein profiling and biomarker identification”, Biochemical and Biophysical Research Communications 292, (2002), pp.587–592 [20] Scot R Weinberger, Tina S Morris ,and Michael Pawlak, “Recent trends in protein biochip technology”, Pharmacogenomics1(4) (2000), pp. 395-416 [21] A. Valerio, D. Basso, S. Mazza, G. Baldo, A. Tiengo, S. Pedrazzoli, R. Seraglia, and M. Plebani, “Serum protein profiles of patients with pancreatic cancer and chronic pancreatitis:searching for a diagnostic protein pattern”, Rapid Commun. Mass Spectrom. 15(2001), pp.2420-2425 [22] Keith A. Baggerly, Jeffrey S. Morris, and Kevin R. Coombes, “Reproducibility of SELDI-TOF protein patterns in serum: Comparing data sets from Different experiments”, Bioinformatics 20(5) (2004), pp.777-785 [23] Lei Shi, “Biomimetic surfaces of biomaterials using Mucin-type Glycoproteins.”, Trends in Glycoscience and Glycotechnology Vol.12 No.66 (July 2000), pp.229–239 [24] Valerie A. Liu, William E. Jastromb, and Sangeeta N. Bhatia, “Engineering protein and cell adhesivity using PEO-terminated triblock polymers.” J. Biomed. Mater. Res., 60(1) (2002), pp. 126-134, [25] John L. Tan, Wendy Liu, Celeste M. Nelson, Srivatsan Raghavan, and Christopher S. Chen, “Simple approach to micropattern cells on common culture substrates by tuning substrate wettability.” Tissue Engineering Volume 10, 49 Number 5/6 (2004), pp.865-872 [26] Derick Anderson, Tragiang Nguyen, Phung-Kimlai, and Mansoor Amiji, “Evaluation of the permeability and blood-compatibility properties of membranes formed by physical interpenetration of Chitosan with PEO/PPO/PEO triblock copolymers.”, Journal of Applied Polymer Science Vol.80 ,8 (2001), pp.1274-1284 [27] Frieder Mugele, and Jean-Christophe Baret, “Electrowetting: from basics to applications.”, J. Phys.: Condens. Matter 17 (2005), R705–R774 [28] F. Mugele, A. Klingner, J. Buehrle, D. Steinhauser and S. Herminghaus, “Electrowetting: a convenient way to switchable wettability patterns.”, J. Phys.: Condens. Matter 17 (2005), S559–S576 [29] Shih-Kang Fan, Hanping Yang, Tsu-Te Wang and Wensyang Hsu, “Asymmetric electrowetting—moving droplets by a square wave.”, Lab Chip, 2007, 7, pp.1330–1335 [30] J.D. Andrade, V. Hlady, and A.P. Wei, “Adsorption of complex proteins at interfaces.”, Pure & Appl. Chem., Vol. 64, No. 11 (1992), pp.1777-1781, [31] Ute Bὅhme, and Ulrich Scheler, “Effective charge of bovine serum albumin determined by electrophoresis NMR”, Chemical Physics Letters 435 (2007), pp.342–345 [32] Emilie Seyrat ,and Robert A. Hayes, “Amorphous fluoropolymers as insulators for reversible low-voltage electrowetting”, Journal of Applied Physics Vol. 90, Num. 3 (2001), pp.1383-1386 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42187 | - |
dc.description.abstract | 生物感測晶片是蛋白質體學中熱門發展的工具,利用微/奈米機電系統製程技術(Micro- and Nano-ElectroMechanical Systems),可以方便製作出微型化可攜式元件,這些感測元件包括表面共振感測器、壓電晶體生物感測器、離子選擇性場效電晶體、電化學生物感測器等。然而要讓這些感測元件達到選擇性及專一性,蛋白質塗佈技術即為一個直接且有效的方式。蛋白質塗佈是將蛋白質或生物分子控制固定在特定空間,此方式是生物感測中一支基本但重要的技術。利用各種塗佈技術將生物分子定義於生物晶片上,再將分析液或待分析液與被塗佈的生物分子反應,以此方式可快速且大量分析未知的生物液及生物分子和化學物質間的交互作用。塗布的目標物可為蛋白質、DNA等各種生物分子。蛋白質塗佈可應用的範圍也極廣泛,包括基因體、癌症研究、藥物研發、臨床診斷、細胞研究、組織工程、生物分子鑑別等。
現有的蛋白質塗布技術中,很難同時達到高解析及可程式化的效果,同時也可能對蛋白質產生物理或化學性的傷害。本研究是利用微奈米機電系統製程技術,製作電控性的次微米級蛋白質塗佈元件,再利用螢光染色蛋白質配合螢光顯微鏡,分析塗佈結果,此方法不僅可以有效程式化蛋白質塗佈效果,產生高解析度塗佈式樣,也不會造成蛋白質的結構變形,以保持其活性,提高其應用之可行性。 | zh_TW |
dc.description.abstract | Bio-sensor is one of the fundamental technologies for Proteomics. With the technology of the Micro- and Nano- Electromechanical Systems, it can be easily to manufacture the miniature portable device, that include the surface plasmon resonance detector, piezoelectric quartz crystal, ion-selective field effect transistor and eletrochemical bio-sensor. Protein patterning is a method which makes those devices more selective and sensitive. Protein patterning technology is to make proteins or bio-molecules be defined on some specific areas. Using some kinds of the patterning technologies to let the bio-molecules immobilized on a substrate, and then make the assays or reagents to be interact with the patterned bio-molecules, with this method it can be fleetly and enormously analysed the interact between the unknown lysate, bio-molecules and chemicals. The patterned object could be the proteins, DANs and all kinds of bio-molecules. The application of the protein patterning can be used widely, including the genome, cancer research, drug discovery, clinical diagnostics, cell studies, tissue engineering and bio-molecule identification.
Nowadays, the protein patterning technologies are hard to achieve the high resolution and programmable patterns, moreover those methods might cause the patterned proteins physical or chemical damages. So this study is using the micro- and nano-electromechanical systems to manufacture the submicron electrically programmable protein patterning device, and utilizing the fluorescence labeling process and fluorescent microscope to analyse the patterned result. This method can not only make high resolution programmable patterns effectively without denaturing those proteins, but also sustain their activities to make sure the feasible of applications. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T00:51:36Z (GMT). No. of bitstreams: 1 ntu-97-R95943149-1.pdf: 3897832 bytes, checksum: 09cf5476db32b29cc6f882437c7179ff (MD5) Previous issue date: 2008 | en |
dc.description.tableofcontents | 謝辭...........................................................................................................i
中文摘要..................................................................................................ii 英文摘要..................................................................................................iii 目錄...........................................................................................................v 圖目錄......................................................................................................viii 第一章 導論........................................................................................1 1.1 前言…........................................................................................1 1.2 動機............................................................................................2 1.3 論文架構....................................................................................2 第二章 文獻回顧...............................................................................3 2.1 簡介............................................................................................3 2.2 蛋白質塗佈技術回顧................................................................5 2.2.1 微影技術..........................................................................5 2.2.2 噴墨列印塗佈..................................................................9 2.2.3 微壓印技術......................................................................11 2.2.4 介電泳技術......................................................................13 2.2.5 熱致塗佈..........................................................................15 2.3 結論............................................................................................18 第三章 實驗原理、製程、步驟...................................................19 3.1 簡介............................................................................................19 3.2 材料…........................................................................................20 3.2.1 玻璃基板及ITO電極......................................................20 3.2.2 Pluronic F108...................................................................20 3.2.3 Parylene............................................................................21 3.3 方法…........................................................................................23 3.3.1 電濕潤性..........................................................................23 3.3.2 蛋白質沾附固態介面機制…..........................................27 3.3.3 倒立式螢光顯微鏡..........................................................28 3.4 實驗藥品....................................................................................30 3.5 螢光染色....................................................................................30 3.6 元件製程步驟............................................................................32 3.7 實驗步驟....................................................................................34 第四章 實驗結果...............................................................................36 4.1 Pluronic塗佈在親/疏水性介面之效果.................................36 4.2 驅動電壓與螢光強度的關係.....................................................37 4.3 次微米線的蛋白質塗佈.............................................................39 第五章 結論與未來展望...................................................................45 參考文獻...................................................................................................46 | |
dc.language.iso | zh-TW | |
dc.title | 次微米級可程式電致蛋白質塗佈技術 | zh_TW |
dc.title | Sub-micron Electrically Programmable Protein Patterning Technology | en |
dc.type | Thesis | |
dc.date.schoolyear | 96-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 楊燿州(Yao-Joe Yang),施文彬(Wen-Pin Shih),郭宇軒(Yu-Hsuan Kuo) | |
dc.subject.keyword | 蛋白質塗佈,程式化,次微米, | zh_TW |
dc.subject.keyword | Protein Patterning,programmable,submicron, | en |
dc.relation.page | 49 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2008-08-12 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 電子工程學研究所 | zh_TW |
顯示於系所單位: | 電子工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-97-1.pdf 目前未授權公開取用 | 3.81 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。