Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 藥學專業學院
  4. 藥學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41850
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李水盛
dc.contributor.authorChang-Cheng Tsengen
dc.contributor.author曾建誠zh_TW
dc.date.accessioned2021-06-15T00:34:20Z-
dc.date.available2009-02-10
dc.date.copyright2009-02-10
dc.date.issued2008
dc.date.submitted2009-01-07
dc.identifier.citation1. S. Smyth, A. Heron. Diabetes and obesity: the twin epidemics. Nature Medicine, 12, 75-80 (2005).
2. Flora of Taiwan, 2nd ed. Vol. 4, page86-87, Editorial Committee of the Flora of Taiwan, Taipei, Taiwan. (1996).
3. N. K. Hart, J. A. Lamberton. Pyrrolizidine alkaloids from Planchonella species (Family Sapotaceae). Aust. J. Chem., 19, 1259-1264 (1966).
4. N. K. Hart, S. R. Johns, J. A. Lamberton. Alkaloids of the Sapotaceae: trans-β-methykthioacrylate and tiglate esters of (-)-isoretronecanol from a Planchonella species. Aust. J. Chem., 21, 1393-1395 (1968).
5. R. C. Cambie, N.A. Ser, T. Kokubun. Heartwood constituents of Planchonella vitiensis. Biochem. Syst. Ecol., 25, 565-566 (1997).
6. R. A. Eade, K. Hunt, J. J. H. Simes, W. Stern. Extractives of Australian timbers IX. The saponin of Planchonella pohlmaninum. Aust. J. Chem., 22, 2703-2707 (1969).
7. T. H. Lee, S. H. Juang, F. L. Hsu, C. Y. Wu. Triterpene acids from the leaves of Planchonella duclitan (Blanco) Bakhuizan. Journal of the Chinese chemical society, 52, 1275-1280 (2005).
8. American Diabetes Association. Standards of medical care in diabetes-2008. Diabetes Care, 31, S12-S54 (2008).
9. Textbook of primary care medicine 3rd ed. Ch.96. page821-830 J. Noble, H. L. Greene, W. Levinson, A. Modest Geoffrey, D. Mulrow Cynthia (2001).
10. Mehanna A. S. Insulin and oral antidiabetic agents. American Journal of Pharmaceutical Education, 69, Article 89 (2005).
11. LANGE Basic & Clinical Pharmacology 9th edition. Page 694-703, Bertram G. Katzung. (2004).
12. M. J. Lenhard, G. D. Reeves. Continuous Subcutaneous Insulin infusion: A comprehensive review of insulin pump therapy. Arch. Intern. Med., 161, 2293-2300 (2001).
13. T. Quattrin. Inhaled insulin: recent advances in the therapy of type 1 and 2 diabetes. Expert Opin. Pharmacother., 5, 2597-2604 (2004).
14. T. K. Mandal. Inhaled insulin for diabetes mellitus. Am. J. Health-Syst. Pharm. 62, 1359-1364 (2005).
15. S. A. Miller, Erin L St. Onge. Sitagliptin: A dipeptidyl peptidase IV inhibitor for the treatment of type 2 diabetes. The Annals of Pharmacotherapy. 40, 1336-1342 (2006).
16. E. Borges de Melo, A. da Silveria Gomes, I. Carvalho. α- and β-Glucosidase inhibitors: chemical structure and biological activity. Tetrahedron, 62, 10277-10302 (2006).
17. S. E. Inzucchi. Oral antihyperglycemic therapy for type 2 diabetes: scientific review. JAMA., 287, 360-372 (2002).
18. N. Asano. Glycosidase inhibitors: update and perspectives on practical use. Glycobiology, 13, 93-104 (2003).
19. H. Ito, E. Nishitani, T. Konoshima, M. Takasaki, M. Kozuka, T. Yoshida. Flavonoid and benzophenone glycosides from Coleogyne ramosissima. Phytochemistry, 54, 695-700 (2000).
20. S. Scharbert, N. Holzmann, T. Hofmann. Identification of the astringent taste compounds in black tea infusions by combining instrumental analysis and human bioresponse. J. Agric. Food Chem., 52, 3498-3508 (2004).
21. W. C. Hou, R. D. Lin, T. H. Lee, Y. H. Huang, F. L. Hsu and M. H. Lee. The phenolic constituents and free scavenging activies of Gynura formosana Kiamnra. F. Sci. Food Agric., 85, 615-621 (2005).
22. L. Rastrelli, P. Saturnino, O. Schettino, A. Dini. Studies on the constituents of Chenopodium pallidicaule seeds. Isolation and characterization of two new flavonol glycosides. J. Agric. Food Chem. 43, 2020-2024 (1995).
23. A. Braca, M. Politi, R. Sanogo, H. Sanou, I. Morelli, C. Pizza, N. D. Tommasi. Chemical composition and antioxidant activity of phenolic compounds from wild and cultivated Sclerocarya birrea (Anacardiaceae) leaves. J. Agric. Food Chem., 51, 6689-6695 (2003).
24. H. Arima and G. I. Danno. Isolation of antimicrobial compounds from Guava (Psidium guajava L.) and their structural elucidation. Biosci. Biotechnol. Biochem., 66, 1727-1730 (2002).
25. A. Lévai. Utilization of the chiroptical spectroscopies for the structure elucidation of flavonoids and related benzopyran derivatives. Acta Chim. Slov., 45(3), 267-284 (1998).
26. S. Rancon, A. Chaboud, N. Darbour, G. Comte, C. Bayet, Pierre-Noël Simon, J. Raynaud, Attilio Di Pietro, P. Cabalion, D. Barron. Natural and Synthetic benzophenones: interaction with the cytosolic binding domain of P-glycoprotein. Phytochemistry, 57, 553-557 (2001).
27. Pistia-Brueggeman, G. and Hollingsworth, R. A preparation and screening strategy for glycosidase inhibitors. Tetrahedron 57, 8773-8778 (2001).
28. 林憶珊,台灣大學醫學院藥學研究所碩士論文,大葉楠類黃酮成分之研究. 2007, July.
29. A. J. Quillinan and F. Scheinmann. Studies in xanthone series. Part XII. A general synthesis of polyoxygenated xanthones from benzophenone precursors. J. Chem. Soc. Perkin Trans. I, 13, 1329. (1973)
30. W. Schmidit and L. Beerhues. Alternatives pathways of xanthone biosynthesis in cell cultures of Hypericum androsaemum L. FEBS. Lett., 420, 143-176 (1997).
31. J. Ferrari, C. Terreaux, S. Sahpaz, J. D. Msonthi, J-L. Wolfender, K. Hostettmann. Benzophenone glycosides from Gnidia involucrata. Phytochemistry, 54, 883-889 (2000).
32. G. M. Kitanov, P. T. Nedialkov. Benzophenone O-glycoside, a biogenic precusor of 1,3,7-trioxygenated xanthones in Hyperium annulatum. Phytochemistry, 57, 1237-1243 (2001).
33. H. Otsuka and K. Kijima. An iridoid gentiobioside, a benzophenone glucoside and acylated flavone C-glycosides from Triterospermum japonicum (Sieb. et Zucc.) Maxim. Chem. Pharm. Bull., 49, 699-702 (2001).
34. J. Li, Y. Jiang and P. F. Tu. Xanthone O-glycosides and benzophenone O-glycosides from the roots of Polygala tricornis. J. Nat. Prod., 68, 1802-1804 (2005).
35. M. Schlitzer. Structure Based Design of Benzophenone-Based Non-Thiol Farnesyltransferase Inhibitors. Current Pharmaceutical Design, 8, 1713-1722 (2002).
36. M. Bhm, A. Mitsch, P. Wissner, I. Sattler, M. Schlitzer. Exploration of Novel Aryl Binding Sites of Farnesyltransferase Using Molecular Modeling and Benzophenone-Based Farnesyltransferase Inhibitors. J. Med. Chem., 44 (19), 3117-3124 (2001).
37. P. G. Wyatt et al, Benzophenone Derivatives: A Novel Series of Potent and Selective Inhibitors of Human Immunodeficiency Virus Type 1 Reverse Transcriptase. J. Med. Chem., 38, 1657-1665 (1995).
38. H. P. Hsieh et al, Structure–Activity and Crystallographic Analysis of Benzophenone Derivatives—the Potential Anticancer Agents. Bioorganic & Medicinal Chemistry Letters, 13, 101–105 (2003).
39.S. B. Singh et al. Guttiferone I, a New Prenylated Benzophenone from Garcinia humilis as a Liver X Receptor Ligand. J. Nat. Prod., 68, 617-619 (2005).
40.D. M. Gapinski, B. E. Mallett, L. L. Froelich, W. T. Jackson. Benzophenone dicarboxylic acid antagonists of leukotriene B4. 1. Structure-activity relationships of the benzophenone nucleus. J. Med. Chem., 33 (10), 2798-2807 (1990).
41.D. M. Gapinski, B. E. Mallett, L. L. Froelich, W. T. Jackson. Benzophenone dicarboxylic acid antagonists of leukotriene B4. 2. Structure-activity relationships of the lipophilic side chain J. Med. Chem., 33 (10), 2807-2813 (1990).
42.H. A. M. Hejaz, L. W. L. Woo, A. Purohit, M. J. Reedb, B. V. L. Potter. Synthesis, in vitro and in vivo activity of benzophenone-based inhibitors of steroid sulfatase. Bioorg. Med. Chem., 12, 2759–2772 (2004).
43.A. Nahrstedt, M. Hungeling, F. Petereit. Flavonoids from Acalypha indica. Fitoterapia, 77, 484–486 (2006).
44.B. K. Eskalieva, A. Akhmed, G. Sh. Burasfeva, Zh. A. Abilov, V. U. Akhmad. Biologically active compounds from Climacoptera. Chemistry of Natural Compounds, 40, 1 (2004).
45.S. S. Lee, J. S. Wang, K. C. S. Chen. Chemical constitutents from the roots of Zizyphus jujuba Mill. Var. spinosa. Journal of the Chinese Chemical Society, 42, 77-82 (1995).
46.G. Ya. Mechikova, T. A. Stepanova, A. I. Kalinovskii, L. P. Ponomarenko, V. A. Stonik. Flavonoids from Vaccinium axillare leaves. Chemistry of Natural Compounds, 44, 100-101 (2008).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41850-
dc.description.abstract中文摘要
糖尿病是一種在全世界罹患率逐漸升高的慢性疾病,其目前的治療目標多為降低病患過高的血糖值。在口服降血糖藥物中,其中一類治療藥物是甲型葡萄糖酶抑制劑。甲型葡萄糖酶抑制劑的作用機轉為抑制分佈在小腸的甲型葡萄糖酶將澱粉、寡糖以及雙糖消化成單糖,以此減緩餐後血糖值的升高,達到治療糖尿病的效果。
山欖科植物山欖是一原生於蘭嶼的長青樹種,初步研究發現其葉部甲醇萃取物具抑制甲型葡萄糖酶的活性,經極性分割後,正丁醇和乙酸乙酯可溶部分相對於氯仿層具較高的活性(在100μg/mL的濃度下,分別為97.3 %、87.2 %、41.6 %)。因此本研究著重於丁醇及乙酸乙酯可溶部分之研究。
利用Sephadex LH-20、離心式分配層析及高效液相層析法分離自正丁醇及乙酸乙酯部分得到九個化合物,包含四個Iriflophenone { 2-O-β-D-glucopyranoside-(1)、2-O-(6-O-galloyl)-β-D-glucopyranoside-(2)、2-O-[6-O-(4-hydroxybenzoyl)]-β-D-glucopyranoside-(3)、2-O-(2,6-di-O-galloyl)-β-D-glucopyranoside-(7)}及五個黃酮苷:Kaempferol [ 3-O-β-galactopyranoside-(4)與3-O-robinobioside-(5)]、Isorhamnetin-3-O-robinobioside-(6)、Quercetin [ 3-O-β-D-glucopyranoside-(8)、3-O-α-L-arabinopyranoside-(9)]。
經由光譜分析鑑定這些化合物的結構。其中化合物2、3、7是含二苯酮類架構之新化合物,然而其抑制甲型葡萄糖水解酶的活性並不顯著。
zh_TW
dc.description.abstractAbstract
Diabetes mellitus is a chronic disease growing in prevalence worldwide. One of therapies to lower blood sugar level is the inhibition of α-glucosidase activity which serves the digestion of starch, oligosaccharides and disaccharides into monosaccharide.
The methanol extract of leaves of Planchonella obovata (R.Br) Pierre (Sapotaceae), an evergreen shrub, indigenous to Lanyu Island, was found to be active against α-glucosidase. Further study indicated that the n-butanol-soluble and ethylacetate fraction possessed better activity than chloroform layer (97.3 %, 87.2 %, 41.6 % inhibition at 100 μg/mL, respectively). Thus, this study focused on the chemical investigation of these two fractions.
Repeated separation of these two fractions over Sephadex LH-20, centrifugal partition chromatography and high performance liquid chromatography led to the isolation of nine compounds. They are four Iriflophenone { 2-O-β-D-glucopyranoside-(1), 2-O-(6-O-galloyl)-β-D-glucopyranoside-(2), 2-O-[6-O-(4-hydroxybenzoyl)]-β-D-glucopyranoside-(3), 2-O-(2,6-di-O-galloyl)-β-D-glucopyranoside-(7)}, and five flavonols: Kaempferol [ 3-O-β-galactopyranoside-(4) and 3-O-robinobioside-(5)], Isorhamnetin-3-O-robinobioside-(6), Quercetin [ 3-O-β-D-glucopyranoside-(8) and 3-O-α-L-arabinopyranoside-(9)]. Their structures were elucidated on the basis of elaborated spectroscopic analysis. Of these compounds, 2, 3 and 7 represent the first occurrence of such dibenzophenone natural products. Their anti-α-glucosidase activity, however, was not significant.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T00:34:20Z (GMT). No. of bitstreams: 1
ntu-97-R95423023-1.pdf: 10152550 bytes, checksum: 3cdb4c2467ff57e22c6c8b871326855f (MD5)
Previous issue date: 2008
en
dc.description.tableofcontents總目錄
口試委員審定書...........................................i
誌謝....................................................ii
中文摘要...............................................iii
英文摘要................................................iv
目錄.....................................................I
表目錄.................................................III
圖目錄..................................................IV
附圖目錄.................................................V
流程圖目錄.............................................VII
目錄
壹、序論..................................................1
1.1 研究目的..............................................1
1.2 植物簡介..............................................2
1.3 Planchonella屬植物成分之相關研究......................4
1.4 糖尿病及臨床治療藥物..................................7
1.4.1 糖尿病簡介..........................................7
1.4.2 糖尿病治療藥物......................................8
1.4.2.1 胰島素............................................8
1.4.2.2 口服降血糖藥物(OHA, Oral Hypoglycemic Agents)....10
1.4.3 α-Glucosidase inhibitors之簡介.....................12
貳、實驗結果與討論.......................................15
2.1 活性測試結果為導向的植物篩選.........................15
2.2 二苯酮苷成分及黃酮苷成分之分離及結構解析.............17
2.2.1 Iriflophenone 2-O-β-D-glucopyranoside (1)之結構解析20
2.2.2 Iriflophenone 2-O-(6-O-Galloyl)-β-D-glucopyranoside (2)之結構解析............................................25
2.2.3 Iriflophenone 2-O-[6-O-(4-hydroxybenzoyl)]-β-D-glucopyranoside (3)之結構解析............................30
2.2.4 Kaempferol 3-O-β-galactopyranoside (4)之結構解析...33
2.2.5 Kaempferol-3-O-robinobioside(5)之結構解析..........36
2.2.6 Isorhamnetin-3-O-robinobioside (6)之結構解析.......40
2.2.7 Iriflophenone 2-O-(2,6-di-O-galloyl)-β-D-glucopyranoside (7)之結構解析............................44
2.2.8 Quercetin-3-O-β-D-glucopyranoside (8)之結構解析....49
2.2.9 Quercetin-3-O-α-L-arabinopyranoside (9)之結構解析..52
2.3 化合物1到9對甲型葡萄糖酶抑制活性試驗結果.............55
2.4 討論.................................................56
2.4.1 化合物1之結構解析與文獻比較........................56
2.4.2 化合物1、2、3、7之結構與甲型葡萄糖酶抑制活性關係的探討.......................................................56
2.4.3 Benzophenone及benzophenone glucopyranoside簡介.....58
2.4.4 二苯酮化合物之相關活性.............................60
2.5 結論.................................................62
參、實驗部分.............................................63
3.1 儀器與材料...........................................63
3.1.1 理化性質測定儀器...................................63
3.1.2 成分分離之儀器及材料...............................64
3.1.3 試劑與溶媒.........................................65
3.1.4 甲型葡萄糖水解酶之活性抑制試驗 (α-glucosidase inhibition assay) 所用試劑與儀器.........................65
3.2 抑制甲型葡萄糖水解酶之活性試驗 (α-Glucosidase inhibition assay)所用試劑與儀器..........................66
3.2.1 原理...............................................66
3.2.2 酵素活性單位.......................................66
3.2.3 實驗方法...........................................66
3.3 山欖葉部成分之萃取與分離.............................69
3.4.1 Iriflophenone 2-O-β-D-glucopyranoside (1)之分離....72
3.4.2 Iriflophenone 2-O-(6-O-galloyl)-β-D-glucopyranoside (2)之分離 ................................................72
3.4.3 Iriflophenone 2-O-[6-O-(4-hydroxybenzoyl)]-β-D-glucopyranoside (3)之分離................................73
3.4.4 Kaempferol-3-O-β-galactopyranoside (4)之分離.......74
3.4.5 Kaempferol-3-O-robinobioside (5)及Isorhamnetin-3-O-robinobioside (6)之分離..................................74
3.4.6 Iriflophenone 2-O-(2,6-di-O-galloyl)-β-D-glucopyranoside (7)、Quercetin-3-O-β-D-glucopyranoside (8)及Quercetin-3-O-α-L-arabinopyranoside (9)之分離..........75
3.5 化合物1到9之物理數據.................................76
3.5.2 Iriflophenone 2-O-(6-O-galloyl)-β-D-glucopyranoside (2)......................................................76
3.5.3 Iriflophenone 2-O-[6-O-(4-hydroxybenzoyl)]-β-D-glucopyranoside (3)......................................77
3.5.4 Kaempferol-3-O-β-galactopyranoside (4).............77
3.5.5 Kaempferol-3-O-robinobioside (5)...................78
3.5.6 Isorhamnetin-3-O-robinobioside (6).................78
3.5.7 Iriflophenone 2-O-(2,6-di-O-galloyl)-β-D-glucopyranoside (7)......................................79
3.5.8 Quercetin-3-O-β-D-glucopyranoside (8)..............79
3.5.9 Quercetin-3-O-α-L-arabinopyranoside (9)............80
參考文獻.................................................81
表目錄
Table 1. 第一型與第二型糖尿病的比較.......................8
Table 2. 胰島素類似物製劑 (insulin analogues).............9
Table 3. 肺吸入式胰島素遞送系統(Pulmonary insulin delivery systems).................................................10
Table 4 口服降血糖藥物...................................10
Table 5 甲型葡萄糖酶抑制劑...............................13
Table 6. 植物中文名、學名、萃取重量......................16
Table 7. 1H (600MHz) and 13C NMR (50MHz) of compound 1 in CD3OD and the reported data for iriflophenone 2-O-β-D-glucopyranoside [Acetone-d6+D2O, 500MHz (1H) and MeOH-d4, 126MHz (13C)]............................................24
Table 8. 1H (400MHz), 13C NMR (100MHz) and HMBC correlation of compound 2 (CD3OD)....................................29
Table 9. 1H (400MHz) and 13C NMR (100MHz) data of Iriflophenone 2-O-[6-O-(4-hydroxybenzoyl)]-β-D-glucopyranoside (3) (CD3OD)..............................31
Table 10. 1H (600MHz) and 13C NMR (150MHz) data of compound 4 (CD3OD) and the reported data for kaempferol 3-O-β-D-galactopyranoside (CD3OD, 600MHz)........................35
Table 11. 1H (600MHz) and 13C NMR (50MHz) data of compound 5 (CD3OD) and the reported data for Kaempferol-3-O-robinobioside (CD3OD, 500MHz)............................38
Table 12. 1H (400MHz) and 13C NMR (50MHz) data of compound 6 (CD3OD) and the reported data for Isorhamnetin-3-O-robinobioside (CD3OD, 500MHz)............................43
Table 13. 1H (400MHz), 13C NMR (100MHz) and HMBC correlation of compound 7................................46
Table 14. 1H (400MHz) and 13C NMR (50MHz) data of compound 8 (CD3OD) and the reported data for Quercetin-3-O-β-D-glucopyranoside (CD3OD, 600MHz)..........................51
Table 15. 1H (400MHz) and 13C NMR (100MHz) data of compound 9 (CD3OD) and the reported data for Quercetin-3-O-α-L-arabinopyranoside (CD3OD, 400MHz)........................54
Table 16 化合物1和文獻的碳譜化學位移.....................57
Table 17. Extract rate and amount of Planchonella obovata69
圖目錄
Figure 1. 山欖Planchonella obovata (R. Br.) Pierre. (Sapotaceae)..............................................3
Figure 2. 甲型葡萄糖酶抑制劑.............................14
Figure 3. 甲型葡萄糖酶活性測試結果.......................15
Figure 4. 山欖極性分割後各層對甲型葡萄糖酶活性測試結果...16
Figure 5. 1H-NMR assignment for compound 1 (CD3OD, 600MHz)21
Figure 6. 13C-NMR assignment for compound 1 (CD3OD, 50MHz)22
Figure 7. Key COSY correlation of compound 1 (CD3OD, 600MHz)...................................................22
Figure 8. Key NOESY correlation of compound 1 (CD3OD, 600MHz)...................................................23
Figure 9. Key HMBC correlation of compound 1 (CD3OD, 600MHz)...................................................23
Figure 10. 1H-NMR assignment for compound 2 (CD3OD, 400MHz)...................................................26
Figure 11. 13C-NMR assignment for compound 2 (CD3OD, 100MHz)...................................................26
Figure 12. Key COSY correlations of compound 2 (CD3OD, 400MHz)...................................................27
Figure 13. Key NOESY correlation of compound 2 (CD3OD, 400MHz)...................................................27
Figure 14. Key HMBC correlation of compound 2 (CD3OD, 400MHz)...................................................28
Figure 15. 1H-NMR assignment for compound 3 (CD3OD, 400MHz)...................................................32
Figure 16. 13C-NMR assignment for compound 3 (CD3OD, 100MHz)...................................................32
Figure 17. 1H-NMR assignment for compound 4 (CD3OD, 600MHz)...................................................34
Figure 18. 13C-NMR assignment for compound 4 (CD3OD, 150MHz)...................................................34
Figure 19. 1H-NMR assignment for compound 5 (CD3OD, 600MHz)...................................................37
Figure 20. 13C-NMR assignment for compound 5 (CD3OD, 50MHz)....................................................37
Figure 21. Key COSY correlation of compound 5 (CD3OD, 600MHz)...................................................38
Figure 22. Key NOESY correlation of compound 5 (CD3OD, 600MHz)...................................................38
Figure 23. 1H-NMR assignment for compound 6 (CD3OD, 400MHz)...................................................41
Figure 24. 13C-NMR assignment for compound 6 (CD3OD, 50MHz)....................................................41
Figure 25. key COSY correlation of compound 6 (CD3OD, 600MHz)...................................................42
Figure 26. key NOESY correlation of compound 6 (CD3OD, 600MHz)...................................................42
Figure 27. 1H-NMR assignment for compound 7 (CD3OD, 400MHz)...................................................45
Figure 28. 13C-NMR assignment for compound 7 (CD3OD, 400MHz)...................................................47
Figure 29. Key COSY correlations of compound 7 (CD3OD, 400MHz)...................................................47
Figure 30. Key NOESY correlations of compound 7 (CD3OD, 400MHz)...................................................48
Figure 31. Key HMBC correlations of compound 7 (CD3OD, 400MHz)...................................................48
Figure 32. 1H-NMR assignment for compound 8 (CD3OD, 400MHz)...................................................50
Figure 33. 13C-NMR assignment for compound 8 (CD3OD, 50MHz)....................................................50
Figure 34. 1H-NMR assignment for compound 9 (CD3OD, 400MHz)...................................................53
Figure 35. 13C-NMR assignment for compound 9 (CD3OD, 400MHz)...................................................53
Figure 36. Results of α-glucosidase inhibition assay for compound 1~9..............................................55
Figure 37. 甲型葡萄糖酶抑制活性測驗原理........................................................66
Figure 38. 96孔微量測試盤上各組測試樣品的排列情形.........68

附圖目錄
Figure 39. CD spectra of compound 1 (methanol)................................................87
Figure 40. CD spectra of compound 2 (methanol)................................................87
Figure 41. CD spectra of compound 3 (methanol)................................................87
Figure 42. CD spectra of compound 4 (methanol)................................................88
Figure 43. CD spectra of compound 5 (methanol)................................................88
Figure 44. CD spectra of compound 6 (methanol)................................................88
Figure 45. CD spectra of compound 7 (methanol)................................................89
Figure 46. CD spectra of compound 8 (methanol)................................................89
Figure 49. CD spectra of compound 9 (methanol)................................................89
Figure 50. IR spectra of compound 2.........................................................90
Figure 51. IR spectra of compound 3.........................................................90
Figure 52. IR spectra of compound 7.........................................................90
Figure 53. MS and MS/MS spectra of compound 1 (methanol)................................................91
Figure 54. HR-ESI-MS spectrum of compound 2 (methanol)................................................92
Figure 55. HR-ESI-MS spectrum of compound 3 (methanol)................................................93
Figure 56. MS and MS/MS spectrum of compound 4 (methanol) ...............................................94
Figure 57. MS and MS/MS spectra of compound 5 (methanol)................................................95
Figure 58. MS and MS/MS spectra of compound 6 (methanol)................................................96
Figure 59. HR-ESI-MS spectrum of compound 7 (methanol)................................................97
Figure 60. MS and MS/MS spectrum of compound 8 (methanol)................................................98
Figure 61. MS and MS/MS spectrum of compound 9 (methanol)................................................99
Figure 62. 1H-NMR spectrum compound 1 (CD3OD, 600MHz)..................................................100
Figure 63. 13C-NMR spectrum compound 1 (CD3OD, 50MHz)...................................................101
Figure 64. COSY spectrum of compound 1 (CD3OD, 600MHz)..................................................102
Figure 65. NOESY spectrum of compound 1 (CD3OD, 600MHz)..................................................103
Figure 66. HMQC spectrum of compound 1 (CD3OD, 600MHz)..................................................104
Figure 67. HMBC spectrum of compound 1 (CD3OD, 600MHz)..................................................105
Figure 68. 1H-NMR spectrum of compound 2 (CD3OD, 400MHz)..................................................106
Figure 69. 1H-NMR spectrum of compound 2 (CD3OD, 400MHz)..................................................107
Figure 70. 13C-NMR spectrum of compound 2 (CD3OD, 100MHz)..................................................108
Figure 71. COSY spectrum of compound 2 (CD3OD, 400MHz)..................................................109
Figure 72. COSY spectrum of compound 2 (CD3OD, 400MHz)..................................................110
Figure 73. NOESY spectrum of compound 2 (CD3OD, 400MHz)..................................................111
Figure 74. HMQC spectrum of compound 2 (CD3OD, 400MHz)..................................................112
Figure 75. HMBC spectrum of compound 2 (CD3OD, 400MHz)..................................................113
Figure 76. HMBC spectrum of compound 2 (CD3OD, 400MHz)..................................................114
Figure 77. HMBC spectrum of compound 2 (CD3OD, 400MHz)..................................................115
Figure 78. 1H-NMR spectrum of compound 3 (CD3OD, 400MHz)..................................................116
Figure 79. 1H-NMR spectrum of compound 3 (CD3OD, 400MHz)..................................................117
Figure 80. 13C-NMR spectrum of compound 3 (CD3OD, 100MHz)..................................................118
Figure 81. 1H-NMR spectrum of compound 4 (CD3OD, 600MHz)..................................................119
Figure 82. 13C-NMR spectrum of compound 4 (CD3OD, 150MHz)..................................................120
Figure 83. 1H-NMR spectrum of compound 5 (CD3OD, 600MHz)..................................................121
Figure 84. 13C-NMR spectrum of compound 5 (CD3OD, 50MHz)...................................................122
Figure 85. COSY spectrum of compound 5 (CD3OD, 600MHz)..................................................123
Figure 86. NOESY spectrum of compound 5 (CD3OD, 600MHz)..................................................124
Figure 87. 1H-NMR spectrum of compound 6 (CD3OD, 600MHz)..................................................125
Figure 88. 13C-NMR spectrum of compound 6 (CD3OD, 50MHz)...................................................126
Figure 89. COSY spectrum of compound 6 (CD3OD, 600MHz)..................................................127
Figure 90. NOESY spectrum of compound 6 (CD3OD, 600MHz)..................................................128
Figure 91. 1H-NMR spectrum of compound 7 (CD3OD, 400MHz)..................................................129
Figure 92. 13C-NMR spectrum of compound 7 (CD3OD, 100MHz)..................................................130
Figure 93. COSY spectrum of compound 7 (CD3OD, 400MHz)..................................................131
Figure 94. COSY spectrum of compound 7 (CD3OD, 400MHz)..................................................132
Figure 95. NOESY spectrum of compound 7 (CD3OD, 400MHz)..................................................133
Figure 96. HMQC spectrum of compound 7 (CD3OD, 400MHz)..................................................134
Figure 97. HMBC spectrum of compound 7 (CD3OD, 400MHz)..................................................135
Figure 98. HMBC spectrum of compound 7 (CD3OD, 400MHz)..................................................136
Figure 99. HMBC spectrum of compound 7 (CD3OD, 400MHz)..................................................137
Figure 100. 1H-NMR spectrum of compound 8 (CD3OD, 400MHz)..................................................138
Figure 101. 13C-NMR spectrum of compound 8 (CD3OD, 50MHz)...................................................139
Figure 102. 1H-NMR spectrum of compound 9 (CD3OD, 400MHz)..................................................140
Figure 103. 13C-NMR spectrum of compound 9 (CD3OD, 100MHz)..................................................141

流程圖目錄
Scheme 1. Fractionation of methanol extracts of Planchonella obovata....................69
Scheme 2. Separation process of compounds 1-6 from n-BuOH soluble fraction.......70
Scheme 3. Separation process of compounds 1-3, 7-9 from EtOAc soluble fraction..71
dc.language.isozh-TW
dc.title山欖葉部之成份研究zh_TW
dc.titleChemical investigation of the leaves of Planchonella obovata (R. Br.) Pierreen
dc.typeThesis
dc.date.schoolyear97-1
dc.description.degree碩士
dc.contributor.oralexamcommittee徐鳳麟,沈雅敬
dc.subject.keyword山纜,zh_TW
dc.subject.keywordPlanchonella obovata,en
dc.relation.page141
dc.rights.note有償授權
dc.date.accepted2009-01-07
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept藥學研究所zh_TW
顯示於系所單位:藥學系

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  目前未授權公開取用
9.91 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved