請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41761
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 吳瑞碧(James Swi-Bea Wu) | |
dc.contributor.author | Hsiang-Shun Chen | en |
dc.contributor.author | 陳相訓 | zh_TW |
dc.date.accessioned | 2021-06-15T00:30:19Z | - |
dc.date.available | 2014-02-03 | |
dc.date.copyright | 2009-02-03 | |
dc.date.issued | 2009 | |
dc.date.submitted | 2009-01-19 | |
dc.identifier.citation | 尤俊傑。2006。奈米化紅麴發酵產物之安全性試驗與保健成分之血脂調節評估。國立台灣大學微生物與生化學研究所碩士論文。台北。
孔蓓、鄒進福、陳積光、廖義奎。2002。海水養殖珍珠表層微形貌的結構研究。礦產與地質。16(93):341-345。 王光利、竹劍平。2005。水溶性珍珠粉治療營養性貧血60例臨床觀察。中國中醫藥科技。12(2):110-111。 王進威。2006。擬合X光繞射峰形判定奈米微粒粉末之粒徑分佈。國立中央大學物理研究所碩士論文。 王進崑、柯文慶、洪瑞良、陳重文、盧榮錦、賴滋漢。2002。食品營養儀器分析。初版。富林。台中。 王學明。1989。介紹珍珠加工方法。中國中醫藥雜誌。14(6):28。 王麗雲、凌寶銀、趙榮。2007。超細珍珠粉對小鼠改善睡眠的影響。現代預防醫學。34(2):273-274。 李春華、林強、裴重華、文雁平。2001。珍珠超細粉體的製備及物性研究。海南大學學報。19(4):316-318。 李鳳生、劉宏英、李春俊、沙恒。1995。超細粉碎技術與超細珍珠粉。成都大學學報自然科學版。14(1):33-39。 林山陽。2003。藥品生體利用率與臨床療效。後基因體時代之生物技術。醫藥基因生物技術教學資源中心。191-203。 林以勤、邱正芬、林盟喬、潘文涵。2003。台灣地區老人骨質健康狀況。國民營養現況:1999-2000國民營養健康狀況變遷調查老人調查結果。中華民國行政院衛生署。台北。 林偉平、翁明耀。2004。臨床檢驗項目。尚捷醫事檢驗所。初版。 林麗娟。1994。X光繞射原理及其應用。工業材料。86:100-109。 邱亞伯。2004。樹薯之物理化學特性及應用。國立屏東科技大學熱帶農業暨國際合作研究所博士論文。 高秋華、黃開勳、楊祥良、徐輝碧。1999。珍珠層粉水解液預防白內障的作用機理探討。廣東藥學院學報。15(3):167-173。 馬紅豔、崔福齋。2003。淡水珍珠中球文石的XRD譜。礦物學報。23(4): 371-373。 張志玲。2003。吹散珍珠粉的迷霧。科學發展。369:56-61。 張亞敏。1988。水飛法之淺析。中醫藥信息。5:45-46。 張妮、郭繼春、張學雲、李加貴。2004。珍珠表面微形貌的AFM 和SEM 研究。岩石礦物學雜誌。23(4):370-374。 常林開、朱琰、余守志。2000。珍珠粉、珍珠層粉、珍珠母粉的熱重及熱重動力學。化學世界。9:476-478。 張建剛、童銀洪、劉貴昂。2003。納米珍珠層粉的製備。湛江海洋大學學報。23(6):26-29。 張剛生、李浩璇、陳益蘭。2002。珍珠層中的蛋白質及其與碳酸鈣相互作用研究進展。廣西科學。9:306-311。 張剛生、李浩璇。2004。淡水養殖珍珠的礦物組成特徵。岩石礦物學雜誌。23(1):89-93。 張恩、邢銘、彭明生。2007。珍珠的成分特點研究。岩石礦物學雜誌。26(4):381-386。 崔淑芳、趙勇、孫偉、曹平、湯球。2005。納米珍珠粉對大鼠鈣吸收利用的影響。中國實驗動物學報。13(4):204-207。 張燕萍、謝良、徐愛國、鄭茂強。2007。食品加工技術。五南出版社。台中。 張錦衛、竹劍平。2005。珍珠粉抗疲勞作用的實驗研究。中國醫院藥學雜誌。25(4):358-359。 張錦龍。2003。山藥酸乳酪添加奈米鈣對鈣質生物利用率之研究。國立台灣海洋大學食品科學系碩士論文。基隆。 許瑞婷。2005。研磨對臭氧降解纖維素之影響。國立台灣大學食品科技研究所碩士論文。台北。 陳時欣。2006。蔗糖酯對奈米/次微米纖維素懸浮液穩定性之研究。國立台灣大學食品科技研究所碩士論文。台北。 陳稚、陳波、揭新明、張立堅。2007。鄰苯二甲醛柱前衍生反相高效液相色譜法檢測珍珠粉中的氨基酸含量。時珍國醫國藥。18(7):1680-1681。 郭學東、趙保文。2001。珍珠粉不同加工方法粒徑大小的比較。首都醫藥。8:52。 童銀洪、杜曉東、陳敬中。2007。粉狀納米珍珠面膜的研製。實用技術。4(2):60-63。 黃青萍、盤紅梅。2000。珍珠的藥理作用及臨床應用。時珍國醫國藥。11(6):564-565。 黃福星、陳連劍、李婷、劉新宇、李成。2007。珍珠活性蛋白的安全性藥理學研究。中國臨床實用醫學。1(2):4-5。 楊明晶、呂中明、俞萍。2005。水溶性珍珠粉對小鼠免疫調節功能的影響。河北中醫。27(5):65-67 萬欣娣、任鳳章、劉平、田保紅、王文焱。2006。貝殼珍珠層的研究現狀。材料導報。20(10):21-24。 葉安義。2004。奈米科技於食品之應用。科學發展。384:44-49。 廖戎。2006。納米羥基磷灰石合成原料中含Ca2+物質的測定。西南民族大學學報。32(5):908-911。 趙明煜。2004。奈米纖維製備方法之研究。國立台灣大學食品科技研究所碩士論文。台北。 劉加明。2004。珍珠粉治療口腔潰瘍類疾病療效觀察。遼寧中醫雜誌。31(9):769。 劉起華、朱裡、徐曉。1999。珍珠的研究概況。4:61。 劉敬閣、杭群、廖晉堂。2002。古老的仙丹:真珠傳奇。世茂。台北。 劉曉榮、竹劍平。2005。珍珠粉治療孕婦缺鐵性貧血51例臨床觀察。中國中醫藥科技。12(6):396-397。 劉曉榮、俞荃、竹劍平。2004。珍珠粉促進產後泌乳臨床療效觀察。浙江臨床醫學。6(11):953。 衛生署。2002。國人膳食營養素參考攝取量Dietary Reference Intakes (DRIs) 衛生署。2003。健康食品之改善骨質疏鬆評估方法。920829衛署食字第0920401629號公告修正。 鄭全英、毛葉盟。2004。海水珍珠與淡水珍珠的成分、藥理作用及功效。上海中醫藥雜誌。38(3):54-55。 鄧穎珠。2000。珍珠末治療久治不愈傷口3例。廣東醫學。21(3):193。 蕭夙君。2007。珍珠粉抗氧化性與延緩衰老之研究。中山醫學大學營養科學研究所碩士論文。 蕭寧馨。2004。食品營養概論。時新出版社。台北。 賴滋漢、賴業超。1994。食品科技辭典。增訂版。富林出版社。台中。139。 錢湧、岳鐳。1998。珍珠粉碎工藝的比較。中成藥。20 韓建新、黃化、蔣建洪。1997年。超細粉碎技術及應用。江蘇化工。25(3):31-34。 Arnaud CD, Sanchez SD. 1990. The role of calcium in osteoporosis. Annu Rev Nutr 10:397-414. Association of Official Analytical Chemists. (AOAC) 1980. Official methods of analysis of the Association of Official Analytical Chemists. 13th ed. Arlington, Va. 871-872, 397-398. Bass JK and Chan GM. 2006. Calcium nutrition and metabolism during infancy. Nutri 22:1057–1066. Berland S, Delattre O, Borzeix S, Catonne Y, Lopez E. 2005. Nacre/bone interface changes in durable nacre endosseous implants in sheep. Biomaterials 26:2767-2773. Bess DH. 1991. Calcium supplement and bone loss: a review of controlled clinical trials. Am J Clin Nutr 54:274S-280S. Braun RM, Kolacz J, Hoyer DI. 2002. Fine dry comminution of calcium carbonate in a Hicom mill with an Inprosys air classifier. Minerals Engine. 15: 123–129. Chan WP, Liu JF, Chi WL. 2004. Evaluation of urine deoxypridinoline and bone mineral density in 861 Chinese during routing health examination. J Clin Densitom 7:307-312. Chang JH, Inventor; Hsin-fang Nanotech Co., Assignee. 2006. Oct. 10. Grinding Mill. U.S. patent 7,118,055 B2. Chang LK, Zhu Y, Yu SZ, 2000. Thermogravimetry and TG kinetics of pearl powder, pearl nacre powder and nacre mother of pearl powder. Chem World. 9:476-478. Choi BS, Ring TA. 2004. Stabilizing NaCl particles with Cd2+ in a saturated solution during ex situ PSD measurement. J Cryst Growth 269: 575-579. Cui SF, Zhao Y, Sun W, Cao P, Tang Q 2005. Effect of nano pearl powder on the calcium absorption and utilization in rats. Acta Lab Animal Sci Sinica 13:204-207. Delie F. 1998. Evalution of nano-and microparticle uptake by the gastrointestinal tract. Advan Drug Deliv Rev 34: 221-233. Douroumis D, Fahr A. 2006. Nano- and micro- particulate formulations of poorly water-soluble drugs by using a novel optimized technique. Eur J Pharm Biopharm 63:173-175. Duplat D, Chabadel A, Gallet M, Berland S, Bedouet L, Rousseau M, Kamel S, Milet C, Jurdic P, Brazier M, Lopez E. 2007. The in vitro osteoclastic degradation of nacre. Biomaterials 28:2155-2162. Gao HY, Ruan HJ, Yu ZY, Liao J, Chen HJ, Mao JL, 2006. Study on calcium absorption and utilization of nanometer pearl powder in rats. Acta Nutrimenta Sinica 28:135-138. Goddard M, Youmg G, Marcus R. 1986. Short-term effects of calcium carbonate, lactate, gluconate on the calcium-parathyroid axis in normal elderly men and women. Am J Clin Nutr 44:653-658. Gregory PJ. 2000. Calcium Salts. Prescriber's Letter. Document 1603013. Hanzlik RP, Fowler SC, Fisher DH. 2005. Relative bioavailability of calcium from calcium formate, calcium citrate, and calcium carbonate. J Pharmacol Exp Ther 313:1217-1222. Heaney RP, Rafferty K, Dowell MS, Bierman J. 2005.Calcium Fortification Systems Differ in Bioavailability. J Amer Diet Associ 105:807-809. Heaney RP. 2003. Quantifying human calcium absorption using pharmacokinetic methods. J Nutr 133:1224-1226. Huang B, Zhang J, Hou J, Chen C. 2003. Free radical scavenging efficiency of nano-Se in vitro. Free Radic Biol Med 35:805-813. Jafari SM, Assadpoor E, Bhandari B, He Y. 2008. Nano-particle encapsulation of fish oil by spray drying. Food Res Int 41:172–183. Ji B, Gao H. 2004. Mechanical properties of nanostructure of biological materials. J Mechanics Physics Solids 52:1963-1990. Jian M. 1999. Primary approach to the relationship between powdering time and particle size in the process of superfine powdering. Mining RD. 19:44-45. Keller L, Rask J, Buseck P. 1989. JCPDS 41-1475: Arizona State University: Tempe, AZ, USA, ICDD. Kruger MC, Gallaher BW, Schol LM. 2003. Bioavailability of calcium is equivalent from milk fortified with either calcium carbonate or milk calcium in growing male rats. Nutri Res 23: 1229-1237. Lamghari M, Almeida MJ, Berland S, Huet H, Laurent A, Milet C, and Lopez E. 1999b. Stimulation of bone marrow cells and bone formation by nacre: in vivo and in vitro studies. Bone 25:91S-94S. Lamghari M, Berland S, Laurent A, Huet H, Lopez E. 2001. Bone reactions to nacre injected percutaneously into the vertebrae of sheep. Biomaterials 22: 555-562. Lamghari M, Huet H, Laurent A, Berland S, Lopez E. 1999a. A model for evaluating injectable bone replacements in the vertebrae of sheep: radiological and histological study. Biomaterials 20:2107-2114. Lazcano-Ponce E, Tamayo J, Cruz-Valdez A, Diaz R, Hernandez B, Del Cueto R, Hernandez-Avila M. 2003. Peak bone mineral area density and determinants among female aged 9 to 24 years in Maxico. Osteoporos Int 14:539-549. Li X, Liu L, Shen S. 2001. The influence of starting materials on the structure of ultrafine carbon powders. Carbon 39: 2335–2338. Liao H, Mutvei H , Sjostrom M, Hammarstrom L, Li J. 2000. Tissue responses to natural aragonite (Margaritifera shell) implants in vivo. Biomaterials 21:457-468. Liao H, Mutvei H, Hammarstrom L, Wurtz T, Li J. 2002. Tissue responses to nacreous implants in rat femur: an in situ hybridization and histochemical study. Biomaterials 23:2693-2701. Liversidge GG, Cundy KC. 1995. Particle size reduction for improvement of oral bioavailability of hydrophobic drugs: absolute oral bioavailability of nanocrystalline danazol in beagle dogs. Int J Pharm 125:91-97. Lopez E, Faou AL, Borzeix S, Berland S, 2000. Stimulation of rat cutaneous fibroblasts and their synthetic activity by implants of powdered nacre (mother of pearl). Tissue Cell 32:95–101. Maria TMC, Carvalho RA, Sobral PJA, Habitante AMBQ, Solorza-Feria J. 2008. The effect of the degree of hydrolysis of the PVA and the plasticizer concentration on the color, opacity, and thermal and mechanical properties of films based on PVA and gelatin blends. J Food Engine 87:191–199. Merisko-Liversidge GG, Cooper ER. 2003. Nanosizing: a formulating approach for poorly water soluble compounds. Eur J Pharm Sci 18:113-120. Murthy CT, Bhattacharya S. 2008. Cryogenic grinding of black pepper. J Food Engine. 85:18–28. Naganuma T, Ogawa T, Hirabayashi J, Kasai K, Kamiya H, Muramoto K. 2006. Isolation, characterization and molecular evolution of a novel pearl shell lectin from a marine bivalve, Pteria penguin. Mol Divers 10: 607-618. Nordin BEC. 1997. Calcium and osteoporosis. Nutrition 13:664-686. Patwardhan UN, Pahuja DN, Samuel AM. 2001. Calcium bioavailability: an in vivo assessment. Nutri Res 21: 667-675. Pranoto Y, Rakshit SK, Salokhe VM, 2005. Enhancing antimicrobial activity of chitosan films by incorporating garlic oil, potassium sorbate and nisin. LWT 38:859–865. Pyramides G, Robinson JW, Zito SW. 1995. The combined use of DSC and TGA for the thermal analysis of atenolol tablets. J Pharma Biomed Ana 13(2):103-110. Reginster JY, Denis D, Bartsch V, Deroisy R, Zegels B, Franchimont P. 1993. Acute biochemical variations induced by four different calcium salts in healthy male volunteers. Osteoporosis Int 3:271-5. Roig MJ, AlegrõÂa A, Barbera R, Farre R, Lagarda MJ. 1999. Calcium bioavailability in human milk, cow milk and infant formula: comparison between dialysis and solubility methods. Food Chem 65: 353-357. Schwarz JA, Contescu CL. 1999. Surface of nanoparticle and porous material. Maroel Dekker. New York. 35:45. Setiowaty G, Man YBC. 2003. A rapid Fourier transform infrared spectroscopic method for the determination of 2-TBARS in palm olein. Food Chem 81:147-154. Shen YT, Zhu J, Zhang HB, Zhao F. 2006. In vitro osteogenetic activity of pearl. Biomaterials 27: 281-287. Shires R, Kessler GM. 1990. The absorption of tricalcium phosphate and its acute metabolic effects. Calcified Tissue Int 47:142-4. Silve C, Lopez E, Vidal B, Smith DC, Camprasse G, Camprasse S, Couly G. 1992. Nacre initiates biomineralization by human osteoblasts maintained in vitro. Calcified Tissue Int 51:363-9. Singh G, Arora S, Sharma GS, Sindhu JS, Kansal VK, Sangwan RB. 2007. Heat stability and calcium bioavailability of calcium-fortified milk. LWT. 40: 625-631. Sittikulwitit S, Sirichakwal PP, Puwastien P, Chavasit V, Sungpuag P. 2004. In vitro bioavailability of calcium from chicken bone extract powder and its fortified products. J Food Composi Ana 17: 321-329. Sommer M, Stenger F, Peukert W, Wagner NJ. 2006. Agglomeration and breakage of nanoparticles in stirred media mills - a comparison of different methods and models. Chem Engine Sci 61:135-148. Sonia Molina-Boisseau, Nadine Le Bolay. 2002. Characterisation of the physicochemical properties of polymers ground in a vibrated bead mill. Powder Tech 128:99– 106. Tsai KS, Pang WH, Hsu SH, Cheng WC, Chen CK, Chieng PU, Yang RS and Twu ST. 1996. Sexual differences in bone markers and bone mineral density of normal Chinese. Calcif Tissue Int 59:454-460. Tsukamoto D,Sarashina I, Endo K. 2004. Structure and expression of an unusually acidic matrix protein of pearl oyster shells. Biochem Biophy Res Communi 320: 1175-1180. Venkatesan N, Yoshimitsu J, Ito Y, Shibata N, Takada K. 2005. Liquid filled nanoparticles as a drug delivery tool for protein therapeutics. Biomaterials 26: 7154-7163. Wang H, Zhang J, Yu H. 2007. Elemental selenium at nano size possesses lower toxicity without compromising the fundamental effect on selenoenzymes: comparison with selenomethionine in mice. Free Radic Biol Med 42:1524-1533. Westbroek P, Marin F. 1998. A marriage of bone and nacre. Nature 392:861-862. Wills MR. 1969. The urinary calcium/creatinine ratio as a measure of urinary calcium excretion. J Clin Pathol 22:287-290. Wu JZ, Ho PC. 2006. Evaluation of the in vitro activity and in vivo bioavailability of realgar nanoparticles prepared by cryo-grinding. Eur J Pharm Sci 29:35-44. Wu W, He T, Chen JF, Zhang X, Chen Y. 2006. Study on in situ preparation of nano calcium carbonate/PMMA composite particles. Materials Letters 60: 2410–2415. Xue KE, Ying XU, She ZY. 2006. Study of transdermal permeability on mouse skin in vitro about calcium carbonate in micro and nano pearl powder. Chin J New Drug Clin Rem. 25(1): 25. Yang NP, Deng CY, Chou YJ, Chen PQ, Lin CH, Chou P, Chang HJ. 2006. Estimated prevalence of osteoporosis from a Nationwide Health Insurance database in Taiwan. Health Policy 75:329-337. Yang RS, Liu TK, Tsai KS. 1994. The acute metabolic effects of oral tricalcium phosphate and calcium carbonate. Calcified Tissue Int 55:335-341. Yang Y, 2000. The identification of pearl powder. J Yunnan College of Traditional Chinese Medicine 23(1):22-23. Zhang C, Li S, Ma Z, Xie L, Zhang R. 2006. A novel matrix protein p10 from the nacre of pearl oyster (Pinctada fucata) and its effects on both CaCO3 crystal formation and mineralogenic cells. Mar Biotechnol (NY) 8:624-633. Zhang J, Wang H, Bao Y, Zhang L. 2004. Nano red elemental selenium has no size effect in the induction of seleno-enzymes in both cultured cells and mice. Life Sci 75:237-44. Zhang JS, Wang HL, Yan XX, Zhang LD. 2005. Comparison of short-term toxicity between Nano-Se and selenite in mice. Life Sci 76: 1099-1109. Zhang LH,Wang JL,Mei HP, Luo B. 2002. Beauty effect and health care efficacy of pearl. Deterg Cosmet 25,177-180. Zhang N, Guo JC, Zhan GXY, Li JG. 2004. An AFM and SEM study on microscopic figure of pearl surface. Acta Petrologica et Mineralogica 23:370-374. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41761 | - |
dc.description.abstract | 珍珠為天然軟體動物體內分泌之珍珠質,經2-5年累積於體內所形成,將珍珠研磨成細粉即為珍珠粉,為中國人傳統之名貴中藥,並已使用超過一千年,目前國內以食品管理。奈米科技為近年來重要之科技發展之一,奈米科技亦漸漸應用於食品、藥品與生物科技之發展上,因許多物質在奈米化後,其特性將可能改變。本研究以新型之乾式低溫奈米研粉系統,將淡水養殖之三角帆蚌珍珠研磨成奈米珍珠粉與微米珍珠粉,並利用物理、化學或生物方法探討珍珠粉之製備、粒徑、營養成分、生理安全性、熱特性、顏色變化、晶相、微觀特性、生體可用率等。
結果顯示,使用乾式低溫奈米研粉系統確實可製備奈米珍珠粉,證明物理研粉法可將珍珠粉奈米化,且粉碎比可達186,170,其粒徑分佈相當集中。淡水養殖三角帆蚌珍珠之鈣含量約36.05%,粗蛋白約2.1%~2.0%,碳水化合物約1.0%~1.1%,粗脂肪約0.1%。而微量元素或微量元素之化合物總量約為6.05%。矽、硫、磷亦為珍珠粉之成分。砷、鉛、鎘、汞等四種重金屬並未檢出,表示安全性可以預期,養殖水質符合標準。由熱重動力學參數,發現200℃前之失重應為水分含量,第一階段熱裂解約在224~500℃,為粗蛋白、碳水化合物、粗脂質之總量,約為4.2%,第二階段熱裂解約在500~770℃,主要為二氧化碳之散失與少量硫、磷之含量,依此推算碳酸鈣之含量約為90.0%。 珍珠研磨後,其粉紅色光澤均消失變成白色,紅色消失應為紅色物質被破壞,顏色變白可能為珍珠表面粗糙使入射光散射所造成。研粉過程中輕微綠色物質釋出,黃色物質破壞。分析XRD繞射峰強度,發現在微米化過程中可能影響晶系穩定性,在奈米化後顆粒內應力才消失。繞射峰無寬化效應,其晶粒大小應大於0.1 μm。由電子顯微鏡與粒徑分佈分析發現奈米化珍珠粉有團聚現象,故建議珍珠粉之粒徑檢測應同時考慮使用雷射粒徑分析儀分析並配合穿透式電子顯微鏡以確認。 藉由臨床認定的健康受試者,使其攝取含780 mg鈣質之奈米與微米珍珠粉,發現奈米珍珠粉攝取後,由血清總鈣質的增加、尿液總鈣/肌酸酐的增加、血清副甲狀腺素的降低與相關生體可用率等指標,發現奈米珍珠粉的生體可用率應優於微米珍珠粉。 | zh_TW |
dc.description.abstract | Pearl is a natural product from 2-5 years old mollusks. Pearl powder, prepared from milling, has been a valuable medicine to Chinese people for more than 1000 years. It is regarded as a food supplement in Taiwan. Nanotechnology is a new technology in many industries including food, pharmacy and biotechnology. The characteristics of materials change in nanonization. In the present study, cultivated fresh water pearl millet (Hyriopsis cumingii Lea) over 3 years old was ground to nanonized pearl powder (NPP) and micronized pearl powder (MPP) using a novel dry cryo-nanonization grinding system. The particle size distribution, composition, safety, thermal characteristics, color change, crystallinity, microcosmic characteristics, and bioavailability of pearl powder were investigated by physical, chemistry, and biological methods.
Results show that the size reduction ratio reached 186,170 and that the particle size distribution of the nanonized pearl powder was centralized by the novel dry cryo-nanonization grinding system. The cultivated fresh water pearl contains about 36.05% calcium, 2.0 ~ 2.1% crude protein, 1.0 ~ 1.1% carbohydrate, and 0.1% crude fat. The total trace elements and their derivates were about 6.05%. Silicon, sulfur, and phosphorous were present. No residual heavy metals including arsenic, lead, cadmium and mercury were detected, supporting the safety of these pearl powders as a food supplement. In thermal gravimetric analysis indicated that water loss occurred before reaching 200 0C, that the weight loss caused by thermal decomposition of crude protein, carbohydrate and crude fat occurred in stage 1 around 224~500℃ was 4.2% in total, and the weight loss caused by the dissipation of carbon dioxide mainly plus the burning of trace sulfur or phosphorous occurred in stage 2 around 500 ~770℃. The data in stage 2 corresponds to approximately 90.0% content of calcium carbonate in pearl. The lustrous pink color disappeared and white color appeared in grinding pearl, presumably resulted from the destruction of outer layer. Light green tint showed up and yellow tint reduced as well. The XRD spectra showed that the crystallinity stability is affected during micronization, while the inner strain in pearl powder is reduced after nanonization. The absorption peak didn’t spread wide, indicating that the crystallite size should be over 0.1 μm. TEM and particle size analyses confirmed the agglomeration in NPP. It is suggested to use laser particle size analyzer coupled with TEM analysis for sizing NPP. Either NPP or MPP containing 780 mg calcium was orally administered to each healthy adult in clinical trials. The serum total calcium increment, the serum intact parathyroid hormone reduction, and the urine calcium/creatinine ratio increment and bioavailability indexes showed that better bioavailability of NPP than MPP. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T00:30:19Z (GMT). No. of bitstreams: 1 ntu-98-D92641001-1.pdf: 1609472 bytes, checksum: fd93c174ff4a74dac8057e751341907b (MD5) Previous issue date: 2009 | en |
dc.description.tableofcontents | 口試委員會審定書-------------------------------------------------------- i
謝誌------------------------------------------------------------------------- ii 中文摘要-------------------------------------------------------------------- iii 英文摘要-------------------------------------------------------------------- v 目錄------------------------------------------------------------------------- vii 圖目錄---------------------------------------------------------------------- xi 表目錄---------------------------------------------------------------------- xii 第一章 前言---------------------------------------------------------------1 第二章 文獻探討----------------------------------------------------------2 2.1 珍珠簡介-------------------------------------------------------------- 2 2.2 珍珠粉之成分與功效------------------------------------------------ 3 2.3 珍珠之研粉------------------------------------------------------------ 4 2.4 奈米科技-------------------------------------------------------------- 5 2.5 物質奈米化之方法--------------------------------------------------- 5 2.6 機器球磨法製備奈米化食品---------------------------------------- 9 2.6.1 濕式研磨------------------------------------------------------------ 9 2.6.2 乾式研磨------------------------------------------------------------ 10 2.7 奈米微粒之特性檢測------------------------------------------------ 10 2.8 國人鈣質攝取狀況與骨骼代謝------------------------------------- 12 2.8.1 國人鈣質攝取狀況與骨質疏鬆症-------------------------------- 12 2.8.2 骨骼代謝------------------------------------------------------------ 14 2.9 生體可用率------------------------------------------------------------ 17 第三章 以低溫乾式奈米研磨系統法製備奈米級珍珠粉------------- 19 3.1 前言-------------------------------------------------------------------- 19 3.2 動機與目的------------------------------------------------------------ 21 3.3 材料與方法------------------------------------------------------------ 22 3.3.1 珍珠材料------------------------------------------------------------ 22 3.3.2 設備------------------------------------------------------------------ 22 3.3.3 研究方法------------------------------------------------------------ 22 3.3.4 乾式低溫奈米研磨系統------------------------------------------- 24 3.3.5 平均重量分析------------------------------------------------------- 24 3.3.6 原始顆粒大小分析------------------------------------------------- 24 3.3.7 珍珠粉平均粒徑與粒徑分佈-------------------------------------- 26 3.3.8 粉碎比--------------------------------------------------------------- 27 3.3.9統計分析------------------------------------------------------------- 27 3.4 結果與討論------------------------------------------------------------ 29 3.4.1 使用乾式低溫奈米研粉系統研磨奈米珍珠粉------------------ 29 3.4.2 平均重量分析------------------------------------------------------- 31 3.4.3 珍珠原珠起始平均粒徑------------------------------------------- 33 3.4.4 研磨後微米級、奈米級與市售水飛法珍珠粉之粉末平均粒徑 33 3.4.5 粉碎比--------------------------------------------------------------- 41 3.5 結語-------------------------------------------------------------------- 43 第四章 奈米化珍珠粉之成分分析-------------------------------------- 44 4.1 前言-------------------------------------------------------------------- 44 4.2 動機與目的------------------------------------------------------------ 46 4.3 材料與方法------------------------------------------------------------ 47 4.3.1 珍珠材料------------------------------------------------------------ 47 4.3.2 設備------------------------------------------------------------------ 47 4.3.3 基本營養成分分析------------------------------------------------- 47 4.3.4 重金屬成分分析---------------------------------------------------- 48 4.3.5 穿透式電子顯微鏡(TEM)分析------------------------------------ 48 4.3.6 熱重分析(TGA)----------------------------------------------------- 49 4.4 結果與討論------------------------------------------------------------ 51 4.4.1 奈米珍珠粉之基本營養成分分析-------------------------------- 51 4.4.2 珍珠粉之重金屬成分分析----------------------------------------- 54 4.4.3 奈米珍珠粉之微量礦物質元素(trace elements)分析----------- 56 4.4.4 以穿透式電子顯微鏡(TEM)分析奈米珍珠粉之原子組成----- 58 4.4.5 珍珠粉之熱重分析(TGA) ----------------------------------------- 60 4.5 結語-------------------------------------------------------------------- 64 第五章 奈米珍珠粉之理化特性----------------------------------------- 65 5.1 前言-------------------------------------------------------------------- 65 5.2 動機與目的------------------------------------------------------------ 67 5.3 材料與方法------------------------------------------------------------ 68 5.3.1 珍珠粉材料--------------------------------------------------------- 68 5.3.2 設備與藥品--------------------------------------------------------- 68 5.3.3 顏色分析------------------------------------------------------------ 68 5.3.4 X光粉末繞射(XRD)分析------------------------------------------- 69 5.3.5 穿透式電子顯微鏡(TEM)分析------------------------------------ 70 5.4 結果與討論------------------------------------------------------------ 71 5.4.1 珍珠研磨前後之顏色分析----------------------------------------- 71 5.4.2 X光繞射(XRD)分析------------------------------------------------ 74 5.4.3 穿透式電子顯微鏡(TEM)分析------------------------------------ 78 5.4 結語-------------------------------------------------------------------- 82 第六章 奈米化珍珠粉之成人鈣質生體可用率------------------------ 83 6.1 前言-------------------------------------------------------------------- 83 6.2 動機與目的------------------------------------------------------------ 86 6.3 材料與方法------------------------------------------------------------ 87 6.3.1 珍珠粉材料--------------------------------------------------------- 87 6.3.2 設備------------------------------------------------------------------ 87 6.3.3 藥品------------------------------------------------------------------ 87 6.3.4 試驗設計------------------------------------------------------------ 88 6.3.5 人體吸收試驗評估方法------------------------------------------- 90 6.3.6 血清總鈣與尿液總鈣分析----------------------------------------- 90 6.3.7 鈣質生體可用率---------------------------------------------------- 91 6.3.8 血清副甲狀腺素分析---------------------------------------------- 92 6.3.9 尿液肌酸酐分析---------------------------------------------------- 92 6.3.10 統計分析----------------------------------------------------------- 93 6.4 結果與討論------------------------------------------------------------ 94 6.4.1 受試者基本資料---------------------------------------------------- 94 6.4.2 血清總鈣分析------------------------------------------------------- 96 6.4.3 鈣質生體可用率分析---------------------------------------------- 100 6.4.4 血清副甲狀腺素分析---------------------------------------------- 103 6.4.5 尿液總鈣/肌酸酐比值分析---------------------------------------- 108 6.5 結語-------------------------------------------------------------------- 113 第七章 結論--------------------------------------------------------------- 114 參考文獻-------------------------------------------------------------------- 116 | |
dc.language.iso | zh-TW | |
dc.title | 奈米化珍珠粉之理化特性與生體可用率 | zh_TW |
dc.title | Physicochemical Characteristics and Bioavailability of Nanonized Pearl Powder | en |
dc.type | Thesis | |
dc.date.schoolyear | 97-1 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 王進崑(Chin-Kun Wang),鄭瑞棠(Juei-Tang Cheng),江孟燦(Meng-Tsan Chiang),吳明昌(Ming-Chang Wu),沈賜川(Szu-Chuan Shen) | |
dc.subject.keyword | 珍珠粉,鈣,奈米科技,粒徑,成分分析,理化特性,生體可用率, | zh_TW |
dc.subject.keyword | pearl powder,calcium,nanotechnology,particle size,approximate analysis,physicochemical properties,bioavailability, | en |
dc.relation.page | 126 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2009-01-19 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 食品科技研究所 | zh_TW |
顯示於系所單位: | 食品科技研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-98-1.pdf 目前未授權公開取用 | 1.57 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。