Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電機工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41496
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李泰成
dc.contributor.authorKe-Tsung Chenen
dc.contributor.author陳科璁zh_TW
dc.date.accessioned2021-06-15T00:20:50Z-
dc.date.available2010-02-12
dc.date.copyright2009-02-12
dc.date.issued2009
dc.date.submitted2009-02-06
dc.identifier.citation[1] C. Ting, “An Audio Analog-to-Digital Converter with Wide Dynamic Range and
Low Distortion,” in National Taiwan Univerity, Master Thesis, Apr. 2008.
[2] Y. Shu, B. Song, and K. Bacrania, “A 65nm CMOS CT ΔΣ Modulator with 81dB
DR and 8MHz BW Auto-Tuned by Pulse Injection,” IEEE J. Solid-State Circuits,
pp. 500-501 & 631, Feb. 2008.
[3] Z. Li and T. S. Fiez, “A 14-Bit Continuous-Time Delta-Sigma A/D Modulator with
2.5-MHz Signal Bandwidth,” IEEE J. Solid-State Circuits, vol. 42, no. 9, pp. 1873-
1883, Sep. 2007.
[4] R. Schoofs, M. S. J. Steyaert, and W. M. C. Sansen, “A Design-Optimized Continu-
ous-Time Delta-Sigma ADC for WLAN Applications,” IEEE Trans. Circuits Syst. I
, vol. 54, no.1, pp. 209-217, Jan. 2007.
[5] M. Tsai, “A Third-Order Multi-Bit Continuous-Time Delta-Sigma Modulator with
Incremental Data Weighted Averaging,” in National Taiwan Univerity, Master
Thesis, Jan. 2007.
[6] S. Pavan and N. Krishnapura, “Automatic Tuning of Time Constants in Continuous
Time Delta-Sigma Modulators,” IEEE Trans. Circuits Syst. II Expr. Briefs, vol. 54,
no. 4, pp. 308-312, Apr. 2007.
[7] F. Maloberti, Data Converters, Springer, 2007.
[8] K. Pun, S. Chatterjee, and P. R. Kinget, “A 0.5-V 74-dB SNDR 25-kHz Continuous
Time Delta-Sigma Modulator with a Return-to-Open DAC,” IEEE J. Solid-State
Circuits, vol. 42, no. 3, pp. 496-507, Mar. 2007.
[9] T. Lee, “Homework II of Advanced Analog Integrated Circuits,” GIEE course of
NTU in Taiwan, Mar. 2006.
[10] G. Mitteregger, C. Ebner, S. Mechnig, T. Blon, C. Holuigue, and E. Romani, “A 20-
mW 640-MHz CMOS Continuous-Time ΣΔ ADC with 20-MHz Signal Bandwidth
, 80-dB Dynamic Range and 12-bit ENOB,” IEEE J. Solid-State Circuits, vol. 41,
no. 12, pp. 2641-2649, Dec. 2006.
[11] H. Zare-Hoseini and I. Kale, “Clock-Jitter Reduction Techniques in Continuous-
Time Delta-Sigma Modulators,” IEEE International Symposium on VLSI DAT, pp.
1-2, Apr. 2006.
[12] S. Yu, “Analysis and Design of Single-Bit Sigma-Delta Modulators Using the The-
ory of Sliding Modes,” IEEE Trans. Control Syst. Tech. vol. 14, no. 2, Mar. 2006.
[13] W. Liu, “On Analysis of Continuous-Time Sigma-Delta ADC with Practical Consi-
derations,” in National Chiao-Tung Univerity, Master Thesis, Oct. 2006.
[14] R. Schreier and G. C. Temes, Understanding Delta-Sigma Data Converters, IEEE
Press, Wiley & Sons, 2005.
[15] K. Nam, S. Lee, D. K. Su, and B. A. Wooley, “A Low-Voltage Low-Power Sigma-
Delta Modulator for Broadband Analog-to-Digital Conversion,” IEEE J. Solid-
State Circuits, vol. 40, no. 9, pp. 1855-1864, Sep. 2005.
[16] Y. Fujimoto, P. L. Ré, and M. Miyamoto, “A Delta-Sigma Modulator for a 1-Bit
Digital Switching Amplifier,” IEEE J. Solid-State Circuits, vol. 40, no. 9, pp. 1865-
1871, Sep. 2005.
[17] M. Ortmanns, F. Gerfers, and Y. Manoli, “A Continuous-Time ΣΔ Modulator with
Reduced Sensitivity to Clock Jitter Through SCR Feedback,” IEEE Trans. Circuits
Syst. I, vol. 52, no. 5, pp. 875-884, May 2005.
[18] Y. Lin, “Novel Three-Level Modulation Technique for a Class-D Audio Amplifier,”
in National Sun Yat-sen Univerity, Master Thesis, Jul. 2005.
[19] E. H. Dagher, P. A. Stubberud, W. K. Masenten, M. Conta, and T. Dinh, “A 2-GHz
Analog-to-Digital Delta-Sigma Modulator for CDMA Receivers with 79-dB Sig-
nal-to-Noise Ration in 1.23-MHz Bandwidth,” IEEE J. Solid-State Circuits, vol. 39
, no. 11, pp. 1819-1828, Nov. 2004.
[20] N. Beilleau, H. Aboushady, and M. M. Louërat, “Filtering Adjacent Channel Bloc-
kers using Signal-Transfer-Function of Continuous-Time ΣΔ Modulators,” IEEE
Midwest Symp. Circuits Syst., vol. 1, pp. I - 329-332, Jul. 2004.
[21] S. Yan and E. Sánchez-Sinencio, “A Continuous-Time ΣΔ Modulator with 88-dB
Dynamic Range and 1.1-MHz Signal Bandwidth,” IEEE J. Solid-State Circuits, vol
. 39, no. 1, pp. 75-86, Jan. 2004.
[22] O. Bajdechi and J. H. Huijsing, Systematic Design of Sigma-Delta Analog-to-Digi-
tal Converters, Kluwer Academic Pub., 2004.
[23] M. Ortmanns, F. Gerfers, and Y. Manoli, “Compensation of Finite Gain-Bandwidth
Induced Error in Continuous-Time Sigma-Delta Modulators,” IEEE Trans. Circuits
Syst. I, vol. 51, no. 6, pp. 1088-1099, Jun. 2004.
[24] M. Ortmanns, F. Gerfers, and Y. Manoli, “A 1.5-V 12-bit Power-Efficient Continu-
ous-Time Third-Order ΣΔ Modulator,” IEEE J. Solid-State Circuits, vol. 38, no. 8,
pp. 1343-1352, Aug. 2003.
[25] M. S. Kappes, “A 2.2-mW CMOS Bandpass Continuous-Time Multibit Δ-Σ Band-
width for Wireless Applications,” IEEE J. Solid-State Circuits, vol. 38, no. 7, pp.
1098-1104, Jul. 2003.
[26] G. I. Bourdopoulos, A. Pnevmatikakis, V. Anastassopoulos, and T. L. Deliyannis,
Delta-Sigma Modulators – Modeling, Design, and Applications, Imperial College
Press, 2003.
[27] M. Choi and A. A. Abidi, “A 6-b 1.3-Gsample/s A/D Converter in 0.35μm CMOS,”
IEEE J. Solid-State Circuits, vol. 36, no. 12, pp.1847-1858, Dec. 2001.
[28] B. Razavi, Design of Analog CMOS Integrated Circuits, McGraw-Hill, Inc., 2001.
[29] J. Ho, “On the Design and Test of Switched-Current Sigma-Delta Modulator,” in
National Yunlin University of Science & Technology, Master Thesis, Jun. 2001.
[30] E. Fogleman, J. Welz, and I. Galton, “An Audio ADC Delta-Sigma Modulator with
100-dB Peak SINAD and 102-dB DR Using a Second-Order Mismatch-Shaping
DAC,” IEEE J. Solid-State Circuits, vol. 36, no. 3, pp. 339-348, Mar. 2001.
[31] T. Burger and Q. Huang, “A 13.5-mW 185-Msample/s ΔΣ Modulator for UMTS/
GSM Dual-Standard IF Reception,” IEEE J. Solid-State Circuits, vol. 36, no. 12,
pp. 1868-1878, Dec. 2001.
[32] J. A. Cherry and W. M. Snelgrove, Continuous-Time Delta-Sigma Modulators for
High-Speed A/D Conversion, Kluwer Academic Pub., 2000.
[33] T. Kuo, K. Chen, and J. Chen, “Automatic Coefficients Design for High-Order Sig-
ma-Delta Modulators,” IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process.
, vol. 46, no. 1, Jan. 1999.
[34] S. R. Norsworthy, R. Schreier, and G. C. Temes, Delta-Sigma Data Converters:
Theory, Design, and Simulation, IEEE Press, New York, 1997.
[35] D. A. Johns and K. Martin, Analog Integrated Circuit Design, Wiley & Sons, 1997.
[36] O. Shoaei, “Continuous-Time Delta-Sigma A/D Converters for High Speed Appli-
Cation,” in Carleton University, PHD Thesis, Nov. 1995.
[37] B. Razavi, Principles of Data Conversion System Design, Wiley & Sons, 1995.
[38] J. Yuan and C. Svensson, “High-Speed CMOS Circuit Technique,” IEEE J. Solid-
S tate Circuits, vol. 24, no. 1, pp. 62-70, Feb. 1989.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41496-
dc.description.abstract隨著3G時代的來臨,從短距離到動輒數百公里的無線電資料與語音傳輸技術不斷地進展,使得無線行動通訊在人類生活中扮演相當重要的角色。由於高輸入動態範圍、高傳輸速率與低功率的需求,使得設計類比數位轉換器(ADCs)也必須達到較高解析度、頻寬與低功率的規格方能滿足這些嚴苛條件外,也可寬鬆無線接收器類比前端(analog front-end)電路部份的設計要求。
  本論文在系統層面設計上,著重於電路延遲效應補償的介紹以及時脈抖動的研究;在電路層面設計上,透過仔細地分析、推導與模擬,針對元件非理想效應來取捨評估元件規格。論文主要應用於寬頻分碼多工擷取(WCDMA)無線電通訊上,電路實現在訊號頻寬5-MHz,操作在320-MHz取樣頻率(即過取樣率為32)上之一位元量化三階低通連續時間型三角積分類比數位資料轉換調變器(delta-sigma A/D modulator)。量測結果達56-dB動態範圍(dynamic range)與最大SNR值51.3-dB(相當於8.2-bit有效位元)。利用2P4M 3.3-V台積電CMOS 0.35-μm製程與R-C積分器技術,電流功率消耗13.6-mA。
zh_TW
dc.description.abstractWith the advent of the third-generation (3G) era, wireless technologies on data and sounds transmission ranging from short distances to even hundreds of kilometers at its constant advances have had mobile telecommunications to be a quite important role in human life. Due to the demand for high input dynamic range, data rate, and low power, designing analog-to-digital (A/D) data converters must achieve not only the stringent conditions of higher resolution, higher bandwidth, and low power consumption, but also relax the requirements for the analog front-end parts of radio receivers.
  This thesis on system-level design focuses on introduction to the compensation of circuit-delayed effects and research to clock jitter; on circuit-level design it shows a better trade-off estimate on specifications through carefully analyzing, deriving out, and simulating the nonideal effects of circuit elements. The proposed implementation of the single-bit third-order low-pass continuous-time delta-sigma analog-to-digital (A/D) modulator can be mainly applied for wideband-code-division-multiple-access (i.e., so-called WCDMA) radio communications with 5-MHz signal bandwidth at sampling frequency of 320-MHz. Experimental results show that a signal-to-noise ratio (SNR) of 51.3dB (i.e., 8.2-bit ENOB) and a dynamic range of 56dB in the 2P4M 3.3-V TSMC CMOS 0.35-μm process with a R-C integrator topology. The measured current consumption is 13.6-mA.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T00:20:50Z (GMT). No. of bitstreams: 1
ntu-98-J94921044-1.pdf: 3316179 bytes, checksum: 0e6d62ba837b110f4980595fab9fd1b5 (MD5)
Previous issue date: 2009
en
dc.description.tableofcontents誌  謝 ....................................................................................................................... I
中文摘要 .................................................................................................................... III
英文摘要 ..................................................................................................................... V
圖 目錄 ..................................................................................................................... X
表 目錄 ................................................................................................................. XIV

第一章 緒論 ................................................................................................................ 1
1.1 研究動機 .............................................................................................. 1
1.2 論文貢獻 .............................................................................................. 3
1.3 論文組織 .............................................................................................. 3
第二章 Sigma-Delta(ΣΔ)三角積分調變器概論 ................................................... 5
2.1 性能衡量標準 ...................................................................................... 5
2.1.1 SNR / SNDR / SFDR ............................................................ 5
2.1.2 動態範圍(Dynamic Range)................................................. 6
2.1.3 量化雜訊(Quantization Noise)............................................ 7
2.1.4 過取樣率(Oversampling Ratio)........................................... 9
2.1.5 雜訊移頻(Noise-Shaping).................................................. 10
2.2 ΣΔ ADC系統 ...................................................................................... 11
2.3 ΣΔ調變器的基本架構 ....................................................................... 13
2.3.1 一階ΣΔ調變器 .................................................................... 13
2.3.2 二階ΣΔ調變器 .................................................................... 15
2.3.3 高階ΣΔ調變器 .................................................................... 16
2.3.4 CIFB架構 ............................................................................. 17
2.3.5 CIFB與CIFF架構比較 ....................................................... 18
2.3.6 MASH架構 .......................................................................... 20
2.4 ΣΔ調變器的零點分佈最佳化 ........................................................... 22
2.5 ΣΔ調變器的穩定法則 ....................................................................... 24
第三章 ΣΔ調變器之迴路濾波器設計 ..................................................................... 25
3.1 傳統離散時間(DT)型ΣΔ調變器之迴路濾波器設計方法 ......... 25
3.2 連續時間(CT)型ΣΔ調變器之迴路濾波器設計方法 ................. 27
3.3 介紹Sliding Mode理論設計CT ΣΔ調變器 ................................... 31
3.4 DT與CT ΣΔ調變器的優缺點比較 ................................................ 34
第四章 系統層面設計與元件非理想性 .................................................................. 37
4.1 系統層面設計 .................................................................................... 37
4.2 運算放大器(OPAmp)的非理想效應 ........................................... 44
4.2.1 有限的OPAmp增益頻寬積對調變器的影響 ................... 44
4.2.2 有限的OPAmp迴轉率對調變器的影響 ........................... 47
4.2.3 有限的OPAmp增益對調變器的影響 ............................... 48
4.3 時脈抖動 ................................................................................. 49
4.3.1 時脈抖動對於DT ΣΔ調變器的影響 ................................ 50
4.3.2 時脈抖動對於CT ΣΔ調變器的影響 ................................ 51
4.4 迴路濾波器係數變異的影響 ............................................................ 53
第五章 電路設計與實現 .......................................................................................... 56
5.1 以理想電路元件實現的架構 ............................................................ 56
5.2 實際電路元件的設計 ........................................................................ 61
5.2.1 偏壓電路 .............................................................................. 62
5.2.2 運算放大器 .......................................................................... 64
5.2.3 類比數位轉換器DACs ........................................................ 66
5.2.4 比較器(一位元量化器).................................................... 67
5.2.5 D-Latch與時脈產生器 ........................................................ 71
5.3 整體電路模擬的結果 ........................................................................ 72
第六章 電路佈局與晶片測試 .................................................................................. 74
6.1 電路佈局與模擬 ................................................................................ 74
6.2 量測環境與結果 ................................................................................ 81
6.2.1 測試板設計 .......................................................................... 82
6.2.2 測試環境裝備 ....................................................................... 82
6.2.3 量測結果 ............................................................................... 84
6.2.4 相關文獻比較 ....................................................................... 86
第七章 結論與未來展望 .......................................................................................... 88
7.1 結論 .................................................................................................... 88
7.2 未來展望 ............................................................................................ 88
參考文獻 ...................................................................................................................... 90
dc.language.isozh-TW
dc.subject超取樣zh_TW
dc.subject連續時間zh_TW
dc.subject三角積分調變器zh_TW
dc.subject類比數位轉換zh_TW
dc.subject單位元量化zh_TW
dc.subject寬頻分碼多工擷取zh_TW
dc.subject電流控制zh_TW
dc.subjectdelta-sigma modulatoren
dc.subjectAnalog-to-digital conversionen
dc.subjectcontinuous-timeen
dc.subjectsingle-bit quantizationen
dc.subjectWCDMAen
dc.subjectcurrent-steeringen
dc.subjectoversamplingen
dc.title5-MHz訊號頻寬320-MHz連續時間型三角積分調變器設計zh_TW
dc.titleDesign of a 320-MHz Continuous-Time Delta-Sigma Modulator with 5-MHz Signal Bandwidthen
dc.typeThesis
dc.date.schoolyear97-1
dc.description.degree碩士
dc.contributor.oralexamcommittee林宗賢,郭建宏
dc.subject.keyword類比數位轉換,連續時間,單位元量化,寬頻分碼多工擷取,電流控制,超取樣,三角積分調變器,zh_TW
dc.subject.keywordAnalog-to-digital conversion,continuous-time,single-bit quantization,WCDMA,current-steering,oversampling,delta-sigma modulator,en
dc.relation.page93
dc.rights.note有償授權
dc.date.accepted2009-02-09
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電機工程學研究所zh_TW
顯示於系所單位:電機工程學系

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  未授權公開取用
3.24 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved