Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 財務金融學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41329
Title: 異質信念與自信結構下選擇權的價格與性質分析
Analysis of Option Prices and Their Properties under Heterogeneous Belief and Confidence Structures
Authors: Chien-Chih Lin
林建志
Advisor: 陳業寧(Yehning Chen)
Keyword: 信念結構,自信結構,Black-Scholes選擇權公式,異質信念,隱含波動率,
Belief structure,confidence structure,Black-Scholes formula,heterogeneous beliefs,smile effect,volatility,
Publication Year : 2009
Degree: 博士
Abstract: 在近代的財務模型中通常會假設所有的投資者皆了解資產的性質並分享相同的信念。然而在真實世界中,所有投資者的看法皆不同,而且在實證中也發現投資者的異質信念對於資產價格有相當顯著的影響。
在這一篇論文中,我們研究當投資者對於風險性資產具有異質信念與異質自信時對於選擇權的價格之影響。我們在第二章中推導具常態分配信念結構下的選擇權評價公式並且分析投資者的樂觀程度與看法差異程度對於選擇的價格影響。在第三章中,我們放寬了常態分配的假設,並重新推導一個更具一般性的選擇權價格公式。此公式可以引入各種不同形態的信念結構,例如,均勻分配和對數常態分配。經由不同的信念結構我們重新檢驗第二章所得結果是否具一般性。在第四章中,我們推導具有自信結構的選擇價格公式,並且以均勻分配和對數常態分配為特例去分析異質自信對選擇權價格的影響。
我們證明了當市場沒有異質信念和異質自信時,本論文所推導的價格公式將退化成Black-Scholes的選擇權公式。另外我們也發現信念結構與自信結構對於選擇權的價格及價格波動具有相當程度的影響,並且對隱含波動率的微笑曲線(volatility smile)具有相當明顯的解釋力。
In the modern finance literature, standard asset pricing models generally assume that all investors know the structure of the economy or share the same beliefs about the properties of asset dividends. However, agents in the real world differ in their beliefs, and heterogeneous beliefs significantly influence asset pricing (Anderson et al. 2005).
In this paper, we study the properties of option prices when agents have heterogeneous beliefs and confidence levels regarding the underlying dividend process of a risky
security. In Chapter 2, we derive a call option price formula when the belief structure is approximated by a normal distribution. In Chapter 3, we release the normal distribution assumption and allow this option price formula to be more general, which allows us to choose various distribution functions to model agents’ heterogeneous beliefs. Uniform and lognormal distributions are applied as two special cases to model agents’ heterogeneous
belief structures. In Chapter 4, we characterize the option prices and their properties for general distributions of agents’ confidence structure. Again, the uniform and lognormal distributions are used as two special cases to model the structure of agents’ heterogeneous confidences.
Our call option price formulas reduce to the Black-Scholes (1973) formula when the belief structure is degenerated into a homogeneous belief structure and the confidence structure is degenerated to a point 0. Otherwise, the call option price, its volatility, and
the smile phenomenon of option prices are shown to be, in general, dependent upon the mean and variance of agents’ belief and confidence structures.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41329
Fulltext Rights: 有償授權
Appears in Collections:財務金融學系

Files in This Item:
File SizeFormat 
ntu-98-1.pdf
  Restricted Access
921.01 kBAdobe PDF
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved