Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 藥學專業學院
  4. 藥學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41005
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳燕惠(Yen-Hui Chen)
dc.contributor.authorYu-Chao Chenen
dc.contributor.author陳昱超zh_TW
dc.date.accessioned2021-06-14T17:11:23Z-
dc.date.available2011-08-14
dc.date.copyright2008-08-14
dc.date.issued2008
dc.date.submitted2008-07-25
dc.identifier.citation1. Raijmakers MT, Dechend R, Poston L. Oxidative stress and preeclampsia: rationale for antioxidant clinical trials. Hypertension 2004;44(4):374-80.
2. Agarwal A, Gupta S, Sharma RK. Role of oxidative stress in female reproduction. Reprod Biol Endocrinol 2005;3:28.
3. Advanced Nutrition and Human Metabolism Third Edition, James L.Groff, Sareen S,Gropper p.289-297
4. Zhao W, Mosley BS, Cleves MA, Melnyk S, James SJ, Hobbs CA. Neural tube defects and maternal biomarkers of folate, homocysteine, and glutathione metabolism. Birth Defects Res A Clin Mol Teratol 2006;76(4):230-6.
5. Nijhout HF, Reed MC, Budu P, Ulrich CM. A mathematical model of the folate cycle: new insights into folate homeostasis. J Biol Chem 2004;279(53):55008-16.
6. Boyles AL, Billups AV, Deak KL, et al. Neural tube defects and folate pathway genes: family-based association tests of gene-gene and gene-environment interactions. Environ Health Perspect 2006;114(10):1547-52.
7. Refsum H, Smith AD, Ueland PM, et al. Facts and recommendations about total homocysteine determinations: an expert opinion. Clinical chemistry 2004;50(1):3-32.
8. Refsum H, Ueland PM, Nygard O, Vollset SE. Homocysteine and cardiovascular disease. Annu Rev Med 1998;49:31-62.
9. Ray JG, Laskin CA. Folic acid and homocyst(e)ine metabolic defects and the risk of placental abruption, pre-eclampsia and spontaneous pregnancy loss: A systematic review. Placenta 1999;20(7):519-29.
10. Vollset SE, Refsum H, Irgens LM, et al. Plasma total homocysteine, pregnancy complications, and adverse pregnancy outcomes: the Hordaland Homocysteine study. The American journal of clinical nutrition 2000;71(4):962-8.
11. Nilsson K, Gustafson L, Faldt R, et al. Hyperhomocysteinaemia--a common finding in a psychogeriatric population. European journal of clinical investigation 1996;26(10):853-9.
12. Bagley PJ, Selhub J. Analysis of folate form distribution by affinity followed by reversed- phase chromatography with electrical detection. Clinical chemistry 2000;46(3):404-11.
13. Pfeiffer CM, Gregory JF, 3rd. Enzymatic deconjugation of erythrocyte polyglutamyl folates during preparation for folate assay: investigation with reversed-phase liquid chromatography. Clinical chemistry 1996;42(11):1847-54.
14. Nelson BC, Pfeiffer CM, Margolis SA, Nelson CP. Solid-phase extraction-electrospray ionization mass spectrometry for the quantification of folate in human plasma or serum. Anal Biochem 2004;325(1):41-51.
15. Pfeiffer CM, Fazili Z, McCoy L, Zhang M, Gunter EW. Determination of folate vitamers in human serum by stable-isotope-dilution tandem mass spectrometry and comparison with radioassay and microbiologic assay. Clinical chemistry 2004;50(2):423-32.
16. Fazili Z, Pfeiffer CM. Measurement of folates in serum and conventionally prepared whole blood lysates: application of an automated 96-well plate isotope-dilution tandem mass spectrometry method. Clinical chemistry 2004;50(12):2378-81.
17. Fazili Z, Pfeiffer CM, Zhang M, Jain R. Erythrocyte folate extraction and quantitative determination by liquid chromatography-tandem mass spectrometry: comparison of results with microbiologic assay. Clinical chemistry 2005;51(12):2318-25.
18. Sokoro AA, Etter ML, Lepage J, Weist B, Eichhorst J, Lehotay DC. Simple method for the quantitative analysis of endogenous folate catabolites p-aminobenzoylglutamate (pABG) and its acetamido (apABG) derivative in human serum and urine by liquid chromatography-tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2006;832(1):9-16.
19. Clifford AJ, Noceti EM, Block-Joy A, Block T, Block G. Erythrocyte folate and its response to folic acid supplementation is assay dependent in women. The Journal of nutrition 2005;135(1):137-43.
20. Fortin LJ, Genest J, Jr. Measurement of homocyst(e)ine in the prediction of arteriosclerosis. Clinical biochemistry 1995;28(2):155-62.
21. Minniti G, Piana A, Armani U, Cerone R. Determination of plasma and serum homocysteine by high-performance liquid chromatography with fluorescence detection. J Chromatogr A 1998;828(1-2):401-5.
22. Pfeiffer CM, Huff DL, Gunter EW. Rapid and accurate HPLC assay for plasma total homocysteine and cysteine in a clinical laboratory setting. Clinical chemistry 1999;45(2):290-2.
23. Pfeiffer CM, Twite D, Shih J, Holets-McCormack SR, Gunter EW. Method comparison for total plasma homocysteine between the Abbott IMx analyzer and an HPLC assay with internal standardization. Clinical chemistry 1999;45(1):152-3.
24. Nexo E, Engbaek F, Ueland PM, et al. Evaluation of novel assays in clinical chemistry: quantification of plasma total homocysteine. Clinical chemistry 2000;46(8 Pt 1):1150-6.
25. McDonald SD, Perkins SL, Jodouin CA, Walker MC. Folate levels in pregnant women who smoke: an important gene/environment interaction. American journal of obstetrics and gynecology 2002;187(3):620-5.
26. Huemer M, Vonblon K, Fodinger M, et al. Total homocysteine, folate, and cobalamin, and their relation to genetic polymorphisms, lifestyle and body mass index in healthy children and adolescents. Pediatr Res 2006;60(6):764-9.
27. Jacques PF, Rosenberg IH, Rogers G, et al. Serum total homocysteine concentrations in adolescent and adult Americans: results from the third National Health and Nutrition Examination Survey. The American journal of clinical nutrition 1999;69(3):482-9.
28. Kim KN, Kim YJ, Chang N. Effects of the interaction between the C677T 5,10-methylenetetrahydrofolate reductase polymorphism and serum B vitamins on homocysteine levels in pregnant women. Eur J Clin Nutr 2004;58(1):10-6.
29. Barbosa PR, Stabler SP, Machado AL, et al. Association between decreased vitamin levels and MTHFR, MTR and MTRR gene polymorphisms as determinants for elevated total homocysteine concentrations in pregnant women. Eur J Clin Nutr 2007.
30. Stern LL, Bagley PJ, Rosenberg IH, Selhub J. Conversion of 5-formyltetrahydrofolic acid to 5-methyltetrahydrofolic acid is unimpaired in folate-adequate persons homozygous for the C677T mutation in the methylenetetrahydrofolate reductase gene. The Journal of nutrition 2000;130(9):2238-42.
31. van der Molen EF, Arends GE, Nelen WL, et al. A common mutation in the 5,10-methylenetetrahydrofolate reductase gene as a new risk factor for placental vasculopathy. American journal of obstetrics and gynecology 2000;182(5):1258-63.
32. James SJ, Pogribna M, Pogribny IP, et al. Abnormal folate metabolism and mutation in the methylenetetrahydrofolate reductase gene may be maternal risk factors for Down syndrome. The American journal of clinical nutrition 1999;70(4):495-501.
33. Hobbs CA, Sherman SL, Yi P, et al. Polymorphisms in genes involved in folate metabolism as maternal risk factors for Down syndrome. American journal of human genetics 2000;67(3):623-30.
34. Boyles AL, Hammock P, Speer MC. Candidate gene analysis in human neural tube defects. American journal of medical genetics 2005;135(1):9-23.
35. Relton CL, Wilding CS, Laffling AJ, et al. Low erythrocyte folate status and polymorphic variation in folate-related genes are associated with risk of neural tube defect pregnancy. Molecular genetics and metabolism 2004;81(4):273-81.
36. De Marco P, Calevo MG, Moroni A, et al. Polymorphisms in genes involved in folate metabolism as risk factors for NTDs. Eur J Pediatr Surg 2001;11 Suppl 1:S14-7.
37. Burzynski M, Duriagin S, Mostowska M, Wudarski M, Chwalinska-Sadowska H, Jagodzinski PP. MTR 2756 A > G polymorphism is associated with the risk of systemic lupus erythematosus in the Polish population. Lupus 2007;16(6):450-4.
38. Gelineau-van Waes J, Maddox JR, Smith LM, et al. Microarray analysis of E9.5 reduced folate carrier (RFC1; Slc19a1) knockout embryos reveals altered expression of genes in the cubilin-megalin multiligand endocytic receptor complex. BMC genomics 2008;9:156.
39. Heil SG, Van der Put NM, Waas ET, den Heijer M, Trijbels FJ, Blom HJ. Is mutated serine hydroxymethyltransferase (SHMT) involved in the etiology of neural tube defects? Molecular genetics and metabolism 2001;73(2):164-72.
40. Anthony TE, Heintz N. The folate metabolic enzyme ALDH1L1 is restricted to the midline of the early CNS, suggesting a role in human neural tube defects. The Journal of comparative neurology 2007;500(2):368-83.
41. Zdoukopoulos N, Zintzaras E. Genetic risk factors for placental abruption: a HuGE review and meta-analysis. Epidemiology (Cambridge, Mass 2008;19(2):309-23.
42. Parle-McDermott A, Mills JL, Kirke PN, et al. MTHFD1 R653Q polymorphism is a maternal genetic risk factor for severe abruptio placentae. American journal of medical genetics 2005;132(4):365-8.
43. Brody LC, Conley M, Cox C, et al. A polymorphism, R653Q, in the trifunctional enzyme methylenetetrahydrofolate dehydrogenase/methenyltetrahydrofolate cyclohydrolase/formyltetrahydrofolate synthetase is a maternal genetic risk factor for neural tube defects: report of the Birth Defects Research Group. American journal of human genetics 2002;71(5):1207-15.
44. Devlin AM, Ling EH, Peerson JM, et al. Glutamate carboxypeptidase II: a polymorphism associated with lower levels of serum folate and hyperhomocysteinemia. Human molecular genetics 2000;9(19):2837-44.
45. Guzman MA, Navarro MA, Carnicer R, et al. Cystathionine beta-synthase is essential for female reproductive function. Human molecular genetics 2006;15(21):3168-76.
46. Bagley PJ, Selhub J. A common mutation in the methylenetetrahydrofolate reductase gene is associated with an accumulation of formylated tetrahydrofolates in red blood cells. Proc Natl Acad Sci U S A 1998;95(22):13217-20.
47. Garbis SD, Melse-Boonstra A, West CE, van Breemen RB. Determination of folates in human plasma using hydrophilic interaction chromatography-tandem mass spectrometry. Anal Chem 2001;73(22):5358-64.
48. Owens JE, Holstege DM, Clifford AJ. Quantitation of total folate in whole blood using LC-MS/MS. J Agric Food Chem 2005;53(19):7390-4.
49. Owens JE, Holstege DM, Clifford AJ. High-throughput method for the quantitation of total folate in whole blood using LC-MS/MS. J Agric Food Chem 2007;55(9):3292-7.
50. Gregory JF, 3rd. Chemical and nutritional aspects of folate research: analytical procedures, methods of folate synthesis, stability, and bioavailability of dietary folates. Adv Food Nutr Res 1989;33:1-101.
51. Kok RM, Smith DE, Dainty JR, et al. 5-Methyltetrahydrofolic acid and folic acid measured in plasma with liquid chromatography tandem mass spectrometry: applications to folate absorption and metabolism. Anal Biochem 2004;326(2):129-38.
52. Zhang GF, Storozhenko S, Van Der Straeten D, Lambert WE. Investigation of the extraction behavior of the main monoglutamate folates from spinach by liquid chromatography-electrospray ionization tandem mass spectrometry. J Chromatogr A 2005;1078(1-2):59-66.
53. Garbis SD, Melse-Boonstra A, West CE, van Breemen RB. Determination of folates in human plasma using hydrophilic interaction chromatography-tandem mass spectrometry. Analytical Chemistry 2001;73(22):5358-64.
54. Patring JD, Jastrebova JA. Application of liquid chromatography-electrospray ionisation mass spectrometry for determination of dietary folates: effects of buffer nature and mobile phase composition on sensitivity and selectivity. J Chromatogr A 2007;1143(1-2):72-82.
55. Landon MJ, Hytten FE. The excretion of folate in pregnancy. The Journal of obstetrics and gynaecology of the British Commonwealth 1971;78(9):769-75.
56. Tamura T, Picciano MF. Folate and human reproduction. The American journal of clinical nutrition 2006;83(5):993-1016.
57. Milman N, Byg KE, Hvas AM, Bergholt T, Eriksen L. Erythrocyte folate, plasma folate and plasma homocysteine during normal pregnancy and postpartum: a longitudinal study comprising 404 Danish women. European journal of haematology 2006;76(3):200-5.
58. Baker H, Frank O, Deangelis B, Feingold S, Kaminetzky HA. Role of placenta in maternal-fetal vitamin transfer in humans. American journal of obstetrics and gynecology 1981;141(7):792-6.
59. Fiskerstrand T, Refsum H, Kvalheim G, Ueland PM. Homocysteine and other thiols in plasma and urine: automated determination and sample stability. Clinical chemistry 1993;39(2):263-71.
60. Ueland PM, Refsum H, Stabler SP, Malinow MR, Andersson A, Allen RH. Total homocysteine in plasma or serum: methods and clinical applications. Clinical chemistry 1993;39(9):1764-79.
61. Rizzo V, Montalbetti L, Valli M, Bosoni T, Scoglio E, Moratti R. Study of factors affecting the determination of total plasma 7-fluorobenzo-2-oxa-1,3-diazole-4-sulfonate (SBD)-thiol derivatives by liquid chromatography. J Chromatogr B Biomed Sci Appl 1998;706(2):209-15.
62. Dudman NP, Guo XW, Crooks R, Xie L, Silberberg JS. Assay of plasma homocysteine: light sensitivity of the fluorescent 7-benzo-2-oxa-1, 3-diazole-4-sulfonic acid derivative, and use of appropriate calibrators. Clinical chemistry 1996;42(12):2028-32.
63. Gilfix BM, Blank DW, Rosenblatt DS. Novel reductant for determination of total plasma homocysteine. Clinical chemistry 1997;43(4):687-8.
64. Jacobsen DW, Gatautis VJ, Green R, et al. Rapid HPLC determination of total homocysteine and other thiols in serum and plasma: sex differences and correlation with cobalamin and folate concentrations in healthy subjects. Clinical chemistry 1994;40(6):873-81.
65. Powers HJ, Moat SJ. Developments in the measurement of plasma total homocysteine. Curr Opin Clin Nutr Metab Care 2000;3(5):391-7.
66. Fermo I, Arcelloni C, Mazzola G, D'Angelo A, Paroni R. High-performance liquid chromatographic method for measuring total plasma homocysteine levels. J Chromatogr B Biomed Sci Appl 1998;719(1-2):31-6.
67. Ubbink JB. Assay methods for the measurement of total homocyst(e)ine in plasma. Semin Thromb Hemost 2000;26(3):233-41.
68. Hogg BB, Tamura T, Johnston KE, Dubard MB, Goldenberg RL. Second-trimester plasma homocysteine levels and pregnancy-induced hypertension, preeclampsia, and intrauterine growth restriction. American journal of obstetrics and gynecology 2000;183(4):805-9.
69. Guven MA, Kilinc M, Batukan C, Ekerbicer HC, Aksu T. Elevated second trimester serum homocysteine levels in women with gestational diabetes mellitus. Archives of gynecology and obstetrics 2006;274(6):333-7.
70. Bonnette RE, Caudill MA, Boddie AM, Hutson AD, Kauwell GP, Bailey LB. Plasma homocyst(e)ine concentrations in pregnant and nonpregnant women with controlled folate intake. Obstetrics and gynecology 1998;92(2):167-70.
71. Steegers-Theunissen RP, Wathen NC, Eskes TK, van Raaij-Selten B, Chard T. Maternal and fetal levels of methionine and homocysteine in early human pregnancy. British journal of obstetrics and gynaecology 1997;104(1):20-4.
72. Andersson A, Hultberg B, Brattstrom L, Isaksson A. Decreased serum homocysteine in pregnancy. Eur J Clin Chem Clin Biochem 1992;30(6):377-9.
73. Holmes VA, Wallace JM, Alexander HD, et al. Homocysteine is lower in the third trimester of pregnancy in women with enhanced folate status from continued folic acid supplementation. Clinical chemistry 2005;51(3):629-34.
74. Kim YI. 5,10-Methylenetetrahydrofolate reductase polymorphisms and pharmacogenetics: a new role of single nucleotide polymorphisms in the folate metabolic pathway in human health and disease. Nutrition reviews 2005;63(11):398-407.
75. Ulrich CM, Robien K, Sparks R. Pharmacogenetics and folate metabolism -- a promising direction. Pharmacogenomics 2002;3(3):299-313.
76. Olteanu H, Wolthers KR, Munro AW, Scrutton NS, Banerjee R. Kinetic and thermodynamic characterization of the common polymorphic variants of human methionine synthase reductase. Biochemistry 2004;43(7):1988-97.
77. Parle-McDermott A, Pangilinan F, Mills JL, et al. A polymorphism in the MTHFD1 gene increases a mother's risk of having an unexplained second trimester pregnancy loss. Molecular human reproduction 2005;11(7):477-80.
78. De Marco P, Merello E, Calevo MG, et al. Evaluation of a methylenetetrahydrofolate-dehydrogenase 1958G>A polymorphism for neural tube defect risk. Journal of human genetics 2006;51(2):98-103.
79. Pogribna M, Melnyk S, Pogribny I, Chango A, Yi P, James SJ. Homocysteine metabolism in children with Down syndrome: in vitro modulation. American journal of human genetics 2001;69(1):88-95.
80. Mahajan NN, Mahajan KN, Soni RN, Gaikwad NL. Justifying the 'Folate trap' in folic acid fortification programs. Journal of perinatal medicine 2007;35(3):241-2.
81. Zijno A, Andreoli C, Leopardi P, et al. Folate status, metabolic genotype, and biomarkers of genotoxicity in healthy subjects. Carcinogenesis 2003;24(6):1097-103.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41005-
dc.description.abstract研究背景
  葉酸是維生素B群的一種,從流行病學針對懷孕併發症與新生兒神經管缺損等與葉酸之間關係的研究,目前在臨床上皆建議婦女在懷孕初期攝取高劑量的補充,以降低疾病罹患風險。同時利用代謝質體學與藥物基因體學的研究,我們試以代謝物的角度來觀察懷孕婦女接受葉酸補充的情形和探討其與基因間的關係。
研究方法
  本研究共收集96年1月至96年4月惠心婦幼診所之門診孕婦,於例行抽血檢驗時採取血樣進行LC/MS-MS與HPLC葉酸代謝物分析,並且以問卷方式收集孕婦葉酸補充劑之使用情形、基本資料、飲食狀況等資訊,以SNPstream鑑定孕婦的MTHFR、MTR、MTRR、MTHFD1、ALDH1L1、AMT、FOLH1、BHMT等基因型,研究懷孕婦女體內葉酸代謝物分布與基因型的相關性。
研究結果
  89位受試者中包含7位一般健康女性、26位未服用葉酸之孕婦和56位服用葉酸的懷孕婦女,成功測定出FA、5MeTHF、5FoTHF、5,10CHTHF四種葉酸代謝物和同半胱胺酸濃度,於曾補充葉酸的孕婦中血球5MeTHF則呈現逐漸增加的狀況,未補充葉酸者的血漿葉酸和血球葉酸雖呈逐漸降低之趨勢但都未達統計上顯著。
  懷孕婦女體內血漿同半胱胺酸濃度於每週期比較中,對於使用葉酸與否並無明顯差異,然而血漿同半胱胺酸濃度與血漿葉酸代謝物濃度有顯著反比關係。
成功鑑定18個基因型中有12個基因包括MTHFR、MTR、MTRR、ALDH1L1、AMT、FOLH1、BHMT都分別發現不同基因型與葉酸代謝物濃度之間的關聯性。在未服用葉酸的懷孕婦女中,5FoTHF/5,10CHTHF比值依MTHFR、MTRR、ALDH1L1的基因型而有高低不同的分布。
結論
  我們發現受到葉酸補充影響代謝物濃度最為顯著的是5MeTHF,能即時提高血漿5MeTHF濃度,而在曾持續補充葉酸的孕婦中,也觀察到血球5MeTHF濃度隨週期而提升,可能是藉由荷爾蒙調節而提高體內葉酸儲存量所致。在未服用葉酸的受試者中,葉酸代謝途徑的MTHFR、MTR、MTRR、ALDH1L1、AMT等基因型對於葉酸各代謝物的濃度均有顯著性影響,而5FoTHF/5,10CHTHF在MTHFR、MTRR、ALDH1L1的5個SNP中發現具變異型配子的受試者有比值較低的趨勢,可以作為單純評估個體受到來自於基因型層面影響的依據。
zh_TW
dc.description.abstractBackground
Folate is one of vitamin B complex. Epidemiological studies reveal the incidence of pregnancy complications and newborn neural tube defect in folate-insufficient pregnant women. Thereby, it is recommended to boost higher dose of folic acid during the first trimester of pregnancy for the prevention from unwilling complications. Combining the knowledge of metabolomics and pharmacogenomics, we tried to study the effect of folate intake in pregnant women and genetic impact from the view point of folate metabolites.
Methods
Healthy and pregnant women in outpatient service of Eugene Clinic were enrolled in our study. We collected blood samples during their routine blood drawn for LC/MS-MS and HPLC detection of folate metabolites. The use of folate supplement, basic demographic data and dietary preference were surveyed by a questionary. Genotypes of the selected genes including MTHFR, MTR, MTRR, MTHFD1, ALDH1L1, AMT, FOLH1and BHMT were determined using SNPstream system.
Results
The 89 participants include 7 healthy non-pregnant women, 26 pregnant women without folate supplement and 56 pregnant women with regular folate intake. We successfully detected FA, 5MeTHF, 5FoTHF, 5,10CHTHF, and plasma homocysteine concentration. In pregnant women receiving daily folate supplement, erythrocyte 5MeTHF concentration increases with the gestation age. Although plasma and erythrocyte folate concentration decrease with time in pregnant women without folate supplement, it is not statistically significant (p> 0.05).
Folate supplement did not make difference in plasma homocysteine levels of pregnant women. However there’s an inverse relation between plasma folate metabolites and homocysteine.
Among18 successfully determined genes, genotypes of MTHFR, MTR, MTRR, ALDH1L1, AMT, FOLH1, BHMT genes were correlated to the concentrations of folate metabolites. The 5FoTHF/5,10CHTHF ratio is correlated to the distribution of genotypes of MTHFR, MTRR, and ALDH1L1.
Conclusion
Folate supplement importantly changed 5MeTHF concentration compared to the other folate metabolites and elevated plasma 5MeTHF immediately. In the pregnant women with regular folate supplement, erythrocyte 5MeTHF level increases with gestational age. It might be due to the increase during pregnancy in folate uptake capacity via altered hormone regulation. In pregnant women without folate supplement, levels of folate metabolites varied, which was associated with genotypes of MTHFR, MTR, MTRR, ALDH1L1, and AMT. The 5FoTHF/5,10CHTHF ratio is relatively low in pregnant women carrying heterozygotic SNPs of MTHFR, MTRR, ALDH1L1 genes. It may be as a maker for evaluating genetic effects on folate maintenance.
en
dc.description.provenanceMade available in DSpace on 2021-06-14T17:11:23Z (GMT). No. of bitstreams: 1
ntu-97-R94423012-1.pdf: 881784 bytes, checksum: dec4b5f195d369db07827bb9718e2b29 (MD5)
Previous issue date: 2008
en
dc.description.tableofcontents口試委員會審定書
誌謝………………………………………………………………………1
中文摘要…………………………………………………………………2
英文摘要…………………………………………………………………4
目錄………………………………………………………………………6
圖目錄……………………………………………………………………9
表目錄……………………………………………………………………10
縮寫表……………………………………………………………………11
第一章 前言…………………………………………………………12
第二章 文獻回顧……………………………………………………13
第一節 葉酸之簡介…………………………………………………13
一、 化學結構
二、 吸收與代謝
三、 生理作用
第二節 同半胱胺酸之簡介…………………………………………16
一、 化學結構
二、 生理作用
第三節 葉酸及同半胱胺酸的營養評估標準………………………18
一、 葉酸代謝物測定方法
二、 血漿與血球葉酸營養狀況評估標準
三、 同半胱胺酸濃度測定方法
四、 血漿同半胱胺酸濃度評估標準
第四節 影響葉酸及同半胱胺酸濃度之相關因子…………………20
一、 影響葉酸濃度的因素
二、 影響同半胱胺酸濃度的因素
三、 基因多型性
第三章 研究目的……………………………………………………23
第四章 實驗方法……………………………………………………24
第一節 實驗設計與流程……………………………………………24
一、 研究對象
二、 受試者選擇標準
三、 研究進行流程
四、 資料來源
第二節 全血及血漿中葉酸代謝物的濃度測定:LC/MS-MS分析…26
一、 檢體處理
二、 實驗步驟
三、 分析條件
四、 機器設備
五、 標準溶液配製
六、 標準曲線製作
第三節 血漿同半胱胺酸的濃度測定:HPLC分析…………………31
一、 檢體處理
二、 實驗步驟
三、 分析條件
四、 機器設備
五、 標準溶液配製
六、 標準曲線製作
第四節 基因型鑑定…………………………………………………34
一、 DNA純化萃取
二、 SNPstream之鑑定
第五章 研究結果……………………………………………………36
第一節 研究對象的基本資料………………………………………37
第二節 LC/MS-MS全血及血漿葉酸代謝物濃度分析………………39
一、 滯留時間及檢量線標準
二、 樣本數、代謝物平均濃度
三、 可能影響葉酸代謝物濃度知各項因子分析
第三節 HPLC血漿同半胱胺酸濃度分析………………………….47
一、 滯留時間及檢量線標準
二、 樣本數、代謝物平均濃度
三、 可能影響葉酸代謝物濃度知各項因子分析
第四節 基因型鑑定…………………………………………………52
第五節 代謝物濃度比例相關分析…………………………………56
第六章 討論…………………………………………………………60
第七章 結論及建議…………………………………………………77
第八章 參考文獻……………………………………………………79
附錄一 受試者同意書………………………………………………86
附錄二 問卷…………………………………………………………90
dc.language.isozh-TW
dc.title懷孕婦女血中葉酸代謝物分析與其代謝途徑相關基因多型性之探討zh_TW
dc.titleStudy of the Association of Blood Folate Metabolites with Polymorphisms of Folic Acid Metabolic Pathway Genes in Pregnan Womenen
dc.typeThesis
dc.date.schoolyear96-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林璧鳳(Bi-Fong Lin),陳擇銘(Tzer-Ming Chen)
dc.subject.keyword懷孕,葉酸,代謝物,基因多型性,zh_TW
dc.subject.keywordpregnant,folate,metabolites,gene polymorphism,snp,en
dc.relation.page90
dc.rights.note有償授權
dc.date.accepted2008-07-28
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept藥學研究所zh_TW
顯示於系所單位:藥學系

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  目前未授權公開取用
861.12 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved