請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40959
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林榮信 | |
dc.contributor.author | Cheng-Che Tsai | en |
dc.contributor.author | 蔡承哲 | zh_TW |
dc.date.accessioned | 2021-06-14T17:08:52Z | - |
dc.date.available | 2013-08-01 | |
dc.date.copyright | 2008-08-08 | |
dc.date.issued | 2008 | |
dc.date.submitted | 2008-07-28 | |
dc.identifier.citation | 1. Gilson, M.K., Given, J.A., Bush, B.L. & McCammon, J.A. The statistical-thermodynamic basis for computation of binding affinities: A critical review. Biophysical Journal 72, 1047-1069 (1997).
2. Gilson, M.K. & Zhou, H.X. Calculation of protein-ligand binding affinities. Annual Review of Biophysics and Biomolecular Structure 36, 21-42 (2007). 3. Cornell, W.D., et al. A 2nd Generation Force-Field for the Simulation of Proteins, Nucleic-Acids, and Organic-Molecules. Journal of the American Chemical Society 117, 5179-5197 (1995). 4. Brooks, B.R., et al. Charmm - a Program for Macromolecular Energy, Minimization, and Dynamics Calculations. Journal of Computational Chemistry 4, 187-217 (1983). 5. van Gunsteren, W.F., Berendsen, H. J. C. Gromos-87 manual. Biomos BV Nijenborgh 4, 9747 AG Groningen, The Netherlands 1987. (1987). 6. Sitkoff, D., Sharp, K.A. & Honig, B. Accurate Calculation of Hydration Free-Energies Using Macroscopic Solvent Models. Journal of Physical Chemistry 98, 1978-1988 (1994). 7. Qiu, D., Shenkin, P.S., Hollinger, F.P. & Still, W.C. The GB/SA continuum model for solvation. A fast analytical method for the calculation of approximate Born radii. Journal of Physical Chemistry A 101, 3005-3014 (1997). 8. Morris, G.M., et al. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. Journal of Computational Chemistry 19, 1639-1662 (1998). 9. Jones, G., Willett, P., Glen, R.C., Leach, A.R. & Taylor, R. Development and validation of a genetic algorithm for flexible docking. Journal of Molecular Biology 267, 727-748 (1997). 10. Ewing, T.J.A., Makino, S., Skillman, A.G. & Kuntz, I.D. DOCK 4.0: Search strategies for automated molecular docking of flexible molecule databases. Journal of Computer-Aided Molecular Design 15, 411-428 (2001). 11. Krammer, A., Kirchhoff, P.D., Jiang, X., Venkatachalam, C.M. & Waldman, M. LigScore: a novel scoring function for predicting binding affinities. Journal of Molecular Graphics & Modelling 23, 395-407 (2005). 12. Gehlhaar, D.K., et al. Molecular Recognition of the Inhibitor Ag-1343 by Hiv-1 Protease - Conformationally Flexible Docking by Evolutionary Programming. Chemistry & Biology 2, 317-324 (1995). 13. Rarey, M., Kramer, B., Lengauer, T. & Klebe, G. A fast flexible docking method using an incremental construction algorithm. Journal of Molecular Biology 261, 470-489 (1996). 14. Eldridge, M.D., Murray, C.W., Auton, T.R., Paolini, G.V. & Mee, R.P. Empirical scoring functions .1. The development of a fast empirical scoring function to estimate the binding affinity of ligands in receptor complexes. Journal of Computer-Aided Molecular Design 11, 425-445 (1997). 15. Wang, R.X., Lai, L.H. & Wang, S.M. Further development and validation of empirical scoring functions for structure-based binding affinity prediction. Journal of Computer-Aided Molecular Design 16, 11-26 (2002). 16. Muegge, I., Martin, Y.C., Hajduk, P.J. & Fesik, S.W. Evaluation of PMF scoring in docking weak ligands to the FK506 binding protein. Journal of Medicinal Chemistry 42, 2498-2503 (1999). 17. Velec, H.F.G., Gohlke, H. & Klebe, G. DrugScore(CSD)-knowledge-based scoring function derived from small molecule crystal data with superior recognition rate of near-native ligand poses and better affinity prediction. Journal of Medicinal Chemistry 48, 6296-6303 (2005). 18. Aqvist, J., Medina, C. & Samuelsson, J.E. New Method for Predicting Binding-Affinity in Computer-Aided Drug Design. Protein Engineering 7, 385-391 (1994). 19. Hansson, T., Marelius, J. & Aqvist, J. Ligand binding affinity prediction by linear interaction energy methods. Journal of Computer-Aided Molecular Design 12, 27-35 (1998). 20. Gouda, H., Kuntz, I.D., Case, D.A. & Kollman, P.A. Free energy calculations for theophylline binding to an RNA aptamer: MM-PBSA and comparison of thermodynamic integration methods. Biopolymers 68, 16-34 (2003). 21. Srinivasan, J., Cheatham, T.E., Cieplak, P., Kollman, P.A. & Case, D.A. Continuum solvent studies of the stability of DNA, RNA, and phosphoramidate - DNA helices. Journal of the American Chemical Society 120, 9401-9409 (1998). 22. Beveridge, D.L. & Dicapua, F.M. Free-Energy Via Molecular Simulation - Applications to Chemical and Biomolecular Systems. Annual Review of Biophysics and Biophysical Chemistry 18, 431-492 (1989). 23. Straatsma, T.P. & Mccammon, J.A. Computational Alchemy. Annual Review of Physical Chemistry 43, 407-435 (1992). 24. Marelius, J., Kolmodin, K., Feierberg, I. & Aqvist, J. Q: A molecular dynamics program for free energy calculations and empirical valence bond simulations in biomolecular systems. Journal of Molecular Graphics & Modelling 16, 213-+ (1998). 25. Berman, H.M., et al. The Protein Data Bank. Nucleic Acids Research 28, 235-242 (2000). 26. Schuttelkopf, A.W. & van Aalten, D.M.F. PRODRG: a tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallographica Section D-Biological Crystallography 60, 1355-1363 (2004). 27. Burkhard, P., Taylor, P. & Walkinshaw, M.D. X-ray structures of small ligand-FKBP complexes provide an estimate for hydrophobic interaction energies. Journal of Molecular Biology 295, 953-962 (2000). 28. Vanduyne, G.D., Standaert, R.F., Schreiber, S.L. & Clardy, J. Atomic-Structure of the Rapamycin Human Immunophilin Fkbp-12 Complex. Journal of the American Chemical Society 113, 7433-7434 (1991). 29. Vanduyne, G.D., Standaert, R.F., Karplus, P.A., Schreiber, S.L. & Clardy, J. Atomic-Structure of Fkbp-Fk506, an Immunophilin-Immunosuppressant Complex. Science 252, 839-842 (1991). 30. Holt, D.A., et al. Design, Synthesis, and Kinetic Evaluation of High-Affinity Fkbp Ligands and the X-Ray Crystal-Structures of Their Complexes with Fkbp12. Journal of the American Chemical Society 115, 9925-9938 (1993). 31. Dubowchik, G.M., et al. 2-aryl-2,2-difluoroacetamide FKBP12 ligands: Synthesis and X-ray structural studies. Organic Letters 3, 3987-3990 (2001). 32. Hulten, J., et al. Cyclic HIV-1 protease inhibitors derived from mannitol: Synthesis, inhibitory potencies, and computational predictions of binding affinities. Journal of Medicinal Chemistry 40, 885-897 (1997). 33. Andersson, H.O., et al. Optimization of P1-P3 groups in symmetric and asymmetric HIV-1 protease inhibitors. European Journal of Biochemistry 270, 1746-1758 (2003). 34. Lindberg, J., et al. Symmetric fluoro-substituted diol-based HIV protease inhibitors - Ortho-fluorinated and meta-fluorinated P1/P1 '-benzyloxy side groups significantly improve the antiviral activity and preserve binding efficacy. European Journal of Biochemistry 271, 4594-4602 (2004). 35. Hosur, M.V., et al. Influence of Stereochemistry on Activity and Binding Modes for C(2) Symmetry-Based Diol Inhibitors of Hiv-1 Protease. Journal of the American Chemical Society 116, 847-855 (1994). 36. Katz, B.A., et al. Structural basis for selectivity of a small molecule, S1-binding, submicromolar inhibitor of urokinase-type plasminogen activator. Chemistry & Biology 7, 299-312 (2000). 37. Katz, B.A., et al. A novel serine protease inhibition motif involving a multi-centered short hydrogen bonding network at the active site. Journal of Molecular Biology 307, 1451-1486 (2001). 38. Dolinsky, T.J., Nielsen, J.E., McCammon, J.A. & Baker, N.A. PDB2PQR: an automated pipeline for the setup of Poisson-Boltzmann electrostatics calculations. Nucleic Acids Research 32, W665-W667 (2004). 39. Case, D.A., et al. The Amber biomolecular simulation programs. Journal of Computational Chemistry 26, 1668-1688 (2005). 40. Van der Spoel, D., et al. GROMACS: Fast, flexible, and free. Journal of Computational Chemistry 26, 1701-1718 (2005). 41. Hess, B., Bekker, H., Berendsen, H.J.C. & Fraaije, J.G.E.M. LINCS: A linear constraint solver for molecular simulations. Journal of Computational Chemistry 18, 1463-1472 (1997). 42. Berendsen, H.J.C., Postma, J.P.M., Vangunsteren, W.F., Dinola, A. & Haak, J.R. Molecular-Dynamics with Coupling to an External Bath. Journal of Chemical Physics 81, 3684-3690 (1984). | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40959 | - |
dc.description.abstract | 能夠準確預測小分子與生物分子的結合在電腦輔助藥物設計上扮演了相當重要的角色,因為這些方法能加速先導化合物的產生與優化。這些方法在現在大約可分為兩大類,包含了分子嵌合與評分與自由能之方法。自由能方法需要構形取樣,反之,嵌合與評分的方式往往都只聚焦在單一的構型上面。也因此自由能方法需要較多的電腦計算時間與資源。
我們認為在預測蛋白質與配位體的結合能力仍然需要考慮到動態的影響,因為在結合的過程當中蛋白質與配位都是可運動的狀態。因此我們使用了linear interaction energy方法做為起點,因為這個方法是自由能方法中的一種而且只需要兩個分子模擬就能得到結合的能量。這個方法跟其他一樣屬於自由能方法的FEP與MM-PBSA來的更為經濟。 在我們的研究當中,利用GROMACS來做分子模擬且使用GROMACS的參數。預測結合的自由能我們除了使用最原始的LIE方法的公式外,還加入了配位體與配位體之間的能量項進去試著去得到更好的預測結果。另外,我們也使用了許多的評分的函數來與我們的結果做比較。 | zh_TW |
dc.description.abstract | Accurate methods for predicting the affinity of a small molecule with a protein or other biomolecule play a crucial role in computational drug design because these predictions can speed the lead generation or lead optimization. Nowadays these methods can be categorized as docking and scoring and free energy method. Free energy method, in contrast with docking and scoring, which focus on a single bound conformation use conformation sampling to generate thermodynamic averages. Therefore, free energy methods are required more computer time than docking and scoring approaches.
We consider that the dynamic effect of the protein-ligand complex should be still included in evaluating binding affinities because in the binding process, protein and ligand are flexible. Therefore, our study started from the linear interaction energy (LIE) method, which is one free energy method and only required two simulations, complex and ligad only. Besides that, it is also more economical than other free energy methods, such as the FEP and the MM-PBSA method. In our study, we used GROMACS to perform simulations with GROMACS force field parameters. For predicting the free energy of binding, we not only used the original LIE equation, but also we added ligand-ligand interaction into the evaluating scheme trying to obtain a better prediction model. In addition, we used several scoring functions, ChemScore, DrugScore, XScore, etc, to compare with our results. | en |
dc.description.provenance | Made available in DSpace on 2021-06-14T17:08:52Z (GMT). No. of bitstreams: 1 ntu-97-R95423022-1.pdf: 1375872 bytes, checksum: 616cbd37d2bf75f28ecb2586f75b1808 (MD5) Previous issue date: 2008 | en |
dc.description.tableofcontents | 口試委員會審定書 III
致謝 V 中文摘要 VI Abstract VIII Figure List XIII Table List XVI Chapter 1: Introduction 1 1.1 Computational aid for Drug Discovery 1 1.2 Theory for Calculating Affinity 2 1.2.1 Potential Energy and Solvation Energy 4 1.3 Docking and Scoring 6 1.3.1 The Scoring function of GOLD (G-Score) 6 1.3.2 LigScore 7 1.3.3 PLP 8 1.3.4 The Scoring Function of FlexX (F-Score) 9 1.3.5 ChemScore 9 1.3.6 XScore 10 1.3.7 Potential of Mean Force (PMF) Score 11 1.3.8 DrugScore 11 1.4 Free Energy Method 12 1.4.1 The Linear Interaction Energy (LIE) Method 13 1.4.2 MM-PBSA Method 14 1.4.3 Free Energy Perturbation (FEP) Method 15 1.4.4 Comparison of Free Energy Methods 16 1.5 Protein-Ligand Interaction Database (PLID) 17 Chapter 2: Materials and Methods 19 2.1 Study Cases 19 2.1.1 Fk506 Binding Protein (FKBP) 19 2.1.2 HIV-1 Protease 21 2.1.3 Trypsin 23 2.2 Simulation Details 25 2.2.1 Protein Preparation 25 2.2.2 Ligand Preparation 26 2.2.3 Complex System Preparation 26 2.2.4 Ligand only system Preparation 27 2.2.5 Simulation Protocol 27 2.3 Energy Calculation and Energy Decomposition 29 2.4 Free Energy Calculations 33 2.5 Scoring Functions 37 2.5.1 Preparation of G-Score (GOLD) and ChemScore 37 2.5.2 Preparation of DrugScoreONLINE 38 2.5.3 Preparation of F-Score (FlexX) 38 2.5.4 Preparation of LigScore, PLP and PMF 38 2.5.5 Preparation of Xscore 39 Chapter 3: Results and Discussions 40 3.1 Results of FKBP Complexes 40 3.1.1 Protein RMSD of FKBP 40 3.1.2 The Free energy of FKBP complexes 45 3.1.3 Results of Scoring Functions for FKBP Complexes 55 3.2 Results of HIV-1 Protease Complexes 73 3.2.1 Protein RMSD of HIV-1 Protease 73 3.2.2 The Free energy of HIV-1 Protease Complexes 78 3.2.3 Results of Scoring Functions for HIV-1 Protease Complexes 85 3.3 Results of Trypsin Complexes 104 3.3.1 Protein RMSD of Trypsin Protease 104 3.3.2 The Free Energy of Trypsin Complexes 109 3.3.3 Results of Scoring Functions for Trypsin Complexes 116 Chapter 4: Conclusions 131 References 132 | |
dc.language.iso | en | |
dc.title | 發展基於分子動力模擬能量分解的新穎自由能計算方法 | zh_TW |
dc.title | A novel free energy evaluation scheme based on energetic decomposition of molecular dynamics simulations | en |
dc.type | Thesis | |
dc.date.schoolyear | 96-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 黃明經,許世宜,楊大衍 | |
dc.subject.keyword | 分子動力模擬, | zh_TW |
dc.subject.keyword | LIE, | en |
dc.relation.page | 135 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2008-07-29 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 藥學研究所 | zh_TW |
顯示於系所單位: | 藥學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-97-1.pdf 目前未授權公開取用 | 1.34 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。