Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 地質科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/4085
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor盧佳遇(Chia-Yu Lu),李建成(Jian-Cheng Lee)
dc.contributor.authorChia-Hung Yehen
dc.contributor.author葉佳鴻zh_TW
dc.date.accessioned2021-05-13T09:20:35Z-
dc.date.available2017-08-25
dc.date.available2021-05-13T09:20:35Z-
dc.date.copyright2016-08-25
dc.date.issued2016
dc.date.submitted2016-08-19
dc.identifier.citation中文部份
久住久吉(1939)。台中州南投油田調查報告(64頁):台灣總督府殖產局。
大江二郎(1938)。台中州國姓油田調查報告(25頁):台灣總督府殖產局。
中國石油公司臺灣油礦探勘總處(1982)。台中圖幅(1:100,000):中國石油股份有限公司台灣油礦探勘總處。
台北帝大理學院地質教室(1936)。昭和十年台灣地震災害地區地質調查報告(79頁)。
何春蓀(1982)。臺灣地體構造的演變:臺灣地體構造圖說明書。臺北縣:經濟部中央地質調查所。
何春蓀(2006)。臺灣地質概論:臺灣地質圖說明書(第二版)。臺北縣:經濟部中央地質調查所。
何春蓀、譚立平(1960)。臺灣臺中東勢至南投國姓間煤田地質。臺灣省地質調查所彙刊,第12期,頁19-62。
吳樂群(1986)。臺灣中部國姓地區漸新統及申新統之古沉積環境分析。國立臺灣大學地質科學研究所。
李錫堤(1986)。大地應力分析與弧陸碰撞對於臺灣北部古應力場變遷影響。國立臺灣大學地質學研究所,臺北市。
李錫堤、康耿豪、鄭錦桐、廖啟雯(2000)。921集集大地震之地表破裂及地盤變形現象。地工技術,第81期,頁5-16。
林啟文、石同生、石瑞銓(2003)。臺灣中部南投地區的車籠埔斷層帶特性研究。經濟部中央地質調查所彙刊,第16期,頁53-72。
紀文榮、黃秀美(1981)。苗栗地區晚新第三紀地層之超微體化石生物地層、古沈積環境及其在構造上之意義。臺灣石油地質,第18期,頁111-129。
畢慶昌 (1969) 俯衝運動在台灣地體構成中的作用。台灣省地質調查所彙刊,第二十號,頁1-39。
莊舒雲、陳鶴欽、景國恩、饒瑞鈞、侯進雄(2008)。由1996-2006年之GPS觀測資料看台灣中部地區集集地震前後之地殼變形。經濟部中央地質調查所特刊,第二十期,頁63-80。
黃文正、陳致言、劉思妤、林燕慧、林啟文、張徽正(2000)。臺灣中部大甲溪至頭汴坑溪九二一集集地震地表變形模式。經濟部中央地質調查所特刊,第12號,頁63-87。
黃奇瑜(1986)。臺灣中部國姓地區地層學研究(281-318頁)。臺北市:國立台灣大學理學院地質系。
黃金來(1968)。臺中車籠埔區震測解釋報告。中國石油公司。
黃鑑水、陳勉銘(2000)。臺灣中部地區之雙冬斷層。經濟部中央地質調查所特刊,第十二期,頁171-182。
楊耿明、黃旭燦、吳榮章、李民、丁信修、梅文威(2001)。大尖山—觸口逆衝斷層系統的地下構造及演化特性。「中國地質學會90年年會」發表之論文。
經濟部中央地質調查所(1999)。九二一地震地質調查報告(315頁)。臺北縣:經濟部中央地質調查所。
劉彥求、林燕慧、李明書、林啟文(2003)。臺灣西南部石牛溪地區九芎坑斷層的構造特性。經濟部中央地質調查所特刊,第十四期,頁101-112。
謝凱旋、黃敦友(2003)。臺灣第三系的地層層序。臺灣鑛業,第55期(4),頁17-27。
魏碩穎(2003)。車籠埔斷層烏溪至濁水溪段之地下構造。國立中央大學地球物理研究所,桃園縣。
羅偉、吳樂群、陳華玟(1999)。五萬分之一臺灣地質圖幅說明書-國姓地質圖幅。臺北縣:經濟部中央地質調查所。
英文部份
Allegre, C. J., Courtillot, V., Tapponnier, P., Hirn, A., Mattauer, M., Coulon, C., Marcoux, J. (1984). Structure and evolution of the Himalaya–Tibet orogenic belt. Nature, 307, 17–22.
Anderson, E. M. (1951). The Dynamics of Faulting, Etc.(Revised.). Edinburgh, London.
Angelier, J. (1975). Sur l’analyse de mesures recueillies dans des sites faillés: l’utilité d’une confrontation entre les méthodes dynamiques et cinématiques. CR Acad. Sci, 281, 1805–1808.
Angelier, J. (1979). Determination of the mean principal directions of stresses for a given fault population. Tectonophysics, 56(3), T17–T26.
Angelier, J. (1984). Tectonic analysis of fault slip data sets. Journal of Geophysical Research: Solid Earth, 89(B7), 5835–5848.
Angelier, J. (1994). Fault slip analysis and paleostress reconstruction. Continental deformation, 4, 101-120.
Angelier, J., Barrier, E., & Hao Tsu, C. (1986). Plate collision and paleostress trajectories in a fold-thrust belt: The foothills of Taiwan. Tectonophysics, 125(1-3), 161–178. http://doi.org/10.1016/0040-1951(86)90012-0
Angelier, J., Bergerat, F., Hao Tsu, C., Wen Shing, J., & Chia Yu, L. (1990). Paleostress analysis as a key to margin extension: The Penghu Islands, South China Sea. Tectonophysics, 183(1-4), 161–176. http://doi.org/10.1016/0040-1951(90)90414-4
Angelier, J., & Mechler, P. (1977). Sur une methode graphique de recherche des contraintes principales egalement utilisables en tectonique et en seismologie: la methode des diedres droits. Bulletin de La Société Géologique de France, (6), 1309–1318.
Armijo, R., & Cisternas, A. (1978). Un problème inverse en microtectonique cassante. CR Acad. Sci. Paris, 287(D), 595–598.
Barrier, E., & Angelier, J. (1986). Active Collision in Eastern Taiwan: The Coastal Range. Tectonophysics, 125(1-3), 34. http://doi.org/10.1016/0040-1951(86)90006-5
Blenkinsop, T. G. (1989). Thickness-displacement relationships for deformation zones: Discussion. Journal of Structural Geology, 11(8), 1051–1053. http://doi.org/10.1016/0191-8141(89)90056-4
Boyer, S. E., & Elliott, D. (1982). Thrust systems. AAPG Bulletin, 66(9), 1196–1230.
Carey, E., & Brunier, B. (1974). Analyse théorique et numérique d’un modèle mécanique élémentaire appliqué à l'étude d'une population de failles. CR Acad. Sci. Paris, 279(D), 891–894.
Chang, Y. L., Lee, C. I., Lin, C. W., Hsu, C. H., & Mao, E. W. (1996). Inversion Tectonics In The Fold-Thrust Belt Of The Foothills Of The Chiayi-Tainan Area, Southwestern Taiwan. Petrol. Geol. Taiwan, 30, 163–176.
Chester, F. M., & Logan, J. M. (1986). Implications for mechanical properties of brittle faults from observations of the Punchbowl fault zone, California. Pure and Applied Geophysics, 124(1-2), 79–106.
Chi, W. R. (1979). Calcareous nannoplankton biostratigraphy of the Nantou area, central Taiwan. Petrol. Geol. Taiwan, 16, 131–165.
Ching, K., Hsieh, M., Johnson, K. M., Chen, K., Rau, R., & Yang, M. (2011). Modern vertical deformation rates and mountain building in Taiwan from precise leveling and continuous GPS observations, 2000–2008. Journal of Geophysical Research: Solid Earth, 116(B8).
Chiu, H. T. (1972). Miocene stratigraphy of the Nantou area, central Taiwan. Petrol. Geol. Taiwan, 10, 159–177.
Chiu, H. T. (1975). Miocene Stratigraphy And Its Relation To The Palaeogene Rocks In West-Central Taiwan. Petrol. Geol. Taiwan, 12, 51–80.
Couzens Schultz, B. A., Vendeville, B. C., & Wiltschko, D. V. (2003). Duplex style and triangle zone formation: insights from physical modeling. Journal of Structural Geology, 25(10), 1623–1644. http://doi.org/10.1016/s0191-8141(03)00004-x
Dunne, W. M., & Ferrill, D. A. (1988). Blind thrust systems. Geology, 16(1), 33–36. http://doi.org/10.1130/0091-7613(1988)016<0033:bts>2.3.co;2
Elliott, D. (1976). The motion of thrust sheets. Journal of Geophysical Research, 81(5), 949–963. http://doi.org/10.1029/JB081i005p00949
Etchecopar, A., Vasseur, G., & Daignieres, M. (1981). An inverse problem in microtectonics for the determination of stress tensors from fault striation analysis. Journal of Structural Geology, 3(1), 51–65. http://doi.org/10.1016/0191-8141(81)90056-0
Gamond, J. F. (1983). Displacement features associated with fault zones: a comparison between observed examples and experimental models. Journal of Structural Geology, 5(1), 33–45.
Hsu, Y.-J., Simons, M., Yu, S.-B., Kuo, L.-C., & Chen, H.-Y. (2003). A two-dimensional dislocation model for interseismic deformation of the Taiwan mountain belt. Earth and Planetary Science Letters, 211(3), 287–294.
Huang, T. C., & Ting, J. S. (1979). Calcareous nannofossil succession from the Oligo-Miocene Peikangchi section and revised stratigraphic correlation between northern and central Taiwan. Proceedings of the Geological Society of China, 22, 105–120.
Huang, T., & Huang, T. C. (1984). Neogene biostratigraphy of Taiwan. Pacific Neogene Datum Planes, Univ. Tokyo Press, Tokyo, 209–216.
Jones, P. B. (1982). Oil and gas beneath east-dipping underthrust faults in the Alberta foothills. Geologic Studies of the Cordilleran Thrust Belt: Rocky Mountain Association of Geologists, 1, 61–74.
Jones, P. B. (1996). Triangle zone geometry, terminology and kinematics. Bulletin of Canadian Petroleum Geology, 44(2), 139–152.
Lacombe, O., Angelier, J., Mouthereau, F., Chu, H.-T., Deffontaines, B., Lee, J.-C., Siame, L. (2004). The Liuchiu Hsu island offshore SW Taiwan: tectonic versus diapiric anticline development and comparisons with onshore structures. Comptes Rendus Geoscience, 336(9), 815–825. http://doi.org/10.1016/j.crte.2004.02.007
Lee, C. T., & Wang, Y. (1987). Paleostress change due to the Pliocene-Quaternary arc-continent collision in Taiwan. Mem. Geol. Soc. China, 9, 63–86.
Marrett, R., & Allmendinger, R. W. (1990). Kinematic analysis of fault-slip data. Journal of Structural Geology, 12(8), 973–986. http://doi.org/10.1016/0191-8141(90)90093-e
Matte, P., Tapponnier, P., Arnaud, N., Bourjot, L., Avouac, J. P., Vidal, P., … Yi, W. (1996). Tectonics of Western Tibet, between the Tarim and the Indus. Earth and Planetary Science Letters, 142(3), 311–330.
Mitra, S. (1988). Three-dimensional geometry and kinematic evolution of the Pine Mountain thrust system, southern Appalachians. Geological Society of America Bulletin, 100(1), 72–95.
Namson, J. (1981). Structure of the Western foothills Belt Miaoli-Hsinchu Area, Taiwan: (I) Southern Part. Petrol. Geol. Taiwan, 18, 31–61.
Namson, J. (1983). Structure of the Western Foothills Belt, Miaoli-Hsinchu Area, Taiwan: (II) Central Part. Petrol. Geol. Taiwan, 19, 51–76.
Namson, J. (1984). Structure of the Western Foothills Belt, Miaoli-Hsinchu Area, Taiwan: (III) Northern Part. Petrol. Geol. Taiwan, 20, 35–52.
Petit, J. P. (1987). Criteria for the sense of movement on fault surfaces in brittle rocks. Journal of Structural Geology, 9(5-6), 597–608. http://doi.org/10.1016/0191-8141(87)90145-3
Price, N. J. (1966). Fault and joint development in brittle and semi-brittle rock. Pergamon Press.
Reid, H. (1910). The mechanics of the earthquake: The California earthquake of April 18, 1906, report, vol. 2, 192 pp. State Earthquake Invest. Comm., Carnegie Inst. of Wash., Washington, DC.
Scholz, C. H. (2002). The Mechanics of Earthquakes and Faulting (2nd ed.). U.K.: Cambridge University Press.
Seno, T. (1977). The instantaneous rotation vector of the Philippine Sea plate relative to the Eurasian plate. Tectonophysics, 42(2-4), 209–226.
Stein, R. S. (1999). The role of stress transfer in earthquake occurrence. Nature, 402(6762), 605–609.
Stein, R. S. (2003). Earthquake conversations. Scientific American, 288(1), 72–79.
Suppe, J. (1980a). A retrodeformable cross section of northern Taiwan. Proceedings of the Geological Society of China, (23), 46–55.
Suppe, J. (1980b). Imbricated structure of western foothills belt, southcentral Taiwan. Petrol. Geol. Taiwan, 17, 1–16.
Suppe, J. (1984). Kinematics of arc-continent collision, flipping of subduction, and back-arc spreading near Taiwan. Mem. Geol. Soc. China, 6, 21–33.
Suppe, J., & Medwedeff, D. A. (1990). Geometry and kinematics of fault-propagation folding. Eclogae Geologicae Helvetiae, 83(3), 409–454.
Suppe, J., & Namson, J. (1979). Fault-Bend Origin of Frontal Folds oi the Western Taiwan Fold-and-Thrust Belt. Petrol. Geol. Taiwan, 16, 1–16.
Vann, I. R., Graham, R. H., & Hayward, A. B. (1986). The structure of mountain fronts. Journal of Structural Geology, 8(3-4), 215–227. http://doi.org/10.1016/0191-8141(86)90044-1
Vermilye, J. M., & Scholz, C. H. (1998). The process zone: A microstructural view of fault growth. Journal of Geophysical Research: Solid Earth, 103(B6), 12223–12237. http://doi.org/10.1029/98jb00957
Wang, C.-Y., Chang, C.-H., & Yen, H.-Y. (2000). An interpretation of the 1999 Chi-Chi earthquake in Taiwan based on the thin-skinned thrust model. Terrestrial Atmospheric and Oceanic Sciences, 11(3), 609–630.
Wang, C.-Y., Li, C.-L., Su, F.-C., Leu, M.-T., Wu, M.-S., Lai, S.-H., & Chern, C.-C. (2002). Structural Mapping of the 1999 Chi-Chi Earthquake Fault, Taiwan by Seismic Reflection Methods. TAO, 13(3), 16.
Wang, S., Gong, S., Mii, H., & Dai, C. (2006). Cold-seep carbonate hardgrounds as the initial substrata of coral reef development in a siliciclastic paleoenvironment of southwestern Taiwan. Terrestrial Atmospheric and Oceanic Sciences, 17(2), 405–427.
Wang, W.-H., Chang, S.-H., & Chen, C.-H. (2001). Fault slip inverted from surface displacements during the 1999 Chi-Chi, Taiwan, earthquake. Bulletin of the Seismological Society of America, 91(5), 1167–1181.
Wang, W.-H., & Chen, C.-H. (2001). Static stress transferred by the 1999 Chi-Chi, Taiwan, earthquake: Effects on the stability of the surrounding fault systems and aftershock triggering with a 3D fault-slip model. Bulletin of the Seismological Society of America, 91(5), 1041–1052.
White, S. H., & Green, P. F. (1986). Tectonic development of the Alpine fault zone, New Zealand: A fission-track study. Geology, 14(2), 124–127.
Wojtal, S., & Mitra, G. (1988). Nature of deformation in some fault rocks from Appalachian thrusts. Geological Society of America Special Papers, 222, 17–34.
Yu, S. B., Chen, H. Y., & Kuo, L. C. (1997). Velocity field of GPS stations in the Taiwan area. Tectonophysics, 274(1), 41–59.
Žalohar, J., & Vrabec, M. (2007). Paleostress analysis of heterogeneous fault-slip data: The Gauss method. Journal of Structural Geology, 29(11), 1798–1810. http://doi.org/10.1016/j.jsg.2007.06.009
Zoback, M. D., Moos, D., & Stephenson, D. E. (1989). State of stress and the relation to tectonics in the Central Savannah River area of south Carolina. In The 30th US Symposium on Rock Mechanics (USRMS). American Rock Mechanics Association.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/4085-
dc.description.abstract本研究以台灣中部國姓地區雙冬斷層上盤出露的河床連續露頭為研究對象,試圖解析逆衝塊體在造山抬升過程中產生的一系列變形構造,包括節理、斷層及褶皺,並探討過程中應力與應變狀態的演變,進而重建雙冬斷層系統的演化過程。本研究透過露頭觀察、地層對比等方式以進行地質構造剖面的建立,並量測節理及斷層等脆性構造,同時利用其與褶皺的關係進行脆性構造演化史的建構。研究地區為雙冬斷層上盤的上衝塊體,主要為中新世岩層。野外調查的結果顯示,上盤地層在近斷層帶時形成2-3個覆瓦狀堆疊,並伴隨3-4個向北傾沒的短波長連續褶皺。顯示其為一應力集中之區域。
節理與斷層擦痕的初步分析結果得到數個主要構造事件如下:一期同沈積時期的伸張性應力(造成同沉積斷層或節理)與至少三期與雙冬斷層演化相關的東西向擠壓應力。在擠壓斷層滑移事件中,早期的共軛逆斷層系統是在地層還維持在接近水平位態時形成的(造山作用初期,Stage 1),約在地下4-6公里深。爾後隨著雙冬斷層上盤上衝塊體持續滑移抬升,使得地層褶皺傾斜與地層堆疊,同時也產生晚期的逆衝斷層及平移斷層系統(Stage 2, 3)。較晚期(Stage 2, 3)的斷層擦痕破裂,似乎是在上衝地塊在淺部(2-4公里深?)形成連續短波長褶皺的同時期所伴隨的脆性構造,而分析也顯示部分錯動是沿早期形成的既有破裂面滑動。從岩層大致走向和大區域來比較,本區域似乎沒有明顯的水平方向塊體旋轉,所計算之應力場/應變場亦未特別顯示朝順時針或逆時針水平旋轉之特色。
應力與應變分析顯示,三期擠壓性構造事件皆為東西向到西北-東南向的擠壓機制,每一期皆有主要的擠壓方向與若干組次要的擠壓方向,本研究提供另一個可能的解釋:在雙冬斷層系統演化的過程中,常伴隨許多地震滑移事件,地震循環的記錄隨著雙冬斷層演化及上衝地塊抬升,持續了數十萬年,並保存在斷層帶周遭的岩體破裂中,意即這些斷層擦痕不僅記錄了大地震時期或間震期的應力狀態,同時也記錄了震後時期餘震的應力狀態,而非東西向的最大擠壓應力也許是主震後應力調整期發生的餘震滑移。
此外,從矩陣張量所計算之軸差比來看,應力軸差比在演化過程中逐漸上升,從0.13到0.35;應變軸差比則穩定保持在0.5左右。無論何種計算方法,此結果皆顯示上衝褶皺塊體主要受到東西向強勢的水平擠壓應力及應變,並在爬衝過程中維持著強勢的鉛直方向最小主應力,在演化過程中水平圍壓應力(第二主應力軸)一直維持大於鉛直圍壓應力,暗示台灣中部地區的褶皺逆衝帶在造山作用過程中,水平側向還是有明顯的擠壓應力,這也許與台灣中部仍處於造山帶中段有關。
zh_TW
dc.description.abstractBased on tectonic analysis on the well-exposed riverbed outcrops in the Guoshing area, central Taiwan, we elucidate and characterize the deformation structures, including joint, fault, and fold, and its evolution during the upward propagation of a thrust sheet in fold-thrust belt. We mainly focused on a section of continuous outcrops about 1 km long in the hanging wall of the Shuangtung Fault, a major thrust fault revealing a duplex structure in the western foothills of the Taiwan mountain belt. By detailed field investigation we established a local geological 3-D architecture of deformed Miocene strata, which is characterized by two to three duplex structures accompanied by multiple folds, which plunge exclusively toward the North, suggesting stress localization near the main Shuangtung fault zone.
We conducted fault slip data and fracture analysis via Faultkin and T-tecto software. By further comparing the brittle fractures with fold structure, our results show that slickenside faulting occurred on multiple phase throughout the propagation of the thrust sheet on the hanging wall of the Shuangtung fault and that the multiple wave folding seemingly developed in the late stage during the exhumation of the thrust sheet. We are finally able to summarize the evolution of the deformation structures in Guoshing area as following: 1)one early extensional stress event, which makes syn-sedimentary faulting or joint; 2)three phases of compressional thrusting events; one is early conjugate thrust system with E-W compression which may indicate the beginning of thrusting when the strata of this thrust sheet still kept horizontal at depth of about 4-6 km(Stage 1). Then, the hanging wall strata have been tilted through upward movement of the thrust sheet along the Shuangtung Fault. During this period, a late conjugate thrust system (with E-W to NE-SW compression)developed at the shallow depth of 2-4 km(Stage 2, 3). We found that the late stage of slickenside faulting events is likely syn-folding with the multiple folds. Our observations and analyses also show that parts of the late stage thrusting slickenside followed the pre-existing fractures developed in the earlier stages. Comparing with regional pattern and strata attitude, it seems that the strata have not experienced block rotation. In addition, for each stages of compressional stress events, we found one mainly compressive direction and several secondary compressive direction, we interpret as following: numerous faulting (slickenside slip)events occurred within the hanging-wall thrust sheet during the evolution of the Shuangtung Fault system, which might represent several seismic cycles. We tend to interpret the variations on the orientation of the maximum principal stress axis to be aftershocks transient stress state under stress perturbation following the major earthquakes.
We calculated the stress ratio for each stages of stress event, the stress ratio gradually increasing from Stage 1 to Stage 3, during the Shuangtung Fault evolution, averaging from 0.13 to 0.35. The results show that 1) strong compressive maximum principal stress (σ1)in the horizontal direction, 2) minimum principal stress in vertical direction (σ3=σv), and 3)The second principal stress(σ2)always larger than the minimum principle stress(σ3=σv). It suggested that there is still have obvious compressive lateral stress during the mountain building process.
en
dc.description.provenanceMade available in DSpace on 2021-05-13T09:20:35Z (GMT). No. of bitstreams: 1
ntu-105-R02224112-1.pdf: 18771259 bytes, checksum: b7e0b288ea992361d885d013d1cc40e4 (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents目錄 1
圖目錄 4
表目錄 8
第一章 緒論 9
1-1研究動機與目的 9
1-2研究區域地理位置概況 10
1-3區域地質前人研究 12
1-4研究目標 12
第二章 地質背景與文獻回顧 14
2-1麓山帶區域地質背景概述 15
2-1-1 西部麓山帶地質概述 15
2-1-2 外麓山帶與內麓山帶的差異 17
2-1-3研究區域地層概述 17
2-1-4研究區域地質構造 20
2-2雙冬、龜蒲斷層相關研究討論 21
2-3褶皺逆衝帶構造演化相關研究 24
2-3-1斷層帶的擴展模式 24
2-3-2車籠埔斷層帶的例子 25
2-3-3九芎坑、觸口斷層帶的例子 28
2-3-4阿帕拉契山斷層帶的例子 29
第三章 研究方法 31
3-1野外地質調查 31
3-1-1野外露頭觀察 31
3-1-2變形構造 33
3-2室內資料處理分析 36
3-2-1斷層擦痕分析 36
3-2-2 軟體介紹 41
第四章 野外露頭地層分層與構造特徵 44
4-1野外地層對比 44
4-2 構造單元分區 50
4-1-2 構造單元 I 50
4-1-3 構造單元 II 53
4-1-4 構造單元III 55
4-1-5 構造單元IV 57
4-3 主要斷層帶描述 58
4-3-1 F1斷層 58
4-3-2 F2斷層 58
4-3-3龜蒲斷層帶 59
4-4構造剖面與特徵 63
4-4-1 龜溝地區構造剖面與特徵 63
4-2-2 雙冬斷層上盤構造剖面 64
4-5小結 65
第五章 脆韌性構造分析結果:型態、機制與演化 66
5-1概論 66
5-2現地節理分析 67
5-3斷層擦痕構造作用 70
5-4綜合比對分析 97
5-4-1 Stage 1(1a, 1b) 97
5-4-2 Stage 2(2a, 2b) 98
5-4-3 Stage 3(3a, 3b) 98
5-4-4 Stage 1, 2, 3 與節理綜合討論 98
5-4-4 應力軸差比與應變軸差比 106
5-4小結 109
第六章 討論 110
6-1地層辨認、指準層、露頭構造剖面重建的相關問題討論 110
6-2 利用軟體進行斷層擦痕分析的問題 111
6-3斷層擦痕分析結果的地質意義 112
6-4應力張量與應變張量之異同 114
6-5雙冬斷層系統構造演化 115
第七章 結論 118
參考文獻 120
附錄 應力原始資料 129
dc.language.isozh-TW
dc.subject雙冬斷層zh_TW
dc.subject褶皺逆衝帶zh_TW
dc.subject西部麓山帶zh_TW
dc.subject地殼應力zh_TW
dc.subject多期斷層擦痕分析zh_TW
dc.subjectmultiple phase fault-slip analysisen
dc.subjectcrustal stressen
dc.subjectShuangtung Faulten
dc.subjectfold and thrust belten
dc.subjectWestern Foothillsen
dc.title褶皺逆衝帶上衝褶皺塊體的構造演化:台灣中部國姓地區褶皺、斷層、及節理分析zh_TW
dc.titleDevelopment and evolution of folds, faults and joints within a thrust sheet in fold-thrust belt, Guoshing, central Taiwanen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee朱傚祖(Hao-Tsu Chu),葉恩肇(En-Chao Yeh),王士偉(Shih-Wei Wang)
dc.subject.keyword西部麓山帶,褶皺逆衝帶,雙冬斷層,多期斷層擦痕分析,地殼應力,zh_TW
dc.subject.keywordWestern Foothills,fold and thrust belt,Shuangtung Fault,multiple phase fault-slip analysis,crustal stress,en
dc.relation.page155
dc.identifier.doi10.6342/NTU201603283
dc.rights.note同意授權(全球公開)
dc.date.accepted2016-08-21
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept地質科學研究所zh_TW
顯示於系所單位:地質科學系

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf18.33 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved