請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/4070
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳丕燊(Pisin Chen) | |
dc.contributor.author | Hsu-Wen Chiang | en |
dc.contributor.author | 蔣序文 | zh_TW |
dc.date.accessioned | 2021-05-13T09:20:28Z | - |
dc.date.available | 2021-05-13T09:20:28Z | - |
dc.date.issued | 2016 | |
dc.date.submitted | 2016-08-21 | |
dc.identifier.citation | [1] Antonio Enea Romano, Sergio Andr´es Vallejo, “Directional dependence of the local estimation of H0 and the nonperturbative effects of primordial curvature perturbations”, Europhys. Lett. 109, 3, 39002 (2015).
[2] Antonio Enea Romano, Hsu-Wen Chiang and Pisin Chen, “A new method to determine large scale structure from the luminosity distance”, Class. Quantum Grav. 31, 115008 (2014). [3] Adam G. Riess et al., “A 2.4% Determination of the Local Value of the Hubble Constant”, arxiv:1604.01424. [4] Planck Collaboration, “Planck intermediate results. XLVI. Reduction of large-scale systematic effects in HFI polarization maps and estimation of the reionization optical depth”, arxiv:1605.02985. [5] N. Suzuki et al., “The Hubble Space Telescope Cluster Supernova Survey: V. Improving the Dark Energy Constraints Above z¿1 and Building an Early-Type-Hosted Supernova Sample”, Astrophys. J. 746, 85 (2012). [6] Adam G. Riess et al., “A 3% Solution: Determination of the Hubble Constant with the Hubble Space Telescope and Wide Field Camera 3”, Astrophys. J. 730, 119 (2011). [7] R. C. Keenan et al., “Evidence for a 300 Mpc Scale Under-density in the Local Galaxy Distribution”, Astrophys. J. 775, 62 (2013). [8] Krzysztof Bolejko et al., “Anti-lensing: the bright side of voids”, Phys. Rev. Lett. 110, 021302 (2013). [9] H.-W. Chiang, Y.-C. Hu, P. Chen, “Quantization of Spacetime Based on Spacetime Interval Operator”, Phys. Rev. D93, 084043 (2016), [arXiv:1512.03157]. [10] David Mattingly, “Modern Tests of Lorentz Invariance”, Living Rev. Relativity 8, 5 (2005), arxiv:gr-qc/0502097 [11] Hartland S. Snyder, “Quantized Space-Time”, Phys. Rev. 71, 38 (1947). [12] Shahn Majid and Henri Ruegg, “Bicrossproduct structure of -Poincar´e group and non-commutative geometry”, Phys. Lett. B334, 348 (1994), arxiv:hep-th/9405107. [13] Jerzy Kowalski-Glikman and Sebastian Nowak, “Non-commutative space-time of Doubly Special Relativity theories”, Int. J. Mod. Phys. D12, 299 (2003), arxiv:hepth/0204245. [14] Jerzy Kowalski-Glikman, “Introduction to Doubly Special Relativity”, Planck Scale Effects in Astrophysics and Cosmology pp 131, Springer Berlin Heidelberg (2005), arxiv:hep-th/0405273. [15] G. Amelino-Camelia, “Doubly-special relativity: first results and key open problems”, Int. J. Mod. Phys. D11, 1643 (2002), arxiv:gr-qc/0210063. [16] Alain Connes and John Lott, “Particle models and noncommutative geometry”, Nucl. Phys. B18, 29 (1991), library of UMichigan. [17] Alain Connes, “Gravity coupled with matter and the foundation of non commutative geometry”, Commun. Math. Phys. 182, 155 (1996), arxiv:hep-th/9603053. [18] Eliezer Batista and Shahn Majid, “Noncommutative Geometry Of Angular Momentum Space U(su(2))”, J. Math. Phys. 44, 107 (2003), arxiv:hep-th/0205128. [19] Laurent Freidel and Shahn Majid, “Noncommutative harmonic analysis, sampling theory and the Duflo map in 2+1 quantum gravity”, Class. Quantum Grav. 25, 045006 (2008), arxiv:hep-th/0601004. [20] Eliezer Batista and Shahn Majid, “Three dimensional quantum geometry and deformed symmetry”, J. Math. Phys. 50, 052503 (2009), arxiv:0806.4121. [21] Sergio Doplicher, Klaus Fredenhagen, and John E. Roberts, “The quantum structure of spacetime at the Planck scale and quantum fields”, Commun. Math. Phys. 172, 187 (1995), arxiv:hep-th/0303037. [22] Ronald J. Adler, “A quantum theory of distance along a curve”, Unpublished (2014), arxiv:1402.5921. [23] Jungjai Lee, John J. Oh, and Hyun Seok Yang, “An Efficient Representation of Euclidean Gravity I”, JHEP 12, 025 (2011), arxiv:1109.6644. [24] U. Carow-Watamura, M. Schlieker, M. Scholl and S. Watamura, “Tensor Representation of the Quantum Group SLq(2;C) and Quantum Minkowski Space”, Z. Phys. C 48, 159 (1990), Springer. [25] Nathan Seiberg and Edward Witten, “String Theory and Noncommutative Geometry”, JHEP 09, 032 (1999), arxiv:hep-th/9908142. [26] T. Thiemann, “A length operator for canonical quantum gravity”, J. Math. Phys. 39, 3372-3392 (1998), arxiv:gr-qc/9606092. [27] M. Peskin and D. Schroeder, Introduction to Quantum Field Theory [28] Sidney Coleman, “Quantum sine-Gordon equation as the massive Thirring model”, Phys. Rev. D11, 2088 (1975), Freie Universitぴat Berlin. [29] Edward Witten, “Non-Abelian Bosonization in Two Dimensions”, Commun. Math. Phys. 92, 455-472 (1984), Project Euclid. [30] Paul J. Steinhardt, “Baryons and baryonium in QCD2”, Nucl. Phys. B176, 100-112 (1980). [31] Francois Foucart, Evan O’Connor, Luke Roberts, Matthew D. Duez, Roland Haas, Lawrence E. Kidder, Christian D. Ott, Harald P. Pfeiffer, Mark A. Scheel, and Bela Szilagyi “Post-merger evolution of a neutron star-black hole binary with neutrino transport”, Phys. Rev. D91, 124021 (2015), arxiv:1502.04146. [32] Carlo Rovelli, “Lorentzian Connes Distance, Spectral Graph Distance and Loop Gravity”, Unpublished (2014), arxiv:1408.3260. [33] Eugenio Bianchi, “The length operator in Loop Quantum Gravity”, Nucl. Phys. B807, 591 (2009), arxiv:0806.4710. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/4070 | - |
dc.description.abstract | 本碩士論文依據作者過去發表的文章分成兩大部分。
首先,我們認為與以往的微擾計算結果相反,廣義相對論的非線性效應會讓宇宙小尺度的不均勻性足以改變超新星亮度距離與紅移的關係,使得從超新星推得的哈伯常數與從宇宙微波背景輻射得來的數值不同。我們計算並顯示已知的3.4個標準差的差距確實可以用一個約莫三億秒差距大小的空洞來解釋,同時該空洞與亮物質密度觀測數據暗示可能存在的空洞大小位置相符。 然後在第二部分,我們基於廣義相對論中常常出現的旋量變數,透過將弦世界面理論對稱轉變為旋量對稱來建立一個新形式的時空量子化。由於是從幾種常見的重力理論共有的特性出發,我們相信此理論可以將如量子迴圈重力理論與超弦理論等熱門理論連結起來。我們也推導了廣義測不準原理並顯示理論具有全相性。由於時空被量子化,世界線會變得比較模糊。我們計算了模糊的程度,並顯示即便是在宇宙學尺度下也極難測量到該現象。因此我們無需擔心這個時空量子化理論會與任何宇宙觀測結果相衝突。 | zh_TW |
dc.description.abstract | The whole thesis is divided into two parts, each of which is based on papers published before.
First, we suggest that contrary to the usual perturbation result, the increasingly severe Hubble parameter tension between observations by utilizing low-redshift supernovae luminosity distance and the cosmological microwave background can be explained away by considering the nonlinear effect of the local inhomogeneity. We also compare the density profile from galaxy survey to what we obtained from the assumption that the tension of Hubble parameter comes solely from the local inhomogeneity, and find that they agree with each other. Second, we introduce a new type of spacetime quantization based on the spinorial description suggested by loop quantum gravity. Specifically, we build our theory on a string theory inspired Spin(3, 1) worldsheet action. Because of its connection with quantum gravity theories, our proposal may in principle link back to string theory, connect to loop quantum gravity where SU(2) is suggested as the fundamental symmetry, or serve as a Lorentzian spin network. We derive the generalized uncertainty principle and demonstrate the holographic nature of our theory. Due to the quantization of spacetime, geodesics in our theory are fuzzy, but the fuzziness is shown to be much below conceivable astrophysical bounds, which makes our theory safe from deleterious effects. | en |
dc.description.provenance | Made available in DSpace on 2021-05-13T09:20:28Z (GMT). No. of bitstreams: 1 ntu-105-R02222010-1.pdf: 1015828 bytes, checksum: 2d268ea83be316762a4bff50026ed354 (MD5) Previous issue date: 2016 | en |
dc.description.tableofcontents | Acknowledgments i
中文摘要 iii Abstract v Contents vii List of Figures ix List of Tables xi 1 Introduction 1 1.1 Standard Model of Cosmology . . . . . . . . . . . . . . . . . . . . . . . 2 2 Distance Measurement in GR 5 2.1 Anchors and the Cosmic Ladders . . . . . . . . . . . . . . . . . . . . . . 6 2.2 Tension on H0 between Supernovae and CMB Measurements . . . . . . . 7 3 Inhomogeneity of the Universe 9 4 Data Analysis 13 4.1 Linear Regression and 2 Analysis . . . . . . . . . . . . . . . . . . . . . 13 4.2 Monte Carlo + Local Optimization . . . . . . . . . . . . . . . . . . . . . 15 5 Easing H0 Tension by Invoking Local Inhomogeneity 19 5.1 Geodesic Equation and the Initial Condition . . . . . . . . . . . . . . . . 19 5.2 Mapping DL back to Density Contrast . . . . . . . . . . . . . . . . . . . 22 5.3 Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 6 Quantization of Spacetime 31 6.1 Dimensional Reduction of Momentum Space . . . . . . . . . . . . . . . 32 6.2 Angular Momentum Space and U(su(2)) algebra . . . . . . . . . . . . . 33 6.3 Adler’s Spinorial Spacetime . . . . . . . . . . . . . . . . . . . . . . . . 34 7 Spinorial Spacetime 35 7.1 Reinterpretation, Reformulation and Correction to Adler’s Proposal . . . 35 7.2 Obtainbing Action Through Fermionization . . . . . . . . . . . . . . . . 39 7.3 Composite and Holographic Nature of the Spacetime . . . . . . . . . . . 42 7.4 Generalized Uncertainty Principle . . . . . . . . . . . . . . . . . . . . . 44 7.5 Smearing Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 8 Conclusion and Future Work 47 8.1 Macroscopic Universe . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 8.2 Microscopic Universe . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Appendices 49 Bibliography 51 | |
dc.language.iso | en | |
dc.title | 挑戰廣義相對論在極端尺度下的非線性效應 | zh_TW |
dc.title | Confronting General Relativistic Nonlinearities in Macroscopic and Microscopic Universes | en |
dc.type | Thesis | |
dc.date.schoolyear | 104-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 細道和夫(Kazuo Hosomichi),廉東翰(Dong-han Yeom) | |
dc.subject.keyword | 哈伯常數,超新星測量,大尺度結構,時空量子化,量子重力, | zh_TW |
dc.subject.keyword | Hubble Parameter,Supernovae,Large Scale Structure,Quantization of Spacetime,Quantum Gravity, | en |
dc.relation.page | 53 | |
dc.identifier.doi | 10.6342/NTU201603461 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2016-08-22 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 物理學研究所 | zh_TW |
顯示於系所單位: | 物理學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-105-1.pdf | 992.02 kB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。