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中中中文文文摘摘摘要要要

本碩士論文依據作者過去發表的文章[2, 9]分成兩大部分。
首先，我們認為與以往的微擾計算結果相反，廣義相對論的非線性

效應會讓宇宙小尺度的不均勻性足以改變超新星亮度距離與紅移的關

係，使得從超新星推得的哈伯常數與從宇宙微波背景輻射得來的數值

不同。我們計算並顯示已知的3.4個標準差的差距確實可以用一個約莫
三億秒差距大小的空洞來解釋，同時該空洞與亮物質密度觀測數據暗

示可能存在的空洞大小位置相符。

然後在第二部分，我們基於廣義相對論中常常出現的旋量變數，透

過將弦世界面理論對稱轉變為旋量對稱來建立一個新形式的時空量子

化。由於是從幾種常見的重力理論共有的特性出發，我們相信此理論

可以將如量子迴圈重力理論與超弦理論等熱門理論連結起來。我們也

推導了廣義測不準原理並顯示理論具有全相性。由於時空被量子化，

世界線會變得比較模糊。我們計算了模糊的程度，並顯示即便是在宇

宙學尺度下也極難測量到該現象。因此我們無需擔心這個時空量子化

理論會與任何宇宙觀測結果相衝突。
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Abstract

The whole thesis is divided into two parts, each of which is based on
papers[2, 9] published before.

First, we suggest that contrary to the usual perturbation result, the in-
creasingly severe Hubble parameter tension between observations by utiliz-
ing low-redshift supernovae luminosity distance and the cosmological mi-
crowave background can be explained away by considering the nonlinear ef-
fect of the local inhomogeneity. We also compare the density profile from
galaxy survey to what we obtained from the assumption that the tension of
Hubble parameter comes solely from the local inhomogeneity, and find that
they agree with each other.

Second, we introduce a new type of spacetime quantization based on the
spinorial description suggested by loop quantum gravity. Specifically, we
build our theory on a string theory inspired Spin(3, 1) worldsheet action. Be-
cause of its connection with quantum gravity theories, our proposal may in
principle link back to string theory, connect to loop quantum gravity where
SU(2) is suggested as the fundamental symmetry, or serve as a Lorentzian
spin network. We derive the generalized uncertainty principle and demon-
strate the holographic nature of our theory. Due to the quantization of space-
time, geodesics in our theory are fuzzy, but the fuzziness is shown to be much
below conceivable astrophysical bounds, which makes our theory safe from
deleterious effects.
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Chapter 1

Introduction

General relativity (GR) has been hailed as one of the most elegant and successful theo-

ries in the history of physics. It has passed numerous experimental tests, and also laid

the foundation of the standard model of cosmology. But however marvellous it may be

there are still pit holes that puzzle physicists generation after generation. The most bizarre

feature of GR is probably its non-linearity. In theories that are linear, e.g. Maxwell the-

ory, doubling the charge density would not result in anything special, at least classically.

However, in GR if one throws too much mass to the same location, a black hole may

be created, and the characteristics of the system changes completely around the event

horizon.

On the other hand, in the standard model (SM) of cosmology the universe is consid-

ered homogeneous and isotropic at the large scale limit, and small structures like super-

clusters or galaxies are just perturbations on top of that, which tweak the observation

slightly at higher orders. This statement seems in contradiction with the non-linearity of

GR, and a natural question thus arises. Are these inhomogeneities really incapable of

modifying cosmological observations significantly? We suggest that in fact there are evi-

dences of drastic deviation from SM of cosmology in local Hubble parameter (H0) mea-

surements using supernovae (SNe) as standard candles. In this thesis we point out that the

tension betweenH0 measurements based on cosmological microwave background (CMB)

and SNe can be explained away by positing a void around 300 mega-parsec (Mpc) wide.

We develop a technique that can convert the luminosity distance (DL) measurement back

to the density contrast profile, and show that indeed it is to some degrees similar to what

was observed through galaxy surveys [7].

The non-linearity of GR also becomes the blocking stone when one tries to quantize

it. A näive perturbation series expansion would result in non-renormalizable divergences

simply because every energy, including gravitational energy, gravitates. One thus con-

cludes that additional features must be added. For the past fifty years physicists have

1
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introduced various features, including supersymmetry, higher dimensions, strings, and

tetrads in the pursuing of a quantum theory of gravitation. Interestingly both loop quan-

tum gravity (LQG) and superstring theory, the two most popular quantum gravity theories,

exhibit a minimal distance, suggesting that the spacetime may be quantized. On the other

hand, many formalisms, including Newman-Penrose formalism, Bondi-Metzner-Sachs

symmetry on null infinity and loop quantum gravity, are based on the spinor description.

We therefore construct a new spacetime quantization model based on spinorial variables,

and show that it has many interesting properties.

For the sake of readability, IJK are for SO(3, 1) tangent bundle coordinate indices,

µνλρ for 4-d coordinate, ijk for 3-d coordinate, αβγ for 2-d coordinate, and (i)(j)(k)

for site numbers. Gamma matrices γ are defined according to the type of the indices

(Minkowskian if unspecified). We also use natural units c = } = G = 1, ȧ = ∂a
∂t

,

a,r = ∂a
∂r

, and the signature of g is chosen to be (+,−,−,−).

1.1 Standard Model of Cosmology

As we mentioned in ch.1 the standard model of cosmology is built on an assumption that

the universe is homogeneous and isotropic at the large scale limit. The metric correspond-

ing to this assumption is the Friedmann–Robertson–Walker (FRW) metric

ds2FRW = dt2 − a (t)2
(

1

1− kr2
dr2 + r2dΩ2

)
, (1.1)

where a is the scale factor that defines how the universe “expands” or “collapses” in the

sense that every matter comoves as the universe expands or collapses, dΩ2 is the line

element for unit 2-sphere, and k is the spatial curvature that determines the geometry of

the 3-d space (k = 1 for sphere, k = 0 for flat plane and k = −1 for hyperbola). From

CMB observations it has been known that k ∼ 0, i.e., the universe is almost flat. The

spatial curvature is very often confused with the spacetime curvature, but actually it only

describes the curvature of space. So even in flat FRW universe the curvature, i.e. the

matter density, does not vanish.

From Einstein Field Equation (EFE) one immediately obtains the Friedmann equa-

tions

H2 =
8π

3
ρ− k

a2
+

Λ

3
, (1.2)

Ḣ = −4π

3
(ρ+ 3p) +

Λ

3
, (1.3)

where H = ȧ/a is the Hubble parameter, ρ is the matter density, p is the pressure, and Λ

is the cosmological constant.

2
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Clearly without the cosmological constant the usual dust-like matter (p = 0) would

results in a dynamical universe with a variable scale factor. Discovery of the Hubble’s law

proves that we are living in a dynamical universe, since further the astronomical object is

faster it is moving away from us. This apparent universal retreating is called “redshift”,

and can be explained not by the Doppler effect but by the expansion of the universe that

stretches the electromagnetic (EM) wave and reddens the light. Hubble’s law can be

expressed as

z ≈ H0D , (1.4)

where H0 is the Hubble parameter of the present day, D is the distance, z = a0
a
− 1 is the

redshift, and a0 is the scale factor of the present day.

It may seem all fair given the observational fact, but one immediately realize that

by winding back the clock, the universe is actually coming from an extremely dense

and hot point with a = 0, i.e., the big bang. One of the most successful prediction

of the cosmology is that there exist residual lights of this primordial hot gas, i.e., the

cosmological microwave background (CMB). The observed temperature of 3K also sets

zCMB = 1100.

There is still a loophole in the entire argument. How can one side of CMB have

the temperature as the other side of it? To answer this one needs to introduce the idea

of inflation: a rapid expansion period before CMB which allows the causal connection

between two ends of the sky. Naı̈vely the cosmological constant serves the role, but

since we need to stop such a rapid expansion, what we need is some kind of dynamical

cosmological constant.

The simplest realization is through a scalar field called inflaton. With a scalar field φ

the Friedmann eqs. become

H2 =
8π

3

(
1

2
φ̇2 + V (φ)

)
, (1.5)

Ḣ = −4πφ̇2 . (1.6)

To make sure the inflaton is similar to the cosmological constant, we introduce the

idea of slow roll:

H2 =
1

3

(
8πV (φ)− Ḣ

)
≈ 8π

3
V (φ) , (1.7)

which immediately leads to

ε =
1

16π

(
V ′

V

)2

� 1 , (1.8)

η =
1

8π

V ′′

V
� 1 . (1.9)

3
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ε and η are the slow roll parameters that characterize the inflation. Given a roughly con-

stant acceleration, there is a horizon at H−1 that has a temperature of H/2π, which then

perturbs the inflaton field. The fluctuation of the inflation field then seeds the inhomogene-

ity that grows into large scale structures and CMB anisotropies. In SM of cosmology, the

impact on the observations due to the inhomogeneity has been studied thoroughly up to

first order. However as we argued at the beginning of this chapter, the non-linearity of GR

creeps in as the perturbation grows into filaments and voids. In the following chapters we

will explain how such effect would modify one of the most important measurements, the

distance measurement in an unexpected way.

4
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Chapter 2

Distance Measurement in GR

In usual experiments, using a ruler is the easiest way to measure the distance. However

this method is not applicable at the astronomical scale. To measure such great distance

one must rely on something that can travel through the vacuum, e.g. EM wave. Using

Earth’s orbit as the ruler, parallax can measure distances to lots of astronomical objects

that are within our own Milky Way (MW). This is also how one defines the “parsec” (pc):

an object having parallax movement of 1 arcsecond is 1pc away.

For objects that are even further from us, parallax is not so useful as the intrinsic scale

of the method is the circular orbit of Earth. One therefore must rely on non-geometrical

methods. The simplest way would be the standard candle. Given a candle with known

luminosity at a certain distance, one can easily get the distance of that candle by

DL =

√
L0

L
D0 , (2.1)

where L0 is the known luminosity at distance D0, L is the measured luminosity and DL

is the luminosity distance. There are several types of objects with almost constant energy

outputs regardless of where or how old they are, and astronomers use these so called

standard candles of cosmology to determine the distance. Cepheids and SNe are probably

the most famous two as both of them are very bright, have very accurately measured

energy outputs, and the light curves are well-explained.

The distances obtained in three different ways mentioned above are exactly the same

in Minkowski spacetime. But in curved spacetime the equivalence is not guaranteed. In

flat FRW universe one can easily obtained the three distances as following:

DC (z) =

∫ z

0

dz′

H (z′)
, DA (z) =

DC (z)

1 + z
, DL (z) = (1 + z)DC (z) . (2.2)

Here the comoving distance DC (z) describes the current distance of an object of redshift

z measured by a ruler, the angular diameter distance DA (z) describes the relation be-

tween angular motion and transverse motion, and DL is precisely the luminosity distance

measured using standard candle.

5
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To certain degree the redshift is the ultimate distance measure tool once H0 and the

constants in eq. (1.2) are determined. However as we can see the relation between three

distances depends on the geometry of the spacetime, or the matter distribution itself.

Therefore it opens the possibility that the inhomogeneity may alter these relations and

thus induce some effects on the distance measurements, and thus on the measurement of

H0.

2.1 Anchors and the Cosmic Ladders

As we mentioned in the last section, to obtain the luminosity distance one needs a standard

candle with a fully explained light curve and an accurately measured energy output. But

in reality one cannot really measure the total energy output as these standard candles are

still astronomical objects. What one really know is just their magnitude

m = −2.5 log10 L , (2.3)

where the luminosity L is in a predefined unit. Therefore some specific objects with

distances measured in other ways are used to determine the so called absolute magnitude

M (expected magnitude of the object at 10pc). These special objects are called anchors.

For example, MW cepheids are the anchors to determine the absolute magnitude of the

cepheids since they are close enough to use parallax to determine the distance. Cepheids

in turn determine the absolute magnitude of SNe by comparing SNe to cepheids within

their host galaxies. SNe then determine the relation between redshift and distance by

determining H0 and constants in eq. (1.2). This series of anchoring is called cosmic

distance ladder. Clearly the accuracy of this long chain of measurements could easily be

compromised by unexpected contaminations coming from local inhomogeneities. Later

on we will analyse one specific part of the ladder, the determination of the SNe absolute

magnitude and H0.

Another way to measure H0 is through the observation of CMB. The sound horizon

of baryons during CMB era can be fully determined by cosmological models fitted using

CMB data. This sound horizon then leaves an imprint on the CMB photons (since it did

couple to baryons) and provides us a standard ruler at z = 1100! This ruler then can be

used in the same way as parallax, i.e., using angular size of sound horizon to determine

the angular diameter distance to CMB. Therefore we obtain yet another anchor and due to

extremely precise measurements of CMB we can even determine H0 using CMB alone.

6
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2.2 Tension on H0 between Supernovae and CMB Mea-

surements

As mentioned in the last section, in addition to the distance ladder in the low redshift, one

can also use CMB to determine the value of H0. However both values depends on the un-

derlying cosmological model. The SNe measurement requires multiple anchors and thus

surfers from the possible contamination due to local inhomogeneity. For CMB measure-

ment the determination of the sound horizon is even more model dependent. Nevertheless,

one can still compare the two values directly under the same model.

For vanilla FRW model, H0 is determined as

HSN
0 = 73.24± 1.74 kms−1Mpc−1 , (2.4)

HCMB
0 = 66.93± 0.62 kms−1Mpc−1 , (2.5)

where HSN
0 comes from Riess [3], and HCMB

0 comes from PLANCK2016 data [4]. A

3.4 σ difference between the two is 99.9% not a fluke, and such strong tension implies

that indeed there are contaminations from either the model-choosing process or the sys-

tematics of the measurement. Considering the fact that PLANCK, WMAP, and various

baryon acoustic oscillation-based results all lead to H0 around 66 to 69, while according

to [3] all anchors leads to H0 around 72 to 74 (ignoring MW cepheids as they are heavily

contaminated by the peculiar motion), it seems highly unlikely that such systematic error

would exist. The only possibility remaining is that new physics beyond traditional FRW

model must be considered.

We provide an easy way to ease the tension, by considering the possibility that local

inhomogeneities may contaminate certain important anchors and ruin the entire cosmic

ladder. According to [7], there seems to be a large void nearby, and interestingly the

cepheids Riess used to determine the absolute magnitude of SNe are mostly very close

to the void, further strengthened the possibility of such contamination. In the next three

chapters we will show that indeed the inconsistency between SNe and CMB measure-

ments could be explained by the local inhomogeneities.

7
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Chapter 3

Inhomogeneity of the Universe

Since what we are interested in is the low redshift SNe and cepheids, the cosmological

constant is negligible. We will ignore it from now on, except when constructing the

density contrast where the background is chosen to be FRW model with PLANCK2016

parameters [4].

Considering the fact that lights also get attracted by the gravitational field, an over-

dense region would attract more light, thus decreases the observed luminosity distance.

In linear limit one would think that an underdense region would be less attractive than

nearby region and increases the observed luminosity distance. One can draw the same

conclusion from the lensing equation

κ =
3

2
H2

0Ωm

∫ χS

0

dχ
χS − χ
χS

χδC(χ)(1 + z) , (3.1)

where κ = D0/Dmod − 1 is the convergence of the light, Dmod is the altered luminosity

distance, Ωm is the matter density ratio, δC is the density contrast, χ is the comoving

distance and χS is the comoving distance to the source. As we can see(
Dmod

D0

)′
(z) ∝ −δC(z) (3.2)

when z is small. Another effect comes from the Doppler effect of the matter outflow

due to inhomogeneity. The authors in [8] have calculated the Doppler effect through the

velocity field. However these perturbative results actually require δC to be small. When

this is not the case we must use the full nonlinear EFE. To simplify the calculation, people

usually focus on certain types of restricted models.

In the case of a radially inhomogeneous spherically symmetric dust-like system with

an observer at the center, the solution of EFE is the Lemaı̂tre-Tolman-Bondi (LTB) metric.

This is not an open violation of the Copernican principle, since we only consider it as an

approximation to the large scale structures by assuming we are at the center of a void and

by ignoring all other voids and filaments around us.

9
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The Lemaı̂tre-Tolman-Bondi solution can be written as

ds2 = dt2 − (R,r )2 dr2

1 + 2E
−R2dΩ2 , (3.3)

where R = R(t, r) is the angular diameter distance, E = E(r) is an arbitrary function of

r.

The EFE gives (
Ṙ

R

)2

=
2E(r)

R2
+

2M(r)

R3
, (3.4)

ρ(t, r) =
2M,r
R2R,r

, (3.5)

with M = M(r) being an arbitrary function of r. The solution can be expressed paramet-

rically in terms of a time variable η =
∫ t
dt′/R(t′, r) as

R̃(η, r) =
M(r)

−2E(r)

[
1− cos

(√
−2E(r)η

)]
, (3.6)

t(η, r) =
M(r)

−2E(r)

[
η − 1√

−2E(r)
sin
(√
−2E(r)η

)]
+ tb(r) , (3.7)

where R̃ has been introduced to clarify the distinction between the two functions R(t, r)

and R̃(η, r) which are trivially related by R(t, r) = R̃(η(t, r), r), and tb(r) is another

arbitrary function of r, called the bang function, which corresponds to the fact that big-

bang/crunches can happen at different times.

We introduce the variables

a(t, r) =
R(t, r)

r
, k(r) = −2E(r)

r2
, ρ0(r) =

6M(r)

r3
, (3.8)

so that EFE are written in a form similar to those for the FRW metric:

ds2 = dt2 − a2
[(

1 +
a,r r

a

)2 dr2

1− k(r)r2
+ r2dΩ2

2

]
, (3.9)(

ȧ

a

)2

= −k(r)

a2
+
ρ0(r)

3a3
, (3.10)

ρ(t, r) =
(ρ0r

3),r
3a2r2(ar),r

. (3.11)

The solution of equations above can now be written using η as

ã(η̃, r) =
ρ0(r)

6k(r)

[
1− cos

(√
k(r) η̃

)]
, (3.12)

t(η̃, r) =
ρ0(r)

6k(r)

[
η̃ − 1√

k(r)
sin
(√

k(r) η̃
)]

+ tb(r) , (3.13)

10
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where η̃ ≡ η r =
∫ t
dt′/a(t′, r) .

Clearly we can see that the density ρ(t, r) is directly related to the scale factor a

which is then related to spatial curvature k(r). Therefore one can easily describe the

inhomogeneity in terms of the luminosity distance which is exactly (1 + z)2R. This

relation involves the inversion of the radial null geodesic equations, and is called the

inversion problem, which will be discussed in ch. 5. In the rest of the thesis we will use

this last set of equations with simultaneous big bang tb = 0 and drop the tilde to make the

notation simpler. Furthermore, without loss of generality, we may set the function ρ0(r)

to be a constant ρ0(r) = ρ0 = constant.

11
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Chapter 4

Data Analysis

Our targets of interest are the low redshift SNe and cepheids that affect H0 measurement

considerably. To do so we need a clean dataset. Our dataset comes from two different

groups. For SNe the data comes from Union2.1 catalogue [5], and for the cepheids the

data comes from Riess’ 2016 paper [3]. We calibrate the old Union2.1 data according to

the difference between Riess’ new result and the old calibrator Union 2.1 catalogue was

using [6], by the formula

m−M = 25− 5 log10H0 + 5 log10 (H0dL)

≈ 25− 5 log10H0 + 5 log10 z . (4.1)

To investigate the effect of the inhomogeneity we further include the angular position

data from SIMBAD astronomical database. This complete database thus allows us to con-

struct a fit that takes directional dependence into account. We construct a fitting program

that helps us extracting a model-independent global fitting formula for the luminosity

distance, as will be discussed in the following sections.

4.1 Linear Regression and χ2 Analysis

Given a dataset with N data points one of the simplest way to obtain a smooth function is

the linear regression

f( ~X) =
n∑

m=1

wmbm( ~X) , (4.2)

where bm is the m-th basis and wm is the associated weight. The total number of basis n

is restricted to be no greater than the number of data points, such that the system is not

under-determined. To obtain the best fit weight one tries to minimize the total error of the

13
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fit in terms of χ2:

χ2 =
N∑
i=1

(
yi − fi
ei

)2

, (4.3)

where yi is the i-th data point value, ei is the associated error, and fi is the fitted value

f( ~Xi) at i-th data point position ~Xi. Assuming Gaussian distribution of error the likeli-

hood of fitted values {fi} would be e−χ2 , and the minimization process is equivalent to

the maximization of the likelihood of the fit. Such best fit can be described as

W = H−1 ·YW , (4.4)

where YW ≡ {yi/ei}, W ≡ {wm}, H = him = e−1i bm( ~Xi), and the inverse here is the

Moore-Penrose pseudo-inverse that minimizes χ2.

To visualize this process one can imagine that the fitting likelihood distribution is a n-

dimensional Gaussian distribution in the Rn space of {(yi−fi)/ei}, and a null fit f = 0 is

at YW position. A linear regression fit can be visualized as the closest point to the origin

on a hyperplane of dimension n spanned by H passing through YW . We can therefore

separate χ2 into an unexplained part (distance from the origin to that closest point) and an

explained part (distance from the closest point to the null fit point). We may also calculate

the probability distribution of χ2 on a n-d plane with residual χ2 = χ2
0 as

P (χ2) = π−n/2
∫ χ−χ0

0

e−x
2

V (Sn−1)dxn , (4.5)

where V (Sn−1) is the volume of a standard (n − 1) dimensional ball. This is the famous

cumulative probability of the χ2 distribution. The so called 68% or 95% confidence band

is precisely the envelop of all possible fits that have accumulative probability less than

68% or 95%. At first sight the computation of the envelop seems to be an extremely

complicated process, but luckily for linear regression the boundary of the envelop is the

same as a hypersphere on the hyperplane with radius given by the inversion of P (χ2).

Such hypersphere can be directly written down as

χ2
P − χ2

0

n
= tr (H · δW)2 =

χ2
P − χ2

0

n
tr
(
H ·H−1 · n

)2
, (4.6)

where δW is the change of the weight on the boundry, and n is an arbitrary unit vector.

By Cauchy inequality the boundary of the envelop can be described as

± sup{B · δW} ∝ ± sup
n
{B ·H−1 · n} = ±

∣∣B ·H−1∣∣ , (4.7)

where B = {bm} is the n-dimensional basis vector.

14
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4.2 Monte Carlo + Local Optimization

A natural extension to the linear regression model would be the inclusion of non-linear

parameters

f( ~X) =
n∑

m=1

wmbm({pam} ; ~X) , (4.8)

where {pam} are some nonlinear parameters for basis bm. Assuming there are k non-linear

parameters in total, one can again visualize the fitting process as finding the minimum on

a n+ k dimensional curved hypersurface. Since it is no longer a linear/flat system, many

linear algebra techniques we used in the last section do not apply. The only two methods

remaining are Monte Carlo method and local optimization method.

Local optimization method, as its name suggests, is the usual variational method when

searching for a local minimum. Since usually the basis is analytic, one can easily compute

the gradient of χ2 and use the steepest descend method to approach the local minimum

in an iterative way. But just like the search of the ground state in a many-body QM

system, most of the time a local minimum is not the global minimum. Therefore we

need a complementary method that allows us to probe lots of local minima and then pick

the minimum of local minima as the probed global minimum. Randomly generating a

list of initial points on the hypersurface, i.e., the Monte Carlo (MC) method, fits our

need perfectly. One of the most annoying problem of MC method is that one needs

a prior probability distribution of parameters to generate a list of initial points that are

“reasonably good”. Luckily for us the basis we chose has a very special form:

bm( ~X) = Φ
(∣∣∣ ~X − ~Xm

∣∣∣) , (4.9)

where Φ is a very simple monotonic function (r2L ln r or r2L+1 for L ∈ N), and ~Xm

are the non-linear parameters. Using monotonic function as the basis requires them to

be put as close to the data points as possible, so one gets a reasonable prior distribution

from the distribution of the data points. To speed up the MC process further, we optimize

the distribution by rebuilding the distribution using the parameters emitted by the local

optimization program. By doing so we speed up the MC process by more than 100 times.

Once we get the best fit from MC plus local optimization, we can regard its fitting

χ2 as the unexplained part of the χ2 distribution and find the corresponding χ2 for the

P -confidence band. Here we make an approximation that the hypersurface is almost flat,

since it is computationally forbidden to construct the hypersurface integral. The error of

χ2 introduced through this way is of the order R̄, the average of the scalar curvature on the

hypersurface around the best fit. Usually R̄ is small, and the approximation is valid. The

envelop of all possible fits that have χ2 smaller than what is obtained for the P -confidence
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band, would be the P -confidence band for the nonlinear fit. For outliers we follow the

routine in Riess’ 2016 paper [3], i.e. the classic “global but removing single largest outlier

at a time” method. For a complete work-flow chart please see fig. 4.1.
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Scan through and ignore
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respectively
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Delete that data
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MC for NL param. and

LR for linear param.
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of reduced dataset
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that minimize χ2
R after
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point 3-σ away?

Last LO result (without
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Figure 4.1: Work-flow of the fitting procedure. ∆m stands for difference between ob-

served magnitude and the predicted value from the FRW model with PLANCK 2016

parameters. Here LR stands for lineara regression, NL for nonlinear, param. for parame-

ters, and CL for confidence level. The double arrow consists of n copies of flows, each of

which has a different data point deleted. The idea of inversion will be introduced in the

next chapter.
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Chapter 5

Easing H0 Tension by Invoking Local
Inhomogeneity

In this chapter we will talk about the inversion method and show the comparison between

density contrast derived from the inversion method using observed luminosity distance

fitted previously and the observed density contrast from the galaxy survey.

5.1 Geodesic Equation and the Initial Condition

The luminosity distance for an observer at the center of a LTB space as a function of the

redshift is given by

DL(z) = (1 + z)2R (t(z), r(z)) = (1 + z)2r(z)a (η(z), r(z)) , (5.1)

where
(
t(z), r(z)

)
or
(

(η(z), r(z)
)

is the solution of the radial null geodesic equations.

The past-directed radial null geodesic is given by

dT (r)

dr
= f(T (r), r) , f(t, r) =

−R,r(t, r)√
1 + 2E(r)

, (5.2)

where T (r) is the time coordinate along the geodesic as a function of the coordinate r.

Applying the definition of redshift it is possible to obtain

dη

dz
=
∂rt(η, r)− F (η, r)

(1 + z)∂ηF (η, r)
= p(η, r) , (5.3)

dr

dz
= − a(η, r)

(1 + z)∂ηF (η, r)
= q(η, r) . (5.4)
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where we have used the following identities

f(t(η, r), r) = F (η, r) , (5.5)

ḟ(t(η, r), r) =
1

a
∂ηF (η, r) , (5.6)

R,r(t, r) = ∂rR(t(η, r), r) + ∂ηR(t(η, r), r)∂rη , (5.7)

F (η, r) = − 1√
1− k(r)r2

[∂r(a(η, r)r) + ∂η(a(η, r)r)∂rη]

= − 1√
1− k(r)r2

[
∂r(a(η, r)r)− ∂η(a(η, r)r)a(η, r)−1∂rt

]
. (5.8)

The functions p, q, F have an explicit analytical form which can be obtained from

a(η, r) and t(η, r). Using this approach the coefficients of geodesic equations are fully

analytical, which is a significant improvement over previous methods which required a

numerical integration of the Einstein’s equations to obtain the function R(t, r).

Before deriving the set of differential equations for the solution of the inversion method

it is important to analyze how many independent initial conditions we need to fix. Our

final goal will be to set and solve a set of differential equations in redshift space starting

from the center, where by definition z = 0. Given our choice of coordinates the model

will be fully determined by the functions k(z), r(z), η(z), corresponding to three initial

conditions

r(0) = 0

η(0) = η0

k(0) = k0 . (5.9)

The system of differential equation we will derive only involves derivatives of order one

respect to the redshift, so these initial conditions will be enough. Given the assumption of

the central location of the observer we have r0 = 0, while the observed value of the local

Hubble parameter H0 corresponds to another constraint among the central values k0, η0,

so only one of them is independent. After defining the Hubble rate as

HLTB =
∂ta(t, r)

a(t, r)
=
∂ηa(η, r)

a(η, r)2
(5.10)

we need to impose the two following conditions

a(η0, 0) = a0 , (5.11)

HLTB(η0, 0) = H0, (5.12)

where a0 is, as expected, an arbitrary parameter, η0 is the value of the generalized confor-

mal time coordinate η corresponding to the central observer today, and H0 is the observed

value of the local Hubble parameter.
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After re-writing the solution in terms of the following more convenient dimensionless

quantities

a(T, r) =
a0Ω

0
M sin2

(
1
2
T
√
K(r)

)
K(r)

, (5.13)

t(T, r) = H−10

Ω0
M

2K(r)

[
T − 1√

K(r)
sin
(√

K(r)T
)]

+ tb(r) , (5.14)

k(r) = (a0H0)
2K(r) , (5.15)

η = T (a0H0)
−1 , (5.16)

ρ0 = 3Ω0
ma

3
0H

2
0 . (5.17)

We can impose two conditions a(η0, 0) = a0 and HLTB(η0, 0) = H0 for Ω0
M and T0 to

finally get the initial conditions and the exact solution in this form

a(T, r) =
a0(K0 + 1) sin2

(
1
2
T
√
K(r)

)
K(r)

, (5.18)

t(T, r) = H−10

1 +K0

2K(r)

[
T − 1√

K(r)
sin
(√

K(r)T
)]

+ tb(r) , (5.19)

K0 = K(0) , (5.20)

T0 =
arctan (2

√
K0)√

K0

, (5.21)

Ω0
m = K0 + 1 . (5.22)

Since we have three unknown {Ω0
m, T0, K0} and two constraints, one of them can

always remain free, and the other two can be expressed in terms of it. Here we chose K0

to be the free parameter, but we could equivalently chose another one. The above form

of the solution is particularly useful to explore the full class of LTB models. Since K0

is a free parameter which determines the central value of the dimensionless conformal

time variable T0, the realness condition sets a lower bound K0 > −1. H0 is also a free

parameter which can be set according to observations and fixes the scale for the definition

of the dimensionless quantities K(r), T,Ω0
m. This means that we can arbitrarily fix K0

and H0 as long as we impose the correct initial condition given above.

As expected a0 does not appear in observable quantities such as the cosmic time

t(η, r), and it can be fixed to 1. In this way we can self-consistently determine all the

necessary initial conditions and we are left with the freedom to fix K0 arbitrarily. As we

will see later actually the change of K0 does not modify the density contrast too much, so

the model is determined once DL is given.
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5.2 Mapping DL back to Density Contrast

In the previous section we have seen that it is possible to derive a fully analytical set of

radial null geodesics equations. Our goal now is to use these equations to obtain a new set

of differential equations to map an observed DL(z) to a LTB model. In the coordinates

we chose, a LTB solution is determined uniquely by the function k(r) , so we will have

a total of three independent functions to solve for η(z), r(z), k(z). Since we have already

two differential equation for the geodesics, we need an extra differential equation.

This can be obtained by differentiating with respect to the redshift the luminosity

distance DL(z)

d

dz

(
Dobs
L (z)

(1 + z)2

)
=
∂(ra(η, r))

∂η

dη

dz
+
∂(ra(η, r))

∂r

dr

dz
= s(z) (5.23)

where Dobs
L (z) is the observed luminosity distance. In our case we will use the best fit

function obtained using the method developed in ch.4. Now we have the set of equations

we were looking for

dη

dz
= p(η(z), r(z)) = p(z) , (5.24)

dr

dz
= q(η(z), r(z)) = q(z) , (5.25)

d

dz

(
Dobs
L (z)

(1 + z)2

)
= s(z) . (5.26)

Since we will solve our differential equations with respect to the the variable z, we need to

transform the partial derivatives respect to η and r in eqs.(5.3,5.4) according to the chain

rule:

∂h(η, r)

∂r

∣∣∣∣
(η=η(z),r=r(z))

=
∂h(η(z), r(z))

dz

dz

dr
, (5.27)

∂h(η, r)

∂η

∣∣∣∣
(η=η(z),r=r(z))

=
∂h(η(z), r(z))

dz

dz

dη
. (5.28)

where h(η, r) is a generic function in the coordinates (η, r). After this substitution the

equations contain only functions of the redshift z, and derivatives respect to z. The differ-

ential equations obtained in this form need to be further manipulated in order to re-write

them in a canonical form in which the derivatives appear all on one side, since after the

application of the chain rule to eqs.(5.3,5.4) derivative terms like dr(z)
dz
, dη(z)

dz
, dk(z)

dz
are also

on the right-hand side. After a rather complicated algebraic manipulation done using
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MATHEMATICA™ we get :

0 = 4t2K ′(z)
(

(3 + 2t2)
√
K(z)r(z) + (3 + t2)SX − 3tS

)
− 8t3(1 + z)K(z)2r′(z)T ′(z)

− 2tK(z)r(z)K ′(z)(3(1 + t2)T (z) + (3 + 5t2)(1 + z)T ′(z))

+K(z)3/2(−8t4r′(z) + 3(1 + t2)2(1 + z)r(z)T (z)K ′(z)T ′(z)) (5.29)

0 = 2t(1 + z)
(
(3 + 5t2)r(z)K ′(z) + 4t2K(z)r′(z)

)
− 8
√
K(z)t4S + 6(1 + t2)2(1 + z)r(z)XK(z) (5.30)

0 = 2K(z)

(
(1 +K0)t

2r′(z)− (1 + t2)K(z)H0
d

dz

(
Dobs
L (z)

(1 + z)2

))
− 2(1 +K0)t r(z)

(
(t−X)K(z)−K(z)3/2T ′(z)

)
(5.31)

In the above expressions we have expressed all the trigonometric functions in terms of the

equivalent expressions in terms of tan(X) according to

S =
√

1−K(z)r(z)2 , (5.32)

t = tan(X) , (5.33)

X =
1

2

√
K(z)T (z) . (5.34)

We have also used the dimensionless version of the solution in terms of K(z), T (z) de-

rived in the previous section.

As it can be seen the above three equations are not linear in the derivative terms, but

the second one only involves {r′(z), K ′(z)}, while the other two involve all the three

functions {r′(z), K ′(z), T ′(z)}. This suggests that we can first solve for r′(z) in terms of

only K ′(z):

r′(z) =
1

8t3(1 + z)K(z)

[
8t4
√
K(z)S − 6(1 + z)t r(z)K ′(z)

− 10(1 + z)t3r(z)K ′(z) + 6Xr(z)K ′(z)(1 + z)
(
1 + t2

)2 ] (5.35)

and then substitute into other 2 eqs. to get:

K ′(z) = t(2tK(z)3/2
(
9(1 + t2)r(z) + (3 + t2)ST (z)

)
− 4t2SK(z)

(
3− 2t

√
K(z)T ′(z)

)
−K(z)(8t4S (1 + z)−1 + 3(3 + 4t2 + t4)r(z)T (z)K(z))) (5.36)

T ′(z) =
1 +K0

4t
(−6t(1 + 3t2)r(z)K(z) +

√
K(z)(8t4S (1 + z)−1

+ (3 + 10t2 + 3t4)r(z)T (z)K(z)) + 8t2K(z)3/2r(z)T ′(z)

− 8t(1 + t2) (1 +K0)
−1K(z)2H0

d

dz

(
Dobs
L (z)

(1 + z)2

)
) (5.37)
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These two equations now only involve K ′(z), T ′(z) in a linear form, so they can be

solved directly, and then the result for K ′(z) can be substituted in the equation for r′(z).

After some rather cumbersome algebraic manipulations we finally get:

dT (z)

dz
=

2
√
K(z)

3t(1 +K0)r(z)
×

[
Rz(z)

1 +
(1 + 3t2)

√
K(z)r(z)

2
(√

K(z)r(z)− t S
)


− (1 +K0)t
3S

(1 + t2) (1 + z)K(z)3/2

]
, (5.38)

dr(z)

dz
=− S

3 t (t2X − 3t+ 3X)
×

[
Rz(z)K(z)

(
t (3 + 5t2)− 3 (1 + t2)

2
X
)

(1 +K0)
(
−
√
K(z)r(z) + t S

)
+

2 t2 (2t3 − 3t2X + 3t− 3X)

(1 + t2) (1 + z)
√
K(z)

]
, (5.39)

dK(z)

dz
=

4t2
√
K(z)Rz(z)

3(1 +K0) (1 + t2) (1 + z)r(z) (t2X − 3t+ 3X)
×[

Rz(z) (1 + t2) (1 + z)K(z)3/2

−
√
K(z)r(z) + t S

− (1 +K0)t
2

]
, (5.40)

where Rz(z) = H0
d
dz

(
DobsL (z)

(1+z)2

)
.

The density can be expressed as

ρ =
H0 (1 + t2)

2
k(z)3

(1 +K0)t4

H0

(
3 (1 + t2)

2
X − 3t− 5t3

)
(1 +K0)t2 (t2X − 3t+ 3X)

+
2
(√

1− S2 − St
)

(2t3 − 3t2X + 3t− 3X)

(1 + z)Rz(z) (1 + t2) k(z)3/2 (t2X − 3t+ 3X)

)
. (5.41)

Now we are ready to convert the luminosity distance into the density contrast.

5.3 Result

Here we show our preliminary results. Since we have not yet obtained the data from

Keenan [7], we are not able to include their plots of observational data of density contrast.

As our goal is to compare our inverted density contrast with the one obtained in [7],

we will follow their syntax and define fields 1, 2, 3 as what are shown in fig. 5.1. In the

same figure we can also find that only field 1s and 3 contain enough data points, so we will

analyze these two fields only. After removing 5 outliers, we successfully fitmobs−mFRW

in field 3 with a reduced χ2 ∼ 0.77, and show that indeed SNe in field 3 are brighter than

expected in fig.5.2. Statistically the fitting also passes the null hypothesis as the reference
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Figure 5.1: This plot shows the sky map of all SNe and cepheids in our dataset. Three

fields are specified in Keenan’s work [7] as the three regions with density contrast data.

Our targets of interest are field 1 and field 3 which contain enough data points to fit the

luminosity distance curve. For the sake of clarity we will keep using the same color for

field 1 and field 3 as [7] later on.

model [3] has a larger reduced χ2 ∼ 0.91 . In contrast as shown in fig.5.3, for field 1

where most higher redshift SNe lie in, the fit we get after removing 4 outliers is a simple

shift in magnitude. The reduced χ2 ∼ 0.55 is again much lower than what vanilla FRW

model could achieve [3]. Finally we invert each fitted curve within the 68% confidence

band and get an envelop for the density contrast as shown in fig.5.4 and 5.5. According

to sec.5.1 K0 is not fixed, but actually the density contrast is almost independent of K0 as

shown in fig.5.6. So we decide to choose a specific K0 = −0.1 as an example since we

believe that we are actually in a void. Finally we compare this inverted density profile to

the one from [7]. Qualitatively our results for fields 1 and 3 is consistent with what was

observed through luminous density, indicating that indeed local structures could alter the

luminosity distance significantly.
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Figure 5.2: This plot shows the 68% confidence band of the field 3 ∆m fit, along with the

data points in this region. The deleted data points are in a darker color. The dashed curves

are the 68% confidence band envelop and the vanilla curve is the best fit. The fitting

model is chosen to be 5 functions of the form Φ(r) = r3 according to the dimensional

argument of the polyharmonic spline interpolation method. The gray curve is the result

from Riess 2016 [3].
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Figure 5.3: This plot shows the 68% confidence band of the field 1 ∆m fit, along with

the data points in this region. The deleted data points are in a darker color. The dashed

curves are the 68% confidence band envelop and the vanilla curve is the best fit. The

fitting model is chosen to be a simple constant shift. The gray curve is the result from

Riess 2016 [3].
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Figure 5.4: This plot shows the 68% confidence band of the inverted density contrast of

the field 3, with K0 = −0.1. Clearly we can see a ∼68% significant 10% under-dense

around z = 0.02 to 0.08 or 100 ∼ 400 Mpc. One can directly compare this plot to

Keenan’s using conversion d(Mpc) = H−10 z = 4400 z Mpc. One important feature in

Keenan’s result is the overdense region at around z = 0.1, and as we can see such feature

is in the 68% confidence band of our result. The gray curve is the inverted density contrast

of the FRW model with parameters from Riess 2016 [3].
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Figure 5.5: This plot shows the 68% confidence band of the inverted density contrast

of the field 1, with K0 = −0.1. Clearly we can see a ∼95% significant 10% under-

dense everywhere. One can directly compare this plot to Keenan’s using conversion

d(Mpc) = H−10 z = 4400 z Mpc, and find that the two agree with each other pretty

well. The gray curve is the inverted density contrast of the FRW model with parameters

from Riess 2016 [3].
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Figure 5.6: This plot shows the inverted density contrast of the best fit in the field 3,

under different K0. The blue, green, red curves correspond to K0 = −0.1, 0, and 0.1

respectively.
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Chapter 6

Quantization of Spacetime

In Riemannian geometry, the quadratic distance function g living on a manifold M de-

scribes the structure of the tangent bundle TM uniquely through specifying the relation

between quadratic line element ds2R and the coordinate difference dx. The quadratic na-

ture of ds2R = gµνdx
µdxν which implies Lorentz symmetry and Pythagorean theorem, is

based on numerous experimental facts [10]. It is one of the foundations of GR and even

when quantizing gravity, people usually promote it to its quantum version without mod-

ification. But in both LQG and superstring theories, the existence of a minimal distance

measure suggests that the infinitely-differentiable geometry may be an illusion that ceases

to be valid at the smallest scale. This interesting consequence of combining GR with QFT

leads to the notion that spacetime structure itself may have to be modified. H.S. Snyder

coined this attempt in the name of “quantized space-time” in his seminal article published

in 1947 [11].

Currently there are two major routes to tackle the quantization of spacetime. Dimen-

sional reduction from a higher dimensional momentum space proposed by Snyder is a

popular approach, which was followed by S. Majid, G. Amelino-Camelia, and others in

the construction of their own versions of quantized spacetime [12, 15, 13]. The other

route, first introduced by A. Connes [16, 17], comes from partial differential equation

analysis on non-commutative space (C∗ algebra), where fields and Fourier analysis can

be defined classically, with twisted measure providing non-commutativity. This approach

has been proven to be extremely versatile in the pursuit of quantized spacetime as non-

commutativity usually plays an important role [18, 19, 20, 21].

Here we consider a new way of deforming spacetime algebra, first proposed by R.

Adler [22], which has its root in Clifford algebra of the tangent bundle. Instead of a

bosonic structure where generators of momentum space serve as the coordinate measures,

this theory treats the proper distance measure as the composition of infinite generators of

Clifford structure on the tangent bundle of the position space. A continuous geodesic
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therefore becomes piecewise-linear and so is the manifold. As we will show by carefully

defining the measure, a QM system can be constructed on top of it.

6.1 Dimensional Reduction of Momentum Space

Snyder suggested [11] a deformation stemmed from the exponential map of a 4-d de Sitter

(dS) space with ”radius” a−1 embedded inside a 5-d momentum space ( dk2R1,4 = dk20 −
dk21 − dk22 − dk23 − dk24 ), i.e.,

a−2 = k20 − k21 − k22 − k23 − k24 . (6.1)

Next, x̂µ is chosen to be the momentum translation Killing vector such that it satisfies

Lorentz symmetry. Then the deliberately chosen conformally flat hypersurface guaran-

tees that the Lie derivatives of the Killing vectors must be proportional to the Lorentz

transformation Killing vectors Jµν :

x̂µ = ia

(
k4

∂

∂kµ
+ kµ

∂

∂k4

)
, (6.2)

[x̂µ, x̂ν ] = ia2Ĵµν = −a2
(
kµ

∂

∂kν
− kν ∂

∂kµ

)
, (6.3)

where kµ = ηµνkν , ηµν is the 4-d Minkowski metric and [ , ] is the commutator. The

momentum coordinate is the exponential map,

p̂µ = a−1kµ/k4 , (6.4)

on which the Lorentz transformation Killing vectors Ĵµν locally have the same form as

the traditional Lorentz transformation generators Ĵµν = x̂µp̂ν − x̂ν p̂µ. Snyder’s approach

therefore can be viewed as a non-abelian realization of the Lorentz group. The Heisenberg

relation and the uncertainty relation are twisted accordingly to be

[x̂µ, p̂ν ] = i
(
δµν − a2ηµλp̂λp̂ν

)
, (6.5)

∆xµ∆pν ≥
1

2

(
δµν − a2ηµλ 〈p̂λp̂ν〉

)
. (6.6)

As we will see in sec.7.4, our own version of quantized spacetime carries the same uncer-

tainty relation as Snyder’s up to the first order in p2.

An weaker deformation, called κ-Poincaré group, later invoked by G. Amelino-Camelia

[15, 13] for the doubly special relativity, was first introduced by S. Majid and H. Ruegg [12]

as follows: [
xi, xj

]
= 0 ,

[
xi, x0

]
= κ−1xi , [pµ, pν ] = 0 . (6.7)
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This system can be regarded as an AdS3 × R1,0 hypersurface in a 5-d momentum space,

where an upper bound κ for the spatial momentum |~p| served as a cutoff scale for the QFT

built on top of it. The realization of a maximally symmetric momentum space and the flat

p0 direction implies a vanilla Lorentz group constructed from p̂x̂ and a linear action on

p0. Note, however, that the cylindrical structure implies a non-linear Lorentz boost Ni on

the spatial momentum

[Ni, pj] = iδij

[
κ

2

(
1− e−2p0/κ

)
+

∣∣∣∣~p2
∣∣∣∣2
]
− i

κ
pipj . (6.8)

A maximally achievable spatial momentum κ therefore corresponds to an infinite energy

p0. In sec.7.4 , we will demonstrate that there also exists a maximal spatial momentum

with finite energy in our theory. However, their commutation relation and accordingly

their generalized uncertainty relation, share no similarity to our result.

6.2 Angular Momentum Space and U(su(2)) algebra

Another work that is closely related to what we propose here is the angular momentum

space theory introduced by Shahn Majid [18], where the group structure of the angular

momentum operator, SU(2), is considered as a deformation of the 3-d spacetime

[
xi, xj

]
= 2iλεijk x

k . (6.9)

The most surprising feature of this theory is that the construction of the differential struc-

ture through C∗ algebra implies the existence of a fourth direction, which supposedly is

the time. Assuming the completeness of the Lie algebra, the commutation relation of the

1-form and the exterior derivative of the Fourier mode are

[xi, dxj] = iλεijkdxk + λδijdτ , [xi, dτ ] = λdxi (6.10)

deik·x =

[
i sin (λk)

λk
k · dx− 8dτ

λ
sin2

(
λk

2

)]
eik·x (6.11)

where d stands for the exterior derivative, dxi = σi/2 and dτ = I2/2, σi are the Pauli

matrices, I2 is the identity operator, k is the Fourier momentum with k2 = kak
a, and

k · x = kax
a. Majid regarded this theory as a 3-d remnant of q-deformed poincaré group

theory [24]. We will show that what we propose is another way of extending the theory

to 4-d, by regarding SU(2) group as Clifford algebra on 3-d Euclidean manifold, or by

focusing on connected subgroup of the Spin(3, 1).
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6.3 Adler’s Spinorial Spacetime

Following a completely different reasoning, R. Adler arrived at a quantized spacetime as

follows. Considering the Riemannian distance functional ds2R = gµνdx
µdxν , a natural

way to get the operator spectrum, other than the spectral square root [26], would be via

Clifford algebra. One then obtains a linear functional dsL = γµdx
µ connecting the co-

ordinate difference to the linear line element. The prize to pay is that the new transfer

functional γµ, which was chosen to be the chiral gamma matrix, is a matrix instead of a

pure number.

To compensate that, Adler reinterprets the distance functional as a QM object, called

“linear line element operator”, whose eigenvalue is the proper distance and the state de-

scribes an eigen-direction along which the performed measure is completely certain.

dsA = 〈d̂s〉 = 〈ε |γµdxµ| ε〉 = εµdx
µ , (6.12)

〈ε || ε〉 = (|ε〉)† |ε〉 = 1 , (6.13)

where d̂s stands for the linear line element operator, γµ are the chiral gamma matrices,

and εµ is the expectation value of the distance functional. The subscriptA in dsA indicates

that this is Adler’s version of line element. In addition, Adler assumes that the traditional

picture of the infinitely differentiable manifold should be replaced by a piecewise-linear

manifold with the curve length

LC =
∑
i

〈
∆̂s
〉
(i)

=
∑
i

〈
ε(i)
∣∣ γµ∆xµ(i)

∣∣ε(i)〉 , (6.14)

where (i) indicates the site and ∆x = λdx is the discrete coordinate difference. So instead

of the Killing vector of a curved momentum space serving as the coordinate measure or

a twisted commutation relation of position operator, the proper distance is treated as the

addition of generators of the spin group on classical x-space, similar to the ’t HOOFT

operator on a spacetime lattice.

This theory introduces an uncertainty to the proper distance measure as

∆L2
C =

∑
i

[
1−

(
ẋµ(i)εµ(i)

)2]
gµν∆x

µ
(i)∆x

ν
(i) , (6.15)

where ẋµ = dxµ/ds is the 4-velocity, and εµ is the preferred direction that minimizes the

uncertainty. The notion of a preferred direction inevitably breaks the Lorentz invariance,

unless the theory is non-dissipative or is at high temperature limit. The whole purpose of

using Clifford algebra, to preserve Lorentz invariance, is therefore defeated. The failure

of Adler’s original attempt promotes us to construct a different realization of the same

idea.
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Chapter 7

Spinorial Spacetime

7.1 Reinterpretation, Reformulation and Correction to

Adler’s Proposal

Following Adler’s argument, the Riemannian line element ds2R = gµνdx
µdxν can be dis-

cretized and factorized via the measurement of the square of the linear line element

∆s2A =
〈
∆̂s2

〉
= 〈ε |γµ∆xµγν∆x

ν | ε〉 , (7.1)

with {
γI , γJ

}
pq

= 2ηIJ ⊗ Ipq , (7.2)[
γI , γJ

]
pq

= −2iσIJpq , (7.3)

γµ = eµI γ
I , (7.4)

gµν = ηIJe
I
µe
J
ν , ηIJ = gµνeIµe

J
ν , (7.5)

where e is the tetrad field and { , } is the anti-commutator.

Care must be taken when one deals with the definition and the interpretation of the

measure. In Adler’s approach, Eq.(6.13) was used to define the braket, while Eq.(6.12)

was interpreted as a distance functional. However, this choice suffers some drawbacks

and is unsuitable for the construction of our quantum spacetime theory.

First, the linear line element operator contains the exact information one would expect

to be hidden inside the Hilbert space of the quantized spacetime, i.e., the direction. In the

original interpretation, the Hilbert space contains the information for the uncertainty of

distance measurement rather than the direction itself. The direction of the line element

is provided externally in Eq.(6.12) since the theory is describing a quantized distance

functional, rather than a quantized spacetime. The existence of a favored direction that

minimizes the uncertainty also breaks Lorentz invariance and isotropy at the smallest
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scale. The salient feature of Lorentz symmetry in Adler’s theory (Dirac’s way of taking

square root clearly is Lorentz invariant) is therefore lost.

Second, when one measures the proper distance of null eigenstates (which should be

quite common given the fact that all particles are massless prior to electro-weak symmetry

breaking) along any direction, because of the choice of normalization the proper distance

would always be zero. So for a null state even if the curve is not along null direction the

proper distance would still be null. To wit, the measure of proper distance is completely

uncertain for a non-null displacement on a null state.

Third, the outcome of the linear distance functional depends heavily on the choice

of the representation of the Clifford algebra. A complex representation could result in

a complex proper distance, which is a radical departure from usual GR. Although Adler

tries to address this issue by fixing the representation, the problem still exists as long as

the proper distance, being a physical measure, is not a scalar of Clifford algebra, i.e. not

representation independent.

Clearly, these observations indicate the necessity of reinterpretation of Adler’s linear

line element and a new choice of normalization. We look for new definition that should

satisfy Lorentz symmetry, should not have preferred direction, should produce reasonable

results for null states, and should be independent of the choice of the representation.

So we give up Eq. (6.13) and introduce a new operator ∆X̂I , called “spacetime

interval operator”:

∆X̂I = eIµ∆X̂µ = λγI , (7.6)〈
∆X̂I

〉
= ψ̄∆X̂Iψ = ψ†γ0∆X̂Iψ , (7.7)

ψ̄ψ =


1 , ∀ time-like states

0 , ∀ null states

−1 , ∀ space-like states

(7.8)

ψ̄γIψ =

{
nI , ∀ non-null states

kI , ∀ null states
(7.9)

ds2 = ηIJ

〈
∆X̂I∆X̂J

〉
= 4λ2ψ̄ψ . (7.10)

Here λ is the characteristic length of the quantized spacetime that is of the order of Planck

length and will be derived in sec.7.2, nI is a non-null vector with nInI = ±1, and kI is

a null vector with positive k0. The appearance of the γ0, and the choice of normalization

can be appreciated by looking at the solution of Dirac field equation (See, for example,

Ch. 3-3 of Peskin & Schroeder [27].) Physically the insertion of γ0 makes the normaliza-

tion condition Lorentz invariant, and for the massless case the choice of normalization is

equivalent to the introduction of the foliation along the time coordinate.
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∆ ~X ∆V3 ∆~V ∆t ∆s2 ∆ ~A ∆ ~At ∆V4

∆ ~X O O O O X X X X

∆V3 O O O O X X X X

∆~V O O O O O O O O

∆t O O O O O O O O

∆s2 X X O O O O X X

∆ ~A X X O O O O X X

∆ ~At X X O O X X O O

∆V4 X X O O X X O O

Table 7.1: A commutativity table showing possible ways of labelling Hilbert space. For

elements Tmn inside the table, “O” means m-th basis commutes with n-th basis, and

“X” means non-commutativity. Here all vectors are along spatial eigen-direction ni =

〈∆X i〉, and ∆ ~X = ni∆X
i is the spatial interval, ∆V3 = ∆X1∆X2∆X3 is the time-

like 3-volume, ∆~V = −niεijk∆X0∆Xj∆Xk is the spatial 3-volume, ∆t is the time

difference, ∆s2 is the proper distance square, ∆ ~A = niε
i
jk∆X

j∆Xk is the spatial area,

∆ ~At = ni∆X
0∆X i is the time-like area, and ∆V4 = ∆X0∆X1∆X2∆X3 is the 4-

volume. Notice that actually ~V can always be described by products of two non-trivial

quantum numbers in the system.
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This new measurement is not a distance measure at all, but a local spacetime interval

operation on the exponential map of Riemann Normal Coordinate. One should not misin-

terpret the operator as a coordinate difference operator, since it actually lies on the tangent

bundle of the manifold. A better way to understand it is to treat it as a discretized version

of the velocity 4-vector. And only when combined with the tetrad does the coordinate

difference measure ∆X̂µ reappear.

Just like the components of a vector in GR, ∆X̂I (gamma matrices) are not physical

objects. To measure the velocity of a particle we need two-particle interaction, and the

physical object is the inner product rI∆X̂I , where rI is the classical trajectory of a probe

particle expressed in the same representation as ∆X̂I . No matter what representation of

Clifford algebra we are choosing, the measurement is always a scalar. Therefore all the

derivations and results we obtained are representation independent. The only exception

is that in sec. 6 we require the realness of ∆X̂I during derivation of GUP. However one

should get the same GUP regardless of the representation used.

The new choice of interpretation also implies the existence of an underlying minimal

distance. Due to the special structure of Clifford algebra, one can immediately obtain∣∣〈∆XI∆XI
〉∣∣ = λ2 for non-null cases and 0 for null cases, implying that there are un-

certainties within the spacetime interval measurement similar to what was obtained in

Ref.[22], where the uncertainty lies on proper distance measurement. But in our case

even such uncertainties are Lorentz invariant. One may try to obtain the variance of inter-

val measure: 〈
var
(
rI∆X

I
)〉

=
∣∣∣〈(rI∆XI

)2〉− 〈rI∆XI
〉2∣∣∣

= λ2
∣∣r · r × n · n− (r · n)2

∣∣ , (7.11)

〈var (∆s)〉 =
∣∣〈∆XI∆XI

〉
−
〈
∆XI

〉
〈∆XI〉

∣∣
=

{
3λ2 , ∀ non-null states

0 , ∀ null states
(7.12)

Here nI =
〈
∆XI

〉
, rI is the ruler, and A ·B = ηIJA

IBJ is the inner product. Clearly

along eigen-direction there is no uncertainty at all since it is the direction where eigen-

states are defined. However along the transverse direction the measurement is completely

uncertain. From this point of view the behaviour of the spacetime interval operator is

exactly the same as spin operators in relativistic QM. They both have 3 definite quantum

numbers, i.e., S2/∆t, ~S/∆ ~X along spatial eigen-direction, and helicity/∆V3, where ∆V3

is the spatial 3-volume. There are also other possible ways of labelling Hilbert space,

which are shown in Table 7.1.

Naı̈vely, in SO(3, 1) system there are 4 quantum numbers: the 4-momentum. How-

ever they do not correspond to the quantum numbers in our theory since the momentum
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operators do not commute with each other. Only at the decoherence limit will the ad-

ditional 4 quantities, eigen-direction, spatial 3-volume along eigen-direction and proper

distance, emerge.

An important feature of Adler’s original interpretation is that the proper time differ-

ence ∆s ∝ γµ can have two eigenvalues of same magnitude but opposite sign. Therefore

in his theory it is permissible to move backward in time, zigzag around the same spot at

high temperature if no rule forbids the excitation of these states. However in our inter-

pretation, time difference is now proportional to the identity operator due to the choice of

measure, rendering its expectation value positive definite. Thus arrow of time problem is

perfectly solved without invoking second law of thermodynamics.

In Ref.[22], Adler suggests that one may take these tiny line elements as building

blocks of a curve, without specifying what kind of curve it is. Since in the original paper

the measurement of linear line element operators are associated with SO(3, 1) proper

distance, this curve resembles a geodesic, called “quantized geodesic” due to its discrete

nature. Under our spacetime interval operators, the link to the geodesic becomes more

explicit since a trajectory is specified along the geodesic as

|C〉 = ⊕
i

∣∣n(i)

〉
, nI(i) =

〈
n(i)

∣∣∆XI
∣∣n(i)

〉
, (7.13)

Xµ
(i) =

i∑
j=1

eµI(j)n
I
(i), s =

∑
i

√
nI(i)nI(i) . (7.14)

Here |C〉 is the composite state for geodesic, and (i) indicates the i-th site along the

geodesic. Following usual convention in special relativity, positive eigenvalue of proper

distance ∆s = ±
√

∆s2 is chosen due to the positivity of time difference.

7.2 Obtainbing Action Through Fermionization

Up until now our theory is still presented in a schematic way where the operators and

the measure were not derived from first principles. Given Eq.(7.7), we can deduce that

a worldline action in terms of bi-fermionic fields exhibiting bosonic behavior should de-

scribe our theory. A natural tool to attain this action would be the bosonization in 2-d

QFT [28]. By considering the worldline as the low energy limit of a cylindrical world-

sheet, we may apply the fermionization on the worldsheet action and compactify it back

to 1-d.

Considering the worldline action for a relativistic particle

SR =

∫ (
ξgµν

dXµ

dτ

dXν

dτ
− m2

2ξ

)
dτ , (7.15)
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where τ is a parameter along the particle trajectory, and ξ is an axillary field with equation

of motion

ξ = m

(
gµν

dXµ

dτ

dXν

dτ

)−1/2
. (7.16)

One can describe it as the Kaluza-Klein ground state of the worldsheet Polyakov action

on a cylinder through compactification along small perimeter L� m

SR ≈
∫ L

0

dσ1SR + c(σ1)

L
≈ SP , (7.17)

SP =
1

8πl2s

∫
d2σ
√
−hhαβgµν∂αXµ∂βX

ν , (7.18)

where ls =
√
L/ (4πm) is the string length, σ0 = τ , and σ1 is the compactified direction.

Up to now we still cannot apply the fermionization. A naı̈vely fermionized action would

be ambiguous as the group structure of the system g (X) is still undetermined. To avoid

such problem one may rely on tetrad formalism to pull g back to Minkowski metric η and

obtain a SO (3, 1) theory

SP =
1

8πl2s

∫
d2σ
√
−hhαβ∇I

KαX
K∇ILβX

L , (7.19)

XI = eIµX
µ , ∇α = ∂α + ωIJα − ΓIJα , (7.20)

where the tetrad field e should be a functional of X , ∇α is the covariant derivative which

annihilates the tetrad ∇αe = 0, ωIJα is the antisymmetric spin connection, and ΓIJα is the

symmetric affine connection. The SO (3, 1) spacetime group can now be replaced with

the Spin (3, 1) group, making this theory a spacetime bi-fermion theory. The new action

under the gauge condition ΓIIα = 0 would be

SSpin =
1

8π

∫
d2σ
√
−hDα/χD

α
/χ , (7.21)

Dα/χ = l−1s γIe
I
µ∂αX

µ , /χ = l−1s γIe
I
µX

µ , (7.22)

Dα = ∂α +
1

2
ωIJα

[
γI , γ

J
]

= ∂α − iωIJασJI , (7.23)

where /A = γIA
I and Dα/χ is the generalized velocity of the Spin (3, 1)-valued world-

sheet scalar /χ of dimension [m0]. Notice that D0/χ is exactly the continuum limit of

Adler’s linear line element operator, indicating that we are on the right track. Since the

mapping from worldsheet space to Spin (3, 1) space is trivial for K-K ground state, both

E. Witten’s approach [29] and Steinhardt’s [30] preserve the symmetry after fermioniza-

tion. Therefore one can fermionize the theory by checking the bozonization dictionary:

4πη̄
(
1± σ2

)
η ⇐⇒ e±4πiφ (7.24)

η̄σαη ⇐⇒ −2εαβDβφ (7.25)

iη̄σαDαη ⇐⇒ DαφD
αφ (7.26)
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, where φ is a real scalar of dimension [m0], η is a 2-d worldsheet Majorana spinor of

dimension [m0], σα are the 1+1-d Majorana-Weyl matrices , and σ2 = σ0σ1. For the sake

of simplicity we have rescaled both η and φ by a factor of
√

4π. Applying these rules to

Eq.(7.21) one arrives at

SF =

∫
d2σ
√
−h (ic̄σαDαc) , (7.27)

where c is a 4-d spacetime spinor valued 2-d worldsheet Majorana-Weyl spinor.

From constraints of the K-K ground state and the bosonization dictionary one imme-

diately obtains

D1/χ = 0 = −1

2
c†c , (7.28)

D0/χ = /v =
1

2
c†σ2c , (7.29)

where /v is the velocity. To satisfy these two requirements the only possible solution would

be

c = (ψ, ψC) =
(√

γ0/vψ0,
√
γ0/vψ0C

)
, (7.30)

where ψ0 is a normalized spinor with ψ†0ψ0 = 1, and C is the usual hermitian charge

conjugation operator that transforms ψ̄γµψ to −ψ̄γµψ. Finally we can obtain the com-

pactified action and the geodesic equation in terms of fermionic field ψ

SC =

∫
dτ
(
iψ̄D0ψ

)
, (7.31)

d2Xµ

dτ 2
=

d

dτ
ψ̄eµI γ

Iψ = −eµIΓIJ0v
J . (7.32)

Since the worldsheet spinor c̄c is conserved, from Eq.(7.24) and the identity

ei /F = cos
(√

FIF I
)
I4 + i sin

(√
FIF I

)
/F , (7.33)

we obtain

/χ =

(
n

2
√
|v2|

+ q

)
/v , n ∈ Z , (7.34)

where v2 = vIv
I , q is a scalar constant in terms of v2, and spacetime is quantized accord-

ingly with the characteristic length

λ =
1

2
ls . (7.35)

Eqs.(7.7) to (7.9) can be re-derived respectively as〈
∆X̂µ

〉
= λψ̄γµψ =

λ

4
tr (γµ/v) = λvµ , (7.36)

v2 =

∣∣∣〈∆X̂µ
〉∣∣∣2

λ2
≈ 4∆/χ∆/χ =

v2

|v2|
= sign

(
v2
)
, (7.37)

ψ̄ψ =
λ

4
tr (/v) = 0 . (7.38)
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Since in this section we focus on eigenstates of the spacetime interval operator ∆X̂I , ψ̄ψ

must vanish. If the constraint Eq.(7.29) is substituted with ψ̄ψ = const., from Eq.(7.24)

and (7.33) we immediately obtain

ψ̄ψ = 1 ∨ 0 ∨ −1 . (7.39)

Therefore we show that the quantization scheme introduced in sec.7.1 can be reproduced

explicitly.

A phenomenological effective action is proposed by Adler [22] as

Heff = Ef
∑
i

εµ(i)γµ(i) , (7.40)

where εµ is the preferred direction and (i) indicates the site. This action is problematic

not only because it has a preferred direction, but also because the propagator of the as-

sociated particles would be a tadpole since the action is linear in Xµ. This problem is

solved naturally in our theory since we write down the action directly by fermionizing the

worldline action with an usual p−2 propagator.

7.3 Composite and Holographic Nature of the Spacetime

Following the same idea presented at the end of sec.III, we can finally define the position

operator and the position eigenstate. Since

〈Xµ〉 =
∑
i

〈
eµI∆XI

〉
(i)
, (7.41)

one can obtain the form of X̂µ and its eigenstate |x〉:

X̂µ = λ
∑
i

(
eµI γ

I
(i) ⊗

j<i
γ0(j)

)
, (7.42)

|x〉 = ⊕
i

∣∣∆x(i)〉 , (7.43)

where ⊗ is the direct product, ⊕
i

and ⊗
i

are the direct sum and the direct product over

sites with dummy index i. The occurrence of γ0 in the off-site part is purely artificial,

and can be removed by choosing other representations, e.g. X̂µ =
∑
λψ̄(i)e

µ
I γ

Iψ(i). The

position operator can be envisioned as the ’t HOOFT operator on a 1-D spin chain, and

the associated Fourier transformation operator eikµXµ as the Wilson line operator. This

kind of visualization is inherited from the bozonization.

Considering the fact that the commutator of position operator is vanishing at large

scale, the spacetime interval operators of different sites should commute as long as they

are far apart from each other. The simplest assumption would be[
γI(i), γ

J
(j)

]
= 0. (7.44)
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The structure of the spacetime interval operator under this assumption resembles the

spin operators in the 4-d Heisenberg model, which is also classical in exterior space but

fermionic on site. Notice that the dynamics of the Heisenberg model is completely de-

termined by the Hamiltonian and the commutation relation between nearest neighbors, so

does our theory. The assumption we made therefore is equivalent to turning off the non-

local dynamics of null geodesic. This makes the structure of the theory greatly simplified,

but still provides sufficient insight to the properties of the position operator and the space-

time itself. It is now straightforward to derive the commutation and anti-commutation

relations:

1

2λ2
[
X̂µ, X̂ν

]
= i
∑
i

(
σµν(i) ⊗

j 6=i
I(j)

)
, (7.45)

1

2λ2

{
X̂µ, X̂ν

}
=
∑
i

gµν(i)

(
⊗
j
I(j)

)
+
∑
i,j 6=i

(
γµ(i) ⊗ γ

ν
(j) ⊗

i6=q 6=j
I(q)

)
, (7.46)

1

2

〈{
X̂µ, X̂ν

}〉
=
〈
X̂µ
〉〈

X̂ν
〉

+
∑
i

(
λ2gµν

− 〈∆Xµ〉(i) 〈∆X
ν〉(i)

)
, (7.47)

where ⊗
i6=q 6=j

I(q) is the direct product over all sites except the i-th site and the j-th site.

At the large scale limit these relations match the classical results. Non-classical parts

of both the anti-commutator and the commutator are of the order of λX . The physical

quantity corresponding to these corrections are basically the sum of the ”surface area”

of the discrete spacetime along the curve linking from the origin to the point X . It is

clear that the spacetime in this work, contrary to those of most other theories, is neither

commutative nor anti-commutative.

Another important aspect of non-commutativity of spacetime is the holographic na-

ture of our theory. Since the position eigenstates are composite, there are only (N + 1)2

distinguishable and physically acceptable configurations for states composed by N line

elements. A 2-line-element state resembles a composite spin-1 particle, with the proper

distance and the area quantum number of the former corresponding to the charge and the

spin of the latter, respectively, both with quantum numbers 1, 0, or −1. Therefore it is

with no doubt that only O (N3) different states are allowed within a 4-sphere, implying

that the spacetime information can be written in a 3-dimensional quantum language. With

the equation of motion in Eq.(7.32), the degree of freedom, or entropy, is proportional to

surface area of the system.
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7.4 Generalized Uncertainty Principle

In QM, one can define a translation operator T̂ (ε) in terms of the momentum operator:

T̂µ (ε) = e−iεP̂µ , (7.48)

which satisfies the commutation relations[
X̂µ, T̂ν (ε)

]
= ε δµν T̂µ (ε) , (7.49)[

T̂µ, T̂ν

]
= 0 . (7.50)

Clearly as long as the inversion of the exponential operator exists, one can reversely con-

struct the momentum operator in terms of the translation operator defined above:

P̂µ = iε ln
(
T̂µ (ε)

)
, (7.51)[

X̂µ, P̂ν

]
=
[
X̂µ, iε ln

(
T̂ν (ε)

)]
= iεT̂µ(ε)

∂ ln
(
T̂ν(ε)

)
∂T̂µ(ε)

= iδµν , (7.52)[
P̂µ, P̂ν

]
= 0 . (7.53)

So instead of defining the momentum operator directly, we choose to define the eigenstate

of the translation operator, a.k.a. the plane wave solution, for it is less ambiguous, more

visualizable, and easier to define.

Since the time direction has nothing to do with our topic of interest (GUP) for the

moment, for the sake of simplicity, we will restrict the system to a simpler one with

the existence of foliation and invoke ADM formalism to reduce the symmetry down to

Spin(3). The system can be understood as a spin chain in the zero temperature limit,

with the coordinate measure being the total spin. This system can be reinterpreted as

a bosonic system with SU(2) symmetry even at the quantum level, as demonstrated in

the non-abelian bosonization. A naı̈ve guess from QM is that the total spin operator, or

the spatial coordinate operator, is now a SU(2) operator of all representations. One can

therefore regard this system as exactly the same one in Ref.[18]. As shown in Eqs.(6.9) to

(6.11), an immediate conclusion would be the existence of an exterior derivative that can

be treated as a momentum operator:

pi = dxip̃i ≡ −idxi
(
dxi · deik·x

)
e−ik·x

= (λk)−1 sin (λk) kidxi , (7.54)

[xi, pj] = iδijdxj + iλεijkdxkp̃j + λδijdτ p̃j , (7.55)

[pi, pj] = iεijkdxkp̃ip̃j , (7.56)
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where pi is the projected momentum that generates translation along xi, and p̃i is its 1-

form component.

One can therefore compute the uncertainty relation through

∆xi∆pj ≥
1

2

[
〈[xi, pj]〉2

+
(
〈{xi, pj}〉 − 2 〈xi〉 〈pj〉

)2]1/2
. (7.57)

In the low momentum limit (〈k〉 small and 〈x〉 → 0), we obtain

∆xi∆pj >
1

2

(
δij + 2λ2δij 〈ki〉 〈kj〉

)
. (7.58)

The GUP of our theory is of the usual form. (e.g., Snyder’s GUP in Eq.(6.6) is identical

to ours with relation λ =
√

2a)

7.5 Smearing Effect

It is straightforward to apply the quantized geodesic obtained in Sec.7.3 to trajectories

of cosmic rays, which may serve as an astrophysical test for this theory through the

smearing of particle trajectory. Consider, for example, the null geodesic of a 10 MeV

photon emitted from a gamma ray burst afterglow at high redshift (z ≈ 10). Because

the Lorentz invariance is manifest in our theory, the smearing effect occurs only along

the perpendicular direction. Assuming Gaussian distribution of photons at source, we

find, from Eq.(7.11) and Eq.(7.12), that the smearing of the photon is of the order of√
Eλ2 dS (z ≈ 10) ≈ 10−14λ meter, where dS =

∫ z
0

(1+z′)dz′

H(z′)
is the rescaled distance tak-

ing the rescaling of the variance into account, E is the GRB characteristic energy, and λ is

the scale of our theory in the unit of the Planck length. Clearly it is impossible to identity

such tiny effect in the near future.

Let us consider an EeV neutrino at high redshift (z ≈ 10) as another example.

The smearing for massive particles along the perpendicular direction is of the order of√
E
mν
λ dS (z ≈ 10) ≈ 100

√
λ meter. For time-like geodesic, in addition to perpendicular

direction, there are also variance in proper distance, which allow us for more precise mea-

surement. The smearing is at most
√

3λtP T (z ≈ 10) ≈
√
λ picosecond, where tP is the

Planck time and T is the time taken from z = 10 to z = 0. One possible way to probe the

smearing of the arrival time is by observing both neutrinos and gravitational waves from

a single merger event of the black hole-neutron star binary. Since typically the neutrino

flux bumps up sharply 0.5 ms after the merger event [31], a time-resolution of 0.5 ms can

be achieved by detecting neutrinos right after the detection of the gravitational merger

event. The resolution of λ is therefore of the order 10−17 meter. An improvement on the
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simulation could possibly enhance the time-resolution in this merger scenario and allow

a tighter constraint on the value of λ.
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Chapter 8

Conclusion and Future Work

8.1 Macroscopic Universe

It is still very hard to draw any conclusion from the preliminary result, but at least it is

very clear that indeed a local inhomogeneity can explain some parts of the tension of

H0 between local SNe measurement and CMB measurement. We need the access to the

dataset of Keenan [7] to test our theory against null hypothesis and give a quantitative

estimation on the probability of the existence of local void and the corrected H0 after

taking inhomogeneity into account.

8.2 Microscopic Universe

We show that a non-commutative spacetime theory can be constructed on top of Adler’s

“linear line element”, and derive the associated action from the fermionization of the K-K

ground state of the Polyakov action on a cylinder. The theory is shown to be holographic,

and passes the astrophysical tests on the smearing effect and Lorentz invariance violation.

The theory can also be regarded as the 4-D extension to the U(su(2)) model, and from

there the generalized uncertainty principle is derived.

The theory is quite potent, and many aspects of the theory still remain unsolved. E.g.,

one may try to fix the Bekenstein-Hawking coefficient k inside Bekenstein’s formula S =

kA/4. We have also introduced kinematics of the theory only. The dynamics of the theory

can be introduced through adding loop quantum gravity to the theory, or by adding back

the K-K tower of the worldsheet excitation. Interestingly in loop quantum gravity [32],

it has been argued that the length operator should be defined through Dirac operators.

It remains curious whether our work can be served as a representation that can describe

length, area and volume easily without introducing the spectral decomposition [26, 33].
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Appendix: List of Abbreviations

general relativity (GR)

standard model (SM)

supernovae (SNe)

cosmological microwave background (CMB)

local Hubble parameter (H0)

mega-parsec (Mpc)

luminosity distance (DL)

Milky Way (MW)

Monte Carlo (MC)

Friedmann–Robertson–Walker (FRW)

Lemaı̂tre-Tolman-Bondi (LTB)

section (sec.)

chapter (ch.)

equation (eq.)

equations (eqs.)

quantum mechanics(QM)

quantum field theory (QFT)

generalized uncertainty principle (GUP)

de Sitter (dS)

Anti de Sitter (AdS)

Kaluza-Klein (K-K)

Arnowitt-Deser-Misner (ADM)
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non-commutative geometry”, Phys. Lett. B334, 348 (1994), arxiv:hep-th/9405107.

[13] Jerzy Kowalski-Glikman and Sebastian Nowak, “Non-commutative space-time of

Doubly Special Relativity theories”, Int. J. Mod. Phys. D12, 299 (2003), arxiv:hep-

th/0204245.

[14] Jerzy Kowalski-Glikman, “Introduction to Doubly Special Relativity”, Planck Scale

Effects in Astrophysics and Cosmology pp 131, Springer Berlin Heidelberg (2005),

arxiv:hep-th/0405273.

[15] G. Amelino-Camelia, “Doubly-special relativity: first results and key open prob-

lems”, Int. J. Mod. Phys. D11, 1643 (2002), arxiv:gr-qc/0210063.

[16] Alain Connes and John Lott, “Particle models and noncommutative geometry”,

Nucl. Phys. B18, 29 (1991), library of UMichigan.

[17] Alain Connes, “Gravity coupled with matter and the foundation of non commutative

geometry”, Commun. Math. Phys. 182, 155 (1996), arxiv:hep-th/9603053.

[18] Eliezer Batista and Shahn Majid, “Noncommutative Geometry Of Angular Momen-

tum Space U(su(2))”, J. Math. Phys. 44, 107 (2003), arxiv:hep-th/0205128.

[19] Laurent Freidel and Shahn Majid, “Noncommutative harmonic analysis, sampling

theory and the Duflo map in 2+1 quantum gravity”, Class. Quantum Grav. 25,

045006 (2008), arxiv:hep-th/0601004.

[20] Eliezer Batista and Shahn Majid, “Three dimensional quantum geometry and de-

formed symmetry”, J. Math. Phys. 50, 052503 (2009), arxiv:0806.4121.

[21] Sergio Doplicher, Klaus Fredenhagen, and John E. Roberts, “The quantum structure

of spacetime at the Planck scale and quantum fields”, Commun. Math. Phys. 172,

187 (1995), arxiv:hep-th/0303037.

[22] Ronald J. Adler, “A quantum theory of distance along a curve”, Unpublished (2014),

arxiv:1402.5921.

[23] Jungjai Lee, John J. Oh, and Hyun Seok Yang, “An Efficient Representation of Eu-

clidean Gravity I”, JHEP 12, 025 (2011), arxiv:1109.6644.

52

http://journals.aps.org/pr/abstract/10.1103/PhysRev.71.38
http://arxiv.org/abs/hep-th/9405107
http://arxiv.org/abs/hep-th/0204245
http://arxiv.org/abs/hep-th/0204245
http://arxiv.org/abs/hep-th/0405273
http://arxiv.org/abs/gr-qc/0210063
http://deepblue.lib.umich.edu/bitstream/handle/2027.42/29524/0000611.pdf
http://arxiv.org/abs/hep-th/9603053
http://arxiv.org/abs/hep-th/0205128
http://arxiv.org/abs/hep-th/0601004
http://arxiv.org/abs/0806.4121
http://arxiv.org/abs/hep-th/0303037
http://arxiv.org/abs/1402.5921
http://arxiv.org/abs/1109.6644


doi:10.6342/NTU201603461

[24] U. Carow-Watamura, M. Schlieker, M. Scholl and S. Watamura, “Tensor Represen-

tation of the Quantum Group SLq(2,C) and Quantum Minkowski Space”, Z. Phys.

C 48, 159 (1990), Springer.

[25] Nathan Seiberg and Edward Witten, “String Theory and Noncommutative Geome-

try”, JHEP 09, 032 (1999), arxiv:hep-th/9908142.

[26] T. Thiemann, “A length operator for canonical quantum gravity”, J. Math. Phys. 39,

3372-3392 (1998), arxiv:gr-qc/9606092.

[27] M. Peskin and D. Schroeder, Introduction to Quantum Field Theory

[28] Sidney Coleman, “Quantum sine-Gordon equation as the massive Thirring model”,

Phys. Rev. D11, 2088 (1975), Freie Universität Berlin.

[29] Edward Witten, “Non-Abelian Bosonization in Two Dimensions”, Commun. Math.

Phys. 92, 455-472 (1984), Project Euclid.

[30] Paul J. Steinhardt, “Baryons and baryonium in QCD2”, Nucl. Phys. B176, 100-112

(1980).

[31] Francois Foucart, Evan O’Connor, Luke Roberts, Matthew D. Duez, Roland Haas,

Lawrence E. Kidder, Christian D. Ott, Harald P. Pfeiffer, Mark A. Scheel, and

Bela Szilagyi “Post-merger evolution of a neutron star-black hole binary with neu-

trino transport”, Phys. Rev. D91, 124021 (2015), arxiv:1502.04146.

[32] Carlo Rovelli, “Lorentzian Connes Distance, Spectral Graph Distance and Loop

Gravity”, Unpublished (2014), arxiv:1408.3260.

[33] Eugenio Bianchi, “The length operator in Loop Quantum Gravity”, Nucl. Phys.

B807, 591 (2009), arxiv:0806.4710.

53

http://link.springer.com/article/10.1007/BF01565619
http://arxiv.org/abs/hep-th/9908142
http://arxiv.org/abs/0806.4710
http://users.physik.fu-berlin.de/~kamecke/ps/coleman.pdf
https://projecteuclid.org/euclid.cmp/1103940923
http://www.sciencedirect.com/science/article/pii/0550321380900656
http://www.sciencedirect.com/science/article/pii/0550321380900656
http://arxiv.org/abs/1502.04146
http://arxiv.org/abs/1408.3260
http://arxiv.org/abs/0806.4710

	Acknowledgments
	中文摘要
	Abstract
	Contents
	List of Figures
	List of Tables
	Introduction
	Standard Model of Cosmology

	Distance Measurement in GR
	Anchors and the Cosmic Ladders
	Tension on H0 between Supernovae and CMB Measurements

	Inhomogeneity of the Universe
	Data Analysis
	Linear Regression and 2 Analysis
	Monte Carlo + Local Optimization

	Easing H0 Tension by Invoking Local Inhomogeneity
	Geodesic Equation and the Initial Condition
	Mapping DL back to Density Contrast
	Result

	Quantization of Spacetime
	Dimensional Reduction of Momentum Space
	Angular Momentum Space and U(su(2)) algebra
	Adler's Spinorial Spacetime

	Spinorial Spacetime
	Reinterpretation, Reformulation and Correction to Adler's Proposal
	Obtainbing Action Through Fermionization
	Composite and Holographic Nature of the Spacetime
	Generalized Uncertainty Principle
	Smearing Effect

	Conclusion and Future Work
	Macroscopic Universe
	Microscopic Universe

	Appendices
	Bibliography



