Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 工程科學及海洋工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/4011
標題: 3D列印之路徑規劃演算法於三軸氣壓式並聯機構機械臂之研究
The Development of Path Planning Algorithm for 3D Printing in a Three-Axial Pneumatic Parallel Manipulator
作者: Chih-Pei Wen
温志培
指導教授: 江茂雄(Mao-Hsiung Chiang)
關鍵字: 3D列印,軌跡規劃,深度優先搜尋(DFS),基因演算法(GA),氣壓伺服系統,並聯式機構機械臂,運動學分析,軌跡追蹤控制,
3D printing,path planning,depth-first search (DFS),genetic algorithm (GA),pneumatic servo system,parallel manipulator,kinematic analysis,path tracking control,
出版年 : 2016
學位: 碩士
摘要: 本研究旨在發展3D列印的軌跡規劃演算法並應用於三軸氣壓式並聯機構機械臂,置重點於3D列印的軌跡規劃於三軸氣壓式並聯機構機械臂,結合實驗室已發展之三軸氣壓式並聯機構機械臂之運動學分析與控制器設計,以模擬及實際實驗驗證。
  在3D列印的軌跡規劃方面,將欲列印的物體,採用圖論(Graph Theory)的向量形式建立。透過深度優先搜尋(Depth-First Search, DFS)定義一個平面的所有分歧路徑,並由基因演算法(Genetic Algorithm, GA)計算如何以最低代價連接所有分歧路徑。最後將每個平面的路徑串接,即可得軌跡規劃。
  在三軸氣壓式並聯機構機械臂的運動學分析方面,採用幾何向量的理論與空間中向量迴圈的封閉性質,透過逆向與順向運動學的定義分別推導出致動器與運動平台的關係。
  在三軸氣壓式並聯機構機械臂的控制器設計方面,單軸氣壓伺服系統採用雙迴圈回授控制策略,其中包含內圈的壓力控制與外圈的位置控制。根據上述方法,並額外採用逆向動力學控制策略,以實現三軸氣壓式並聯機構機械臂的控制與解決三軸的非線性耦合。
  在本論文最後,透過數值模擬,檢測三軸氣壓式並聯機構機械臂之推導模型與3D列印之軌跡規劃的正確性。為證明實用性,藉由實驗室已建立之三軸氣壓式並聯機構機械臂實驗系統的實驗,輸入與數值模擬相同的軌跡,驗證控制器的效能與3D列印整合三軸氣壓式並聯機構機械臂的可行性。
This study aims to develop 3D-printing path planning algorithms and applies to a three-axial pneumatic parallel manipulator. The emphasis is on the research of 3D-printing path planning algorithms, integrating the three-axial pneumatic parallel manipulator which has developed on its kinematic analysis and controller design in lab before, and verifying the performance through the whole system simulations and experiments.
  In path planning algorithms for 3D printing, the desired-printing object was established from graph theory as vector form. From the view of a layer, all sub-paths are defined through the depth-first search, and the genetic algorithm is used to find the minimum costs linking sub-paths. After cascading all layers, the overall path is accomplished.
  In analysis of kinematics, the geometric method is introduced to solve the relation of manipulator between actuated joints and moving platform through vector-loop closure equations, including inverse and forward kinematics.
  In controller design, control strategy of single-axial pneumatic servo system is applied with dual-loop feedback control scheme, i.e. inner pressure control and outer position control. Based on that, controller of three-axial pneumatic parallel manipulator is established with extra inverse dynamics control strategy to decouple the nonlinear terms.
  Finally, numerical simulations are carried out to verify the correctness of the derived models and the path-planning trajectories. To show the practicality, real-time experiments are implemented in the test rig of three-axial pneumatic parallel mechanism robot with the same trajectories in simulations for testifying the control performance and the possibility of 3D printing integrating with three-axial pneumatic parallel manipulator.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/4011
全文授權: 同意授權(全球公開)
顯示於系所單位:工程科學及海洋工程學系

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf12.18 MBAdobe PDF檢視/開啟
顯示文件完整紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved