請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/39379
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳燕惠 | |
dc.contributor.author | Yi-chung Lu | en |
dc.contributor.author | 呂一中 | zh_TW |
dc.date.accessioned | 2021-06-13T17:27:11Z | - |
dc.date.available | 2005-01-19 | |
dc.date.copyright | 2005-01-19 | |
dc.date.issued | 2004 | |
dc.date.submitted | 2005-01-03 | |
dc.identifier.citation | 1. Pisani,P., Bray,F. & Parkin,D.M. Estimates of the world-wide prevalence of cancer for 25 sites in the adult population. International Journal of Cancer 97, 72-81 (2002).
2. Munoz,N. et al. The causal link between human papillomavirus and invasive cervical-cancer - a population-based case-control study in Colombia and Spain. International Journal of Cancer 52, 743-749 (1992). 3. zur Hausen,H., Meinhof,W., Scheiber,W. & Bornkamm,G.W. Attempts to detect virus-specific DNA sequences in human tumors. International Journal of Cancer 13, 650-656 (1974). 4. Endo,M., Yamashita,T., Jin,H.Y., Akutsu,Y. & Jimbow,K. Detection of human papillomavirus type 16 in bowenoid papulosis and nonbowenoid tissues. International Journal of Dermatology 42, 474-476 (2003). 5. zur Hausen,H. Papillomaviruses and cancer: From basic studies to clinical application. Nature Reviews Cancer 2, 342-350 (2002). 6. Walboomers,J.M.M. et al. Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. Journal of Pathology 189, 12-19 (1999). 7. Bosch,F.X. et al. Prevalence of human papillomavirus in cervical-cancer - a worldwide perspective. Journal of the National Cancer Institute 87, 796-802 (1995). 8. Scheffner,M., Huibregtse,J.M., Vierstra,R.D. & Howley,P.M. The HPV-16 E6 and E6-Ap complex functions as a ubiquitin-protein ligase in the ubiquitination of p53. Cell 75, 495-505 (1993). 9. Werness,B.A., Levine,A.J. & Howley,P.M. Association of human papillomavirus type-16 and type-18 E6 proteins with p53. Science 248, 76-79 (1990). 10. Dyson,N., Howley,P., Munger,K. & Harlow,E. The human papillomavirus-16 E7 oncoprotein is able to bind to the retinoblastoma gene product. Science 243, 934-937 (1989). 11. Halbert,C.L., Demers,G.W. & Galloway,D.A. The E7 gene of human papillomavirus type-16 is sufficient for immortalization of human epithelial-cells. Journal of Virology 65, 473-478 (1991). 12. Band,V., Zajchowski,D., Kulesa,V. & Sager,R. Human papilloma-virus DNAs immortalize normal human mammary epithelial-cells and reduce their growth-factor requirements. Proceedings of the National Academy of Sciences of the United States of America 87, 463-467 (1990). 13. Fire,A. et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806-811 (1998). 14. Elbashir,S.M. et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411, 494-498 (2001). 15. Lee,N.S. et al. Expression of small interfering RNAs targeted against HIV-1 rev transcripts in human cells. Nature Biotechnology 20, 500-505 (2002). 16. Paddison,P.J. & Hannon,G.J. RNA interference: the new somatic cell genetics? Cancer Cell 2, 17-23 (2002). 17. Schwarz,E. et al. Structure and transcription of human papillomavirus sequences in cervical carcinoma cells. Nature 314, 111-114 (1985). 18. McDougall,J.K. Immortalization and transformation of human cells by human papillomavirus. Curr. Top. Microbiol. Immunol. 186, 101-119 (1994). 19. Munger,K., Phelps,W.C., Bubb,V., Howley,P.M. & Schlegel,R. The E6 and E7 genes of the human papillomavirus type 16 together are necessary and sufficient for transformation of primary human keratinocytes. J. Virol. 63, 4417-4421 (1989). 20. Klingelhutz,A.J., Foster,S.A. & McDougall,J.K. Telomerase activation by the E6 gene product of human papillomavirus type 16. Nature 380, 79-82 (1996). 21. Fehrmann,F. & Laimins,L.A. Human papillomaviruses: targeting differentiating epithelial cells for malignant transformation. Oncogene 22, 5201-5207 (2003). 22. Steenbergen,R.D.M. et al. Transition of human papillomavirus type 16 and 18 transfected human foreskin keratinocytes towards immortality: Activation of telomerase and allele losses at 3p, 10p, 11q and/or 18q. Oncogene 13, 1249-1257 (1996). 23. Patel,D., Huang,S.M., Baglia,L.A. & McCance,D.J. The E6 protein of human papillomavirus type 16 binds to and inhibits co-activation by CBP and p300. Embo Journal 18, 5061-5072 (1999). 24. Oda,H., Kumar,S. & Howley,P.M. Regulation of the Src family tyrosine kinase Blk through E6AP-mediated ubiquitination. Proceedings of the National Academy of Sciences of the United States of America 96, 9557-9562 (1999). 25. Chen,J.J., Reid,C.E., Band,V. & Androphy,E.J. Interaction of papillomavirus E6 oncoproteins with a putative calcium-binding protein. Science 269, 529-531 (1995). 26. Kiyono,T. et al. Binding of high-risk human papillomavirus E6 oncoproteins to the human homologue of the Drosophila discs large tumor suppressor protein. Proceedings of the National Academy of Sciences of the United States of America 94, 11612-11616 (1997). 27. Gao,Q.S., Srinivasan,S., Boyer,S.N., Wazer,D.E. & Band,V. The E6 oncoproteins of high-risk papillomaviruses bind to a novel putative GAP protein, E6TP1, and target it for degradation. Molecular and Cellular Biology 19, 733-744 (1999). 28. Ronco,L.V., Karpova,A.Y., Vidal,M. & Howley,P.M. Human papillomavirus 16 E6 oncoprotein binds to interferon regulatory factor-3 and inhibits its transcriptional activity. Genes & Development 12, 2061-2072 (1998). 29. Dyson,N., Guida,P., Munger,K. & Harlow,E. Homologous sequences in adenovirus E1A and human papillomavirus E7 proteins mediate interaction with the same set of cellular proteins. Journal of Virology 66, 6893-6902 (1992). 30. La Thangue,N.B. DRTF1/E2F: an expanding family of heterodimeric transcription factors implicated in cell-cycle control. Trends Biochem. Sci. 19, 108-114 (1994). 31. Slansky,J.E. & Farnham,P.J. Introduction to the E2F family: protein structure and gene regulation. Curr. Top. Microbiol. Immunol. 208, 1-30 (1996). 32. Boyer,S.N., Wazer,D.E. & Band,V. E7 protein of human papilloma virus-16 induces degradation of retinoblastoma protein through the ubiquitin-proteasome pathway. Cancer Research 56, 4620-4624 (1996). 33. Chellappan,S.P., Hiebert,S., Mudryj,M., Horowitz,J.M. & Nevins,J.R. The E2F transcription factor is a cellular target for the RB protein. Cell 65, 1053-1061 (1991). 34. Giarre,M. et al. Induction of pRb degradation by the human papillomavirus type 16 E7 protein is essential to efficiently overcome p16INK4a-imposed G1 cell cycle Arrest. J. Virol. 75, 4705-4712 (2001). 35. Jones,D.L., Alani,R.M. & Munger,K. The human papillomavirus E7 oncoprotein can uncouple cellular differentiation and proliferation in human keratinocytes by abrogating p21(Cip1)-mediated inhibition of cdk2. Genes & Development 11, 2101-2111 (1997). 36. Funk,J.O. et al. Inhibition of CDK activity and PCNA-dependent DNA replication by p21 is blocked by interaction with the HPV-16 E7 oncoprotein. Genes & Development 11, 2090-2100 (1997). 37. ZerfassThome,K. et al. Inactivation of the cdk inhibitor p27(KIP1) by the human papillomavirus type 16 E7 oncoprotein. Oncogene 13, 2323-2330 (1996). 38. McIntyre,M.C., Ruesch,M.N. & Laimins,L.A. Human papillomavirus E7 oncoproteins bind a single form of cyclin E in a complex with cdk2 and p107. Virology 215, 73-82 (1996). 39. Arroyo,M., Bagchi,S. & Raychaudhuri,P. Association of the human papillomavirus type 16 E7 protein with the S-phase-specific E2F-cyclin A complex. Mol. Cell Biol. 13, 6537-6546 (1993). 40. Zerfass,K. et al. Sequential activation of Cyclin-E and Cyclin-A gene-expression by human papillomavirus type-16 E7 through sequences necessary for transformation. Journal of Virology 69, 6389-6399 (1995). 41. Antinore,M.J., Birrer,M.J., Patel,D., Nader,L. & McCance,D.J. The human papillomavirus type 16 E7 gene product interacts with and trans-activates the AP1 family of transcription factors. Embo Journal 15, 1950-1960 (1996). 42. Massimi,P., Pim,D. & Banks,L. Human papillomavirus type 16 E7 binds to the conserved carboxy-terminal region of the TATA box binding protein and this contributes to E7 transforming activity. Journal of General Virology 78, 2607-2613 (1997). 43. Nead,M.A., Baglia,L.A., Antinore,M.J., Ludlow,J.W. & McCance,D.J. Rb binds c-Jun and activates transcription. Embo Journal 17, 2342-2352 (1998). 44. Kessis,T.D., Connolly,D.C., Hedrick,L. & Cho,K.R. Expression of HPV16 E6 or E7 increases integration of foreign DNA. Oncogene 13, 427-431 (1996). 45. Reznikoff,C.A. et al. Elevated p16 at senescence and eoss of p16 at immortalization in human papillomavirus 16 E6, but not E7, transformed human uroepithelial cells. Cancer Research 56, 2886-2890 (1996). 46. White,A.E., Livanos,E.M. & Tlsty,T.D. Differential disruption of genomic integrity and cell-cycle regulation in normal human fibroblasts by the HPV oncoproteins. Genes & Development 8, 666-677 (1994). 47. Magal,S.S., Jackman,A., Pei,X.F., Schlegel,R. & Sherman,L. Induction of apoptosis in human keratinocytes containing mutated p53 alleles and its inhibition by both the E6 and E7 oncoproteins. International Journal of Cancer 75, 96-104 (1998). 48. Demers,G.W., Halbert,C.L. & Galloway,D.A. Elevated wild-type p53 protein-levels in human epithelial-cell lines immortalized by the human papillomavirus type-16 E7 gene. Virology 198, 169-174 (1994). 49. Noya,F., Chien,W.M., Broker,T.R. & Chow,L.T. P21cip1 degradation in differentiated keratinocytes is abrogated by costabilization with cyclin E induced by human papillomavirus E7. Journal of Virology 75, 6121-6134 (2001). 50. Jones,D.L., Thompson,D.A., Suh-Burgmann,E., Grace,M. & Munger,K. Expression of the HPV E7 oncoprotein mimics but does not evoke a p53-dependent cellular DNA damage response pathway. Virology 258, 406-414 (1999). 51. Jones,D.L. & Munger,K. Analysis of the p53-mediated G(1) growth arrest pathway in cells expressing the human papillomavirus type 16 E7 oncoprotein. Journal of Virology 71, 2905-2912 (1997). 52. Stoppler,H. et al. The E7 protein of human papillomavirus type 16 sensitizes primary human keratinocytes to apoptosis. Oncogene 17, 1207-1214 (1998). 53. Iglesias,M. et al. Human papillomavirus type 16 E7 protein sensitizes cervical keratinocytes to apoptosis and release of interleukin-1 alpha. Oncogene 17, 1195-1205 (1998). 54. Puthenveettil,J.A., Frederickson,S.M. & Reznikoff,C.A. Apoptosis in human papillomavirus16 E7-, but not E6-immortalized human uroepithelial cells. Oncogene 13, 1123-1131 (1996). 55. Jorgensen,R. Altered gene-expression in plants due to trans interactions between homologous genes. Trends in Biotechnology 8, 340-344 (1990). 56. Romano,N. & Macino,G. Quelling - transient inactivation of gene-expression in neurospora-crassa by transformation with homologous sequences. Molecular Microbiology 6, 3343-3353 (1992). 57. Grishok,A., Tabara,H. & Mello,C.C. Genetic requirements for inheritance of RNAi in C-elegans. Science 287, 2494-2497 (2000). 58. Hamilton,A.J. & Baulcombe,D.C. A species of small antisense RNA in posttranscriptional gene silencing in plants. Science 286, 950-952 (1999). 59. Zamore,P.D., Tuschl,T., Sharp,P.A. & Bartel,D.P. RNAi: Double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell 101, 25-33 (2000). 60. Elbashir,S.M., Lendeckel,W. & Tuschl,T. RNA interference is mediated by 21-and 22-nucleotide RNAs. Genes & Development 15, 188-200 (2001). 61. Bernstein,E., Caudy,A.A., Hammond,S.M. & Hannon,G.J. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409, 363-366 (2001). 62. Ketting,R.F. et al. Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C-elegans. Genes & Development 15, 2654-2659 (2001). 63. Nykanen,A., Haley,B. & Zamore,P.D. ATP requirements and small interfering RNA structure in the RNA interference pathway. Cell 107, 309-321 (2001). 64. Schwarz,D.S., Hutvagner,G., Haley,B. & Zamore,P.D. Evidence that siRNAs function as guides, not primers, in the Drosophila and human RNAi pathways. Molecular Cell 10, 537-548 (2002). 65. Timmons,L. & Fire,A. Specific interference by ingested dsRNA. Nature 395, 854 (1998). 66. Williams,B.R.G. Role of the double-stranded RNA-activated protein kinase (PKR) in cell regulation. Biochemical Society Transactions 25, 509-513 (1997). 67. Semizarov,D. et al. Specificity of short interfering RNA determined through gene expression signatures. Proceedings of the National Academy of Sciences of the United States of America 100, 6347-6352 (2003). 68. Wu,H., Hait,W.N. & Yang,J.M. Small interfering RNA-induced suppression of MDR1 (P-glycoprotein) restores sensitivity to multidrug-resistant cancer cells. Cancer Research 63, 1515-1519 (2003). 69. Persengiev,S.P., Zhu,X.C. & Green,M.R. Nonspecific, concentration-dependent stimulation and repression of mammalian gene expression by small interfering RNAs (siRNAs). Rna-A Publication of the Rna Society 10, 12-18 (2004). 70. Elbashir,S.M., Harborth,J., Weber,K. & Tuschl,T. Analysis of gene function in somatic mammalian cells using small interfering RNAs. Methods 26, 199-213 (2002). 71. Brown D, Jarvis R, Pallotta V, Byrom M & Ford L. RNA interference in mammalian cell culture: design, execution and analysis of the siRNA effect. Ambion TechNotes 9, (2002). 72. Reynolds,A. et al. Rational siRNA design for RNA interference. Nature Biotechnology 22, 326-330 (2004). 73. Kamath,R.S. & Ahringer,J. Genome-wide RNAi screening in Caenorhabditis elegans. Methods 30, 313-321 (2003). 74. Caplen,N.J. & Mousses,S. Short interfering RNA (siRNA)-mediated RNA interference (RNAi) in human cells. Ann. N. Y. Acad. Sci. 1002, 56-62 (2003). 75. Martinez,L.A. et al. Synthetic small inhibiting RNAs: Efficient tools to inactivate oncogenic mutations and restore p53 pathways. Proceedings of the National Academy of Sciences of the United States of America 99, 14849-14854 (2002). 76. Brummelkamp,T.R., Bernards,R. & Agami,R. Stable suppression of tumorigenicity by virus-mediated RNA interference. Cancer Cell 2, 243-247 (2002). 77. Wilda,M., Fuchs,U., Wossmann,W. & Borkhardt,A. Killing of leukemic cells with a BCR/ABL fusion gene by RNA interference (RNAi). Oncogene 21, 5716-5724 (2002). 78. Scherr,M. et al. Specific inhibition of bcr-abl gene expression by small interfering RNA. Blood 101, 1566-1569 (2003). 79. Zhang,L., Yang,N., Mohamed-Hadley,A., Rubin,S.C. & Coukos,G. Vector-based RNAi, a novel tool for isoform-specific knock-down of VEGF and anti-angiogenesis gene therapy of cancer. Biochemical and Biophysical Research Communications 303, 1169-1178 (2003). 80. Capodici,J., Kariko,K. & Weissman,D. Inhibition of HIV-1 infection by small interfering RNA-mediated RNA interference. Journal of Immunology 169, 5196-5201 (2002). 81. Coburn,G.A. & Cullen,B.R. Potent and specific inhibition of human immunodeficiency virus type 1 replication by RNA interference. Journal of Virology 76, 9225-9231 (2002). 82. Shen,C.X., Buck,A.K., Liu,X.W., Winkler,M. & Reske,S.N. Gene silencing by adenovirus-delivered siRNA. Febs Letters 539, 111-114 (2003). 83. Jacque,J.M., Triques,K. & Stevenson,M. Modulation of HIV-1 replication by RNA interference. Nature 418, 435-438 (2002). 84. Novina,C.D. et al. siRNA-directed inhibition of HIV-1 infection. Nature Medicine 8, 681-686 (2002). 85. Martinez,M.A. et al. Suppression of chemokine receptor expression by RNA interference allows for inhibition of HIV-1 replication. Aids 16, 2385-2390 (2002). 86. Randall,G., Grakoui,A. & Rice,C.M. Clearance of replicating hepatitis C virus replicon RNAs in cell culture by small interfering RNAs. Proceedings of the National Academy of Sciences of the United States of America 100, 235-240 (2003). 87. Jiang,M. & Milner,J. Selective silencing of viral gene expression in HPV-positive human cervical carcinoma cells treated with siRNA, a primer of RNA interference. Oncogene 21, 6041-6048 (2002). 88. Wall,N.R. & Shi,Y. Small RNA: can RNA interference be exploited for therapy? Lancet 362, 1401-1403 (2003). 89. Hall,A.H.S. & Alexander,K.A. RNA interference of human papillomavirus type 18 E6 and E7 induces senescence in HeLa cells. Journal of Virology 77, 6066-6069 (2003). 90. Butz,K. et al. siRNA targeting of the viral E6 oncogene efficiently kills human papillomavirus-positive cancer cells. Oncogene 22, 5938-5945 (2003). 91. Yoshinouchi,M. et al. In vitro and in vivo growth suppression of human papillomavirus 16-positive cervical cancer cells by E6 siRNA. Molecular Therapy 8, 762-768 (2003). 92. Glahder,J.A., Hansen,C.N., Vinther,J., Madsen,B.S. & Norrild,B. A promoter within the E6 ORF of human papillomavirus type 16 contributes to the expression of the E7 oncoprotein from a monocistronic mRNA. Journal of General Virology 84, 3429-3441 (2003). | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/39379 | - |
dc.description.abstract | 子宮頸癌是一種婦女常見的癌症,與高危險性HPV的感染有直接關係,高危險性HPV的E6與E7基因可干擾細胞週期而使細胞癌化。但隨著siRNA的發展,科學家們得以專一的抑制病毒基因表現,提供了治療病毒感染的新契機。我們所要探討的,便是將siRNA應用於抑制HPV E6與E7基因表現之可行性。
由於E6與E7是轉錄在同一條mRNA上,若以E7作為siRNA標的,理論上應能有效同時抑制E6與E7的表現。故我們利用四組不同序列的E7 siRNA,包括一組M. Jiang等人所設計的序列,一組隨機挑選,以及兩組我們根據A. Raynolds等人推出的法則所設計的序列,分別觀察它們對E6和E7基因表現的抑制情形。 由實驗結果發現,在我們所使用的四組siRNA中,除了隨機設計的si-673之外,其餘三組都能有效的抑制E6與E7 mRNA表現,且MTT試驗也證實這三組的siRNA能顯著的降低細胞存活率。因此,單獨的E7 siRNA便足以用來同時抑制E6與E7表現,並能夠有效的抑制癌細胞增生,而此結果與M. Jiang等人所發表的略有不同。我們認為,類似的siRNA未來在治療HPV以及子宮頸癌的相關研究上,將具有相當大的發展潛力。 | zh_TW |
dc.description.abstract | The oncogenes E6 and E7 of high-risk HPVs have been identified as the major cause of cervical cancer, one of the most common cancers in women. Due to the discovery of siRNA, which provided a new approach for specific gene silencing, we are interested in whether siRNA could inhibit E6 and E7 gene expression.
Since E6 and E7 are transcribed on one mRNA, siRNAs targeting E7 are assumed to inhibit both E6 and E7 gene expression. We synthesized four E7 specific siRNAs including a sequence identical to that used in M. Jiang’s study, two sequences designed according to A. Reynolds’ rules, and a random sequence. Their efficiencies on gene silencing are compared. We demonstrated that all E7 siRNAs were able to inhibit both E6 and E7 gene expression simultaneously except the random si-673. In addition, MTT assays proved the information of significant reduction of cell viability in the treatment of siRNAs. E7 siRNAs may be applied as a promising candidate in the future for HPV therapy. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T17:27:11Z (GMT). No. of bitstreams: 1 ntu-93-R91423024-1.pdf: 1276573 bytes, checksum: ad4bcd049caea2f234501846bd88621e (MD5) Previous issue date: 2004 | en |
dc.description.tableofcontents | 壹、 緒論------------------------------------------1
1. 前言 2. 高危險型HPV及其致癌基因 3. RNA inteference 4. 研究動機及目的 貳、 材料及方法-----------------------------------13 1. 培養基之製備 2. 細胞株的培養 3. siRNA製備及轉染 4. MTT試驗 5. 全RNA抽取 6. 逆轉錄-聚合酶連鎖反應法 7. 北方點墨法 參、 結果-----------------------------------------23 1. 轉染最佳化 2. Mock siRNA 3. si-662 4. si-673 5. si-647 6. si-700 7. Northern analysis 8. 以MTT試驗分析細胞存活率(cell viability) 肆、 討論-----------------------------------------31 1. E7 siRNA對E6與E7 mRNA的影響 2. 與相關文獻之比較 3. 各組siRNA之間的比較 伍、 結論-----------------------------------------39 陸、 圖表-----------------------------------------41 柒、 參考文獻-------------------------------------54 | |
dc.language.iso | zh-TW | |
dc.title | 建立以siRNA抑制HPV致癌基因E6及E7的模式 | zh_TW |
dc.title | Establishing a model using small interfering RNAs to inhibit HPV oncogenes E6 and E7 | en |
dc.type | Thesis | |
dc.date.schoolyear | 93-1 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 鄭文芳,陳擇銘 | |
dc.subject.keyword | RNA干擾, | zh_TW |
dc.subject.keyword | siRNA,RNAi,E7,E6,HPV, | en |
dc.relation.page | 62 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2005-01-04 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 藥學研究所 | zh_TW |
顯示於系所單位: | 藥學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-93-1.pdf 目前未授權公開取用 | 1.25 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。