Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 財務金融學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38966
Title: GJR-GARCH模型於金融控股公司市場風險值之研究
GJR-GARCH Model in Value-at-Risk of Financial Holdings
Authors: Yun-Ju Lin
林韻茹
Advisor: 蘇永成
Keyword: 市場風險,金融控股公司,GJR GARCH,GARCH,風險值,
financial holdings,market risk,value-at-risk,GJR GARCH,GARCH,
Publication Year : 2005
Degree: 碩士
Abstract: 近年來金融環境變化迅速,由於新金融商品的開放及金融機構間激烈的競爭,金融機構無不增加其交易活動以改善其獲利,隨之也帶來顯著的市場風險。市場風險值(Value-at-Risk,VaR)目前已經成為衡量金融機構市場風險的標準方法。
本研究導入一不對稱GARCH模型-GJR-GARCH模型,來計算市場風險值,探討使用GJR-GARCH模型是否可以更精確地衡量金融機構的市場風險。由於缺乏實際的每日交易損益資料,我們模擬兩個投資組合A和B,分別代表富邦和國泰世華金融控股公司。模擬資料持有期間從2000年11月28日 至 2003年4月15日,其中400筆資料點當作樣本用來估計參數,而剩下的資料點則用來比較模型估計出之市場風險值,看其預測能力如何。
我們發現使用GJR-GARCH模型可有效預測市場風險值,然而用作比較之對稱GARCHM模型也同樣具有良好的預測能力,和先前研究相比,似乎並沒有存在槓桿效果。我們更進一步每隔五日更新所估計之參數,在不同的模型比較下,我們發現更新參數可使模型衡量更為精確。但是不可諱言的,每日交易損益超出市場風險值的次數和資本計提負擔之間必須互相取捨,不可兼得。
Financial environment has changed more rapidly in recent years. Due to the opening of innovative financial products and vigorous competition, the trading activities are increasing and produce significant market risk. Value-at-Risk(VaR)now has become a standard measure of financial market risk.
In this study, we introduce an asymmetric GARCH model, GJR-GARCH, in Value-at-Risk. We want to see if GJR-GARCH is a better method to evaluate the market risk of financial holdings. Because of lacking the actual daily P&L data, we simulated portfolio A and B, representing FuBon and Cathay financial holdings. The holding period stretches from 2000/11/28 to 2003/4/15. We take 400 observations as Sample Group to do the backward test and use the rest observations to forecast the change of VaR
We find GJR-GARCH works very well in VaR forecasting. However, it also performs very well under the symmetric GARCHM model. There seems no leverage effect as the previous study. Further, we open a 5-day moving window to update parameter estimates. Comparing the results under different models, we find that the model is more accurate by updating parameter estimates. It is a trade-off between violations and capital charges
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38966
Fulltext Rights: 有償授權
Appears in Collections:財務金融學系

Files in This Item:
File SizeFormat 
ntu-94-1.pdf
  Restricted Access
1.03 MBAdobe PDF
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved