Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 藥學專業學院
  4. 藥學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38932
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor孫紹文
dc.contributor.authorYa-Yuan Changen
dc.contributor.author張雅媛zh_TW
dc.date.accessioned2021-06-13T16:53:07Z-
dc.date.available2005-08-01
dc.date.copyright2005-06-23
dc.date.issued2005
dc.date.submitted2005-06-18
dc.identifier.citation1. P. Gareri, T. Gravina, G. Ferreri, G. de Sarro, Treatment of epilepsy in the elderly, Progress in Neurobilogy, 1999, 58, 389-407.
2. A. Beydoun, B. M. Uthman, J. C. Sackellares, Gabapentin: pharmacokinetics, efficienct, and safety, Clin. Neuropharmacol., 1995, 18, 469-481.
3. R. L. Macdonald, K. M. Kelly, Antiepileptic drug mechanisms of action, Epilepsy, 1995, 36, S2-S12.
4. United States Pharmacopoeia, 26th ed, United States Pharmacopeial Convention, Twinbrook Parkway, Rockville, MD, USA, 2003.
5. British Pharmacopoeia, Stationary Office, Department of Health, London, UK, 2004.
6. European Pharmacopoeia, European Department for the Quality of Medicines, Council of Europ, Strasbourg, 2004.
7. 中華藥典,第五版,衛生署中華藥典編修委員會,中華民國89年,1334-1336頁。
8. W. D. Hooper, M. C. Kavanagh, R. G. Dickinson, Determination of gabapentin in plasma and urine by capillary column gas chromatography, J. Chromatogr.,1990, 529, 167-174.
9. C. E. Wolf, J. J. Saady, A. Poklis, Determination of gabapentin in serum using solid phase extraction and gas-liquid chromatography, J. Anal.Toxicol., 1996, 20, 498-501.
10. M. M. Khusir, J. Crosset, P. I. Brown, F. M. Urry, Analysis of gabapentin in serum and plasma by solid-phase extraction and gas chromatography-mass spectrometry for therapeutic drug monitoring, J. Anal. Toxicol., 1999, 23, 1–6.
11. H. Hengy, E. U. Kolle, Determination of gabapentin in plasma and urine by high-performance liquid chromatography and on column labeling for ultraviolet detection, J. Chromatogr., 1985, 341, 473-478.
12. Q. Jiang, S. Li, Automated microanalysis of gabapentin in human serum by high-performance liquid chromatography with fluorometric detection, J. Chromatogr. B, 1999, 727, 119–123.
13. Z. Zhu, L. Neirinck, High-performance liquid chromatographic method for the determination of gabapentin in human plasma, J. Chromatogr. B., 2002, 779, 307–312.
14. Q. Jiang, S. Li, Rapid high-performance chromatographic determination of serum gabapentin, J. Chromatogr. B., 1999, 727, 119–123.
15. G. Forrest, G. Sills, J.P. Leach, M.J. Brodie, Determination of gabapentin in plasma by high-performance liquid chromatography, J. Chromatogr. B., 1996, 681, 421–425.
16. U. H. Juergens, T. M. May, B. Rambeck, Simultaneous HPLC determination of vigabatrin and gabapentin in serum with automated pre-injection derivatization, J. Liq. Chromatogr. Relat. Technol., 1996, 19, 1459–1471.
17. N. Wad, G. Kramer, Sensitive high-performance liquid chromatographic method with fluorometric detection for the simultaneous determination of gabapentin and vigabatrin in serum and urine, J. Chromatogr. B, 1998, 705, 154–158.
18. D. F. Chollet, L. Goumaz, C. Juliano, G. Anderegg, Fast isocratic high-performance liquid chromatographic method assay for the simultaneous determination of gabapentin and vigabatrin in human serum, J. Chromatogr. B, 2000, 746, 311-314.
19. N. Ratnaraj, P. N. Patsalos, A high-performance liquid chromatography Micromethod for the simultaneous determination of vigabatrin and gabapentin in serum, Ther. Drug. Monit., 1998, 20, 430-434.
20. D. R. Ifa, M. Falci, M. E. Moraes, F. A. F. Bezerra, M. O. Moraes, G. de Nucci, Gabapentin quantification in human plasma by high-performance liquid chromatography coupled to electrospray tandem mass spectrometry. Application to bioequivalence study, J. Mass. Spectrom., 2001, 36, 188-194.
21. S. Y. Chang, F.Y. Wang, Determination of gabapentin in human plasma by capillary electrophoresis with laser-induced fluorescence detection and acetonitrile stacking technique, J. Chromatogr. B, 2004, 799, 265–270.
22. L. L. Garcia, Z. K. Shihabi, K. Oles, Determination of gabapentin in serum by capillary electrophoresis, J. Chromatogr. B., 1995, 669, 157–162.
23. F. M. Lin, H. S. Kou, S. M. Wu, S. H. Chen, H. L. Wu, Capillary electrophoresis analysis of gabapentin and vigabatrin in pharmaceutical preparations as ofloxacin derivatives, Anal. chim. acta, 2004, 523, 9-14.
24. H. E. Abdellatef, H. M. Khalil, Colorimetric determination of gabapentin in pharmaceutical formulation, J. Pharm. Biomed. Anal., 2003, 31, 209-214.
25. F. Belal, H. Abidine, A. Al-Majed, N.Y. Khatil, Spectrofluorimetric determination of vigabatrin and gabapentin in urine and dosage forms through derivatization with fluorescamine, J. Pharm. Biomed. Anal., 2002, 27, 253–260.
26. B. Lippert, B. W. Metcalf, M. J. Jung, P. Casara, 4-amino-hex-5-enoic acid, a selective catalytic inhibitor of 4-aminobutyric acid aminotransferase in mammalian brain, Eur. J. Biochem, 1977, 74, 441-445.
27. R. H. Mattson, O. Petroff, D. Rothman, K. Behar, Vigabatrin: effects on human brain GABA levels by nuclear magnetic resonance spectroscopy, Epilepsia, 1994, 35, S29-S32.
28. N. E. Preece, G. D. Jackson, J. A. Houseman, J. S. Duncan, S. R. Williams, Nuclear magnetic resonance detection of increased cortical GABA in vigabatrin-treated rats in vivo, Epilepsia, 1994, 35, 431-436.
29. K. D. Haegele, P. J. Schechter, Kinetics of the enantiomers of vigabatrin after an oral dose of the racemate or the active S-enantiomer, Clin. Pharmacol. Ther., 1986, 40, 581-586.
30. B. Saletu, J. Grünberger, L. Linzmayer, J. –J. Schwartz, K. D. Haegele, P. J. Schechter, Psychophysiological and psychometric studies after manipulating the GABA system by vigabatrin, a GABA-transaminase inhibitor, Int. J. Psychophysiol., 1986, 4, 63-80.
31. J. F. Hoke, L. Yuh, K. K. Antony, R. A. Okerholm, J. M. Elberfeld, N. M. Sussman, Pharmacokinetics of vigabatrin following single and multiple oral doses in normal volunteers, J. Clin, Pharmacol, 1993, 33, 458-462.
32. K. D. Haegele, N. D. Huebert, M. Ebel, G. P. Tell, P. J. Schechter, Pharmacokinetics of vigabatrin implications of creatinine clearance, Clin, Pharmacol, Ther., 1988, 44, 558-565.
33. J. M. Gibbs, R. E. Appleton, L. Rosenbloom, Vigabatrin in intractable childhood epilepsy: a retrospective study, Pediatr. Neuro., 1992, 8, 338-340.
34. T. M. Schramm, G. E. McKinnon, M. J. Eadie, Gas chromatographic assay of vigabatrin enantiomers in plasma, J. Chromatogr., 1993, 616, 39-44.
35. J. Wagner, E. Wolf, B. Heintzelmann, C. Gaget, Chiral separation of enantiomers of substituted α- and β-alanine andγ-vinyl-γ-aminobutyric acid analogues by gas chromatography and high-performance liquid chromatography, J. Chromatogr., 1987, 392, 211-224.
36. K. D. Haegele, J. Schoun, R. G. Alken, N. D. Huebert, Determination of the R(-)- and S(+)-enantiomers of γ-vinyl-γ-aminobutyric acid in human body fluids by gas chromatography-mass spectrometry, J. Chromatogr., 1983, 274, 103-110.
37. T. M. Chen, J. J. Contario, High performance liquid chromatograohy resolution of enantiomers of γ-vinyl-γ-aminobutyric acid, J. Chromatogr., 1984, 314, 495-498.
38. J. A. Smithers, J. F. Lang, R. A. Okerholm, Quantitative analysis of vigabatrin in plasma and urine by reversed-phase high-performance liquid chromatography, J. Chromatogr.,1985, 341, 232-238.
39. L. M. Tsanaclis, J. Wicks, J. Williams, A. Richens, Determination of vigabatrin in plasma by reversed-phase high-performance liquid chromatography, Ther. Drug. Monit., 1991, 13, 251-253.
40. Y. Walbroehl, J. Wagner, Chiral separation of amino acids by capillary electrophoresis and high-performance liquid chromatography employing chiral crown ethers, J. Chromatogr. A., 1994, 685, 321-329.
41. T. M. Chen, J. J. Contario, R. R. Fike, High-performance liquid chromatographic assay for vigabatrin and it’s primary degration product in a pharmaceutical tablet formulation, J. Chromatogr., 1987, 398, 351-354.
42. J. Grove, R. G. Alken, P. J. Schechter, J. Chromotogr., Assay of γ-vinyl-γ-aminobutyric acid (4-amino-hex-5-enoic acid) in plasma and urine by automatic amino acid analysis, J. Chromatogr., 1984, 306, 382-387.
43. S. Erturk, E. S. Aktas, S. Atmaca, Determination of vigabatrin in human plasma and urine by high-performance liquid chromatography with fluorescence detection, J. Chromatogr. B., 2001, 760, 207-212.
44. S. Y. Chang, W. C. Lin, Determination of vigabatrin by capillary electrophoresis with laser-induced fluorescence detection, J. Chromatogr. B, 2003, 794, 17-22.
45. N. Benturquia, S. Parrot, V. Sauvinet, B. Renaud, L. Denoroy, Simultaneous determination of vigabatrin and amino acid neurotransmitters in brain microdialysates by capillary electrophoresis with laser-induced fluorescence detection, J. Chromatogr. B, 2004, 806, 237-244.
46. N. Olgun, S. Erturk, S. Atmaca, Spectrofluorimetric and spectrophotometric methods for the determination of vigabatrin in tablets, J. Pharm. Biomed. Anal., 2002, 29, 1-5.
47. A. Baldacci, R. Theurillat, J. Caslavska, H. Pardubska, Determination of γ-hydroxybutyric acid in human urine by capillary electrophoresis with indirect UV detection and confirmation with electrospray ionization ion-trap mass spectrometry, J. Chromatogr. A., 2003, 990, 99-110.
48. John. A. Dean, McGraw-Hill, Lang’s Handbook of Chemistry, New York, 1985, 13thed.
49. H. Fabre, Robustness testing in liquid chromatography and capillary electrophoresis, J. Pharm. Biomed. Anal., 1996, 14, 1125-1132..
50. Y. V. Heyden, F. Questier, D. L. Massart, A ruggedness test strategy for procedure related factors: experimental set-up and interpretation, J. Pharm. Biomed. Anal., 1998, 17, 153-168.
51. P. Doble, P. Andersson, P. R. Haddad, Determination and prediction of transfer ratios for anions in capillary zone electrophoresis with indirect UV detection, J. Chromatogr. A, 1997, 770, 291–300.
52. J. Cameron, H. Miroslav, P. R. Haddad, Enhancement of detection sensitivity for indirect photometric detection of anions and cations in capillary electrophoresis, Electrophoresis, 2003, 24, 2150–2167.
53. P. Doble, P.R. Haddad, Indirect photometric detection of anions in capillary electrophoresis, J. Chromatogr. A, 1999, 834, 189 –212.
54. X. Xu, W. Th. Kok, H. Poppe, Noise and baseline disturbances in indirect UV detection in capillary electrophoresis, J. Chromatogr. A, 1997, 786, 333-345.
55. R. Kuhn, S. Hoffstetter-Kuhn, Capillary Electrophoresis: Principle and Practice, Springer-Verlag, Berlin Heidelberg, Germany, 1993, p.144.
56. M. P. Harrold, M. J. Wojtusik, J. R. Riviello, P. Henson, Parameters influencing separation and detection of anions by capillary electrophoresis, J. Chromatogr., 1993, 640, 463-471.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38932-
dc.description.abstract本研究是利用毛細管電泳方法,對市售的gabapentin膠囊和vigabatrin錠劑作定量分析。Gabapentin與vigabatrin是新的抗癲癇藥物,其紫外光吸收度很低,若不經衍生化,而直接以紫外光偵測器測之,結果的靈敏度很差,故在此研究中,使用紫外光間接偵測法作為偵測方法。
在分析方法的開發中,針對可能影響分離結果的參數做一連串的探討,包括顯色劑的選擇、背景電解質的濃度和pH值及施加的電壓。經過多次的試驗後,得到一個最適化條件為5 mM的m-hydroxybenzoic acid背景電解質,以氫氧化鈉溶液調pH值至11.0,所施加的電壓為30 kV,γ-aminobutyric acid為內標準品。在此條件下,gabapentin和vigabatrin可在6分鐘內被分離出來。
以上述條件對gabapentin和vigabatrin進行分析,分別可得遷移時間的重複性和再現性之相對標準偏差為0.93 %,2.00 %及0.79 %,2.18 %;峰高度比的重複性和再現性之相對標準偏差為4.71 % ,5.08 % 及 4.78 %,5.52 %;回收率分別為101.75 % 及100.90 %;線性範圍分別為20-100 μg/mL及10-50 μg/mL;檢測極限分別為5 μg/mL及3 μg/mL。本研究所發展的分析方法可快速簡單地用於gabapentin和vigabatrin之原料藥和劑型的定量分析。
zh_TW
dc.description.abstractQuantitative analyses of gabapentin capsules and vigabatrin tablets were performed in the present study by capillary electrophoresis. Gabapentin and vigabatrin are new antiepilieptic drugs (AEDs) and absorbance of them are very low. Poor sensitivity was obtained by using direct UV detection without derivatization. Because of that, indirect UV detection was used in this study.
During the process of method development, we investigated the influence of possible parameters on resolution, including selection of visualization agents, concentration and pH value of background electrolyte, and applied voltage. The optimal condition was found to be 5 mM m-hydroxybenzoic acid as visualization agent, which was adjusted to pH 11.0 with sodium hydroxide, 30 KV and γ-aminobutyric acid used as internal standard for quantification. Gabapentin and vigabatrin can be separated well in six minutes.
For gabapentin and vigabatrin, repeatability and reproducibility of migration time (RSD) were 0.93 %, 2.00 % and 0.79 %, 2.18 %, respectively; repeatability and reproducibility of peak height ratio (RSD) were 4.71 %, 5.08 % and 4.78 %, 5.52 %, respectively. Recovery were 101.75 % and 100.90 %, respectively. The linear range of gabapentin and vigabatrin were 20-100 μg/mL and 10-50 μg/mL, respectively. The limit of detection were found to be 5 μg/mL and 3 μg/mL, respectively. The method can be used to assay raw materials and formulation products of gabapentin and vigabatrin in a fast and simple way.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T16:53:07Z (GMT). No. of bitstreams: 1
ntu-94-R92423014-1.pdf: 591307 bytes, checksum: 25b3a79b727a07524e57204c81b4e481 (MD5)
Previous issue date: 2005
en
dc.description.tableofcontents壹、緒論 .......................................................1
1. 1 gabapentin之簡介.....................................1
1. 2 vigabatrin之簡介 ....................................4
1. 3 研究目的.............................................6
貳、研究方法與步驟........................................8
2. 1 分析方法之建立.......................................8
2. 2 檢品的製備...........................................8
2. 3 分析方法之確效.......................................8
2. 3. 1 精密度 (precision) ...............................8
2. 3. 2 線性 (precision) .................................9
2. 3. 3 檢測極限 (limit of detection) ....................9
2. 3. 4 準確度 (accuracy) ................................9
2. 3. 5 耐變性 (robustness) .............................10
2. 4 藥物製劑中gabapentin和vigabatrin含量的測定..........14
2. 5 gabapentin和vigabatrin之直接UV檢測..................14
參、實驗部分
3. 1 儀器............................................... 15
3. 2 藥品及試劑..........................................15
3. 2. 1 試劑 ................................................15
3. 2. 2 顯色劑...........................................16
3. 2. 3 標準品...........................................16
3. 2. 4 劑型藥物.........................................16
3. 3 標準品溶液..........................................16
3. 4 檢品溶液............................................16
3. 5 毛細管電泳系統......................................17
3. 6 毛細管之處理........................................17
肆、結果與討論...........................................19
4. 1 間接檢測法原理的簡介................................19
4. 2 分析參數之探討及最適化分離條件之找尋................24
4. 2. 1 顯色劑的選擇.....................................24
4. 2. 2 背景電解質的pH值.................................30
4. 2. 3 顯色劑的濃度.....................................32
4. 2. 4 施加的電壓.......................................34
4. 2. 5 內標準品的選擇...................................36
4. 2. 6 分析物在最適化條件下的分離.......................37
4.3. 分析方法之確效......................................38
4. 3. 1 精密度 (precision) ..............................38
4. 3. 2 線性 (linearity) ................................43
4. 3. 3 檢測極限 (limit of detection) ...................60
4. 3. 4 準確度 (accuracy) ...............................61
4. 3. 5 耐變性 (robustness) .............................65
4. 4 藥物製劑中gabapentin和vigabatrin含量的測定..........82
4. 5 gabapentin和vigabatrin之直接UV檢測..................84
伍、結論.................................................85
陸、參考文獻.............................................87
圖目錄
Figure 1. Chemical structures of (a) gabapentin, (b) vigabatrin and (c) γ-aminobutric acid (IS). ..................................7
Figure 2. The principle of indirect detection. White circles represent active ions of the background electrolyte (BGE), black circles are inactive analyte ions. .................................20
Figure 3. Relative electrophoretic mobilities (with respect to gabapentin) for five visualization agents and analytes in pH 11. ........ 27
Figure 4. Electropherograms of mixtures at 5 different visualization agents. Conditions: buffer, 6 mM (a) salicylic acid, λmax = 230 nm, (b) benzoic acid, λmax = 223 nm, (c) nicotinic acid, λmax = 212 nm (d) p-hydroxybenzoic acid, λmax = 280 nm (e) m-hydroxybenzoic acid, λmax = 214 nm; applied voltage: 25 kV; pH= 11.0; injection time 4.8 sec; injection pressure 50 mbar; temperature 30 ℃, mixtures: gabapentin (peak 1), γ-aminobutryic acid (INST), vigabatrin (peak 2), 100 μg/mL in water. ................................................29
Figure 5. Electropherograms of mixtures at different pH values of buffer. Conditions: 5 mM m-hydroxybenzoic acid, 25 kV, 214 nm, injection time 4.8 sec; injection pressure 50 mbar; temperature 30℃, mixtures: gabapentin (peak 1), γ-aminobutyric acid (INST), vigabatrin (peak 2), 100 μg/mL in water............ 31
Figure 6. Effect of concentration on peak height of gabapentin and vigabatrin. .............................................33
Figure 7. Electropherograms of mixtures at different applied voltages. Conditions: 5 mM m-hydroxybenzoic acid, pH 11.0, 214 nm, injection time 4.8 sec; injection pressure 50 mbar; temperature 30 ℃, gabapentin (peak 1), γ-aminobutyric acid (INST), vigabatrin (peak 2), 100 μg/mL in water.. ................. 35
Figure 8. Electropherogram of mixtures. Conditions: 5 mM m-hydroxybenzoic acid, pH 11.0, 214 nm, injection time 4.8 sec; injection pressure 50 mbar; temperature 30 ℃, mixtures: gabapentin (peak 1), vigabatrin (peak 2), 100 μg/mL in water. .................................................. 37
Figure 9a. Calibration curve of gabapentin (for the first day) ..........47
Figure 9b. Calibration curve of gabapentin (for the second day) .......47
Figure 9c. Calibration curve of gabapentin (for the third day) ......... 48
Figure 10a. Calibration curve of vigabatrin (for the first day) ..........48
Figure 10b. Calibration curve of vigabatrin (for the second day) .......49
Figure 10c. Calibration curve of vigabatrin (for the third day) .........49
Figure 11. Pooled calibration curve of gabapentin (for the three days) ..50
Figure 12. Pooled calibration curve of vigabatrin (for the three days)...51
Figure 13a. Bar diagram showing the calculated t values (tcalc) of the effects of factors on retention time for gabapentin. .........74
Figure 13b. Bar diagram showing the calculated t values (tcalc) of the effects of factors on peak height for gabapentin. ...........75
Figure 13c. Bar diagram showing the calculated t values (tcalc) of the effects of factors on plate number for gabapentin. ..........76
Figure 14a. Bar diagram showing the calculated t values (tcalc) of the effects of factors on retention time for vigabatrin. ..........77
Figure 14b. Bar diagram showing the calculated t values (tcalc) of the effects of factors on peak height for vigabatrin. ............78
Figure 14c. Bar diagram showing the calculated t values (tcalc) of the effects of factors on plate number for vigabatrin. .......... 79
Figure 15. Electropherograms of mixtures. Conditioms: 25 mM borate buffer; 30 kV; pH= 11.0; injection time 4.8 sec; injection pressure 50 mbar; temperature 30 ℃, mixtures: gabapentin (peak 1), vigabatrin (peak 2), 100 μg/mL in water…........84
表目錄
Table 1. Selected factors and the values of the three levels. ..........12
Table 2. Experiments of the Plackett-Burman design. ...............12
Table 3. Maximuma absorption wavelengths and absorptivities at maximum absorption wavelengths of the visualization agents in pH 11.0...............................................25
Table 4. Electrophoretic mobilities and pKa values of visualization agents, analytes and γ-aminobutyric acid. ......................... 26
Table 5a. Migration times of gabapentin and vigabatrin in three days...................................................39
Table 5b. Repeatability and reproducibility of the migration times for gabapentin and vigabatrin. .............................. 40
Table 6a. Peak height ratio of gabapentin and vigabatrin in three days. ..................................................41
Table 6b. Repeatability and reproducibility of peak height ratio for gabapentin and vigabatrin. ..............................42
Table 7. Data used for the calculation of the calibration curve of gabapentin. ............................................. 43
Table 8. Data used for the calculation of the calibration curve of vigabatrin. ..............................................45
Table 9. Regression equation of gabapentin and vigabatrin in three days. .................................................... 46
Table 10a. Data of three days used for the calculation of the pooled calibration curve of gabapentin. .........................52
Table 10b. Data of three days used for the calculation of the pooled calibration curve of vigabatrin. ......................... 52
Table 11a. Data calculated from Table 10a. .......................... 56
Table 11b. Data calculated from Table 10b. ......................... 58
Table 12. Limit of detection for gabapentin and vigabatrin. ........... 60
Table 13. Recovery data of gabapentin. ..............................62
Table 14. Recovery data of vigabatrin. ..............................63
Table 15. Repeatability and reproducibility of recovery of gabapentin and vigabatrin. ...............................................64
Table 16a. Experiment results of the Plackett-Burman design (lower level). ................................................ 66
Table 16b. Experiment results of the Plackett-Burman design (upper level). ................................................ 67
Table 17a. Effects of factors on migration time (tR), peak height (h) and plate number (N) (lower level). ........................ 68
Table 17b. Effects of factors on migration time (tR), peak height (h) and plate number (N) (upper level). ......................... 69
Table 18a. Normalized effects of factors on migration time (tR), peak height (h) and plate number (N) (lower level). ........... 70
Table 18b. Normalized effects of factors on migration time (tR), peak height (h) and plate number (N) (upper level). ........... 71
Table 19a. Calculated t values of the effects of factors on migration time (tR), peak height (h) and plate number (N) (lower level). ................................................. 72
Table 19b. Calculated t values of the effects of factors on migration time (tR), peak height (h) and plate number (N) (upper level). ................................................ 73
Table 20. Contents of gabapentin in the capsule . .....................83
Table 21. Contents of vigabatrin in the tablet. ........................83
dc.language.isozh-TW
dc.title以毛細管電泳-紫外光間接偵測法對抗癲癇藥物gabapentin與vigabatrin進行定量分析zh_TW
dc.titleQuantitative analysis of gabapentin and vigabatrin in pharmaceutical preparation by capillary electrophoresis with indirect UV detectionen
dc.typeThesis
dc.date.schoolyear93-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳繼明,忻凌偉
dc.subject.keyword毛細管電泳,間接偵測,抗癲癇藥物,zh_TW
dc.subject.keywordcapillary electrophoresis,indirect detection,gabapentin,vigabatrin,en
dc.relation.page93
dc.rights.note有償授權
dc.date.accepted2005-06-20
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept藥學研究所zh_TW
顯示於系所單位:藥學系

文件中的檔案:
檔案 大小格式 
ntu-94-1.pdf
  目前未授權公開取用
577.45 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved