Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/3881
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor夏俊雄
dc.contributor.authorChen-Chih Laien
dc.contributor.author賴承志zh_TW
dc.date.accessioned2021-05-13T08:37:58Z-
dc.date.available2016-07-26
dc.date.available2021-05-13T08:37:58Z-
dc.date.copyright2016-07-26
dc.date.issued2016
dc.date.submitted2016-07-20
dc.identifier.citation[1] C.-C. Chen and L.-C. Hung. Nonexistence of traveling wave solutions, exact and semi-exact traveling wave solutions for diffusive Lotka-Volterra systems of three competing species. Commun. Pure Appl. Anal., 15(4):1451-1469, 2016.
[2] C.-C. Chen, L.-C. Hung, M.Mimura, and D. Ueyama. Exact travelling wave solutions of three-speceis competition-diffusion systems. Discrete Contin. Dyn. Syst. Ser. B, 17(8):2653-2669, 2012.
[3] L.-C. Hung. An n-barrier maximum principle for elliptic systems arising from the study of traveling waves in reaction-diffusion systems. arXiv preprint arXiv:1509.00278, 2015.
[4] L.-C. Hung and C.-C. Chen. Maximun principles for diffusive lotka-volterra systems of two competing species. arXiv preprint arXiv:1509.00071, 2015.
[5] A. N. Kolmogorov, I. Petrovsky, and N. Piskunov. Etude de l'equation de la diffusion avec croissance de la quantite de matiere et son applicationa un probleme biologique. Moscow Univ. Math. Bull, 1:1-25, 1937.
[6] J.D. Murray. Mathematical biology i: An introduction, vol.17 of interdisciplinary applied mathematics, 2002.
[7] A. Okubo, P. Maini, M. Williamson, and J. Murray. On the spatial spread of the grey squirrel in britain. Proceedings of the Royal Society of London B: Biological Sciences, 238(1291):113-125, 1989.
[8] M. Rodrigo and M. Miura. Exact solutions of reaction-diffusion systems and nonlinear wave equations. Japan J. Indust. Appl. Math., 18(3):657-696,2001.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/3881-
dc.description.abstractN型屏障最大值原理為一種估計一維擴散型競爭洛特卡-佛爾特拉方程組的行進波解之技術。這篇文章中,我們將[4]中考慮的雙物種之情況推廣到任意多物種。此外,我們將不再需要,為了得到更精細的估計,而在[4]中所考慮的切線法之限制條件。zh_TW
dc.description.abstractThe N-barrier maximum principle (NBMP) is a technique to estimate the total density of traveling wave solutions to one-dimensional diffusive competitive Lotka-Volterra systems. In this study, two-species cases, which are considered in [4], are generalized to multi-species cases. In addition, the constraints of the tangent line method proposed in [4] to obtain a refined estimate is released.en
dc.description.provenanceMade available in DSpace on 2021-05-13T08:37:58Z (GMT). No. of bitstreams: 1
ntu-105-R03221004-1.pdf: 613687 bytes, checksum: 990a3a929b88460f48d1126e67def588 (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents1 Introduction ......................................................1
2 N-barrier Maximum Principle (NBMP) ..............4
2.1 NBMP for 2-speices ......................................4
2.2 Generalized NBMP .......................................11
2.3 NBMP for Multi-species ...............................13
3 Application: Nonexistence Results ..................18
4 Improved Tangent Line Method ......................20
5 Examples ........................................................26
5.1 An Example of NBMP for 3-species ..............27
5.2 An Example of Tangent Line Method ............29
6 Conclusion and Future Studies ......................31
7 Appendix: Minimal Wave Speed .....................31
dc.language.isoen
dc.subject最大值原理zh_TW
dc.subject行進波解zh_TW
dc.subject洛特卡-佛爾特拉zh_TW
dc.subjecttraveling wave solutionsen
dc.subjectmaximum principleen
dc.subjectLotka-Volterraen
dc.title論擴散-競爭型洛特卡-佛爾特拉方程組的行進波解之N型屏障最大值原理zh_TW
dc.titleOn the N-barrier maximum principle for traveling wave solutions of diffusive competitive Lotka-Volterra systemsen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee洪盟凱,鄭經?,陳俊全
dc.subject.keyword行進波解,洛特卡-佛爾特拉,最大值原理,zh_TW
dc.subject.keywordtraveling wave solutions,Lotka-Volterra,maximum principle,en
dc.relation.page36
dc.identifier.doi10.6342/NTU201601053
dc.rights.note同意授權(全球公開)
dc.date.accepted2016-07-20
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept數學研究所zh_TW
顯示於系所單位:數學系

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf599.3 kBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved