請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/3881完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 夏俊雄 | |
| dc.contributor.author | Chen-Chih Lai | en |
| dc.contributor.author | 賴承志 | zh_TW |
| dc.date.accessioned | 2021-05-13T08:37:58Z | - |
| dc.date.available | 2016-07-26 | |
| dc.date.available | 2021-05-13T08:37:58Z | - |
| dc.date.copyright | 2016-07-26 | |
| dc.date.issued | 2016 | |
| dc.date.submitted | 2016-07-20 | |
| dc.identifier.citation | [1] C.-C. Chen and L.-C. Hung. Nonexistence of traveling wave solutions, exact and semi-exact traveling wave solutions for diffusive Lotka-Volterra systems of three competing species. Commun. Pure Appl. Anal., 15(4):1451-1469, 2016.
[2] C.-C. Chen, L.-C. Hung, M.Mimura, and D. Ueyama. Exact travelling wave solutions of three-speceis competition-diffusion systems. Discrete Contin. Dyn. Syst. Ser. B, 17(8):2653-2669, 2012. [3] L.-C. Hung. An n-barrier maximum principle for elliptic systems arising from the study of traveling waves in reaction-diffusion systems. arXiv preprint arXiv:1509.00278, 2015. [4] L.-C. Hung and C.-C. Chen. Maximun principles for diffusive lotka-volterra systems of two competing species. arXiv preprint arXiv:1509.00071, 2015. [5] A. N. Kolmogorov, I. Petrovsky, and N. Piskunov. Etude de l'equation de la diffusion avec croissance de la quantite de matiere et son applicationa un probleme biologique. Moscow Univ. Math. Bull, 1:1-25, 1937. [6] J.D. Murray. Mathematical biology i: An introduction, vol.17 of interdisciplinary applied mathematics, 2002. [7] A. Okubo, P. Maini, M. Williamson, and J. Murray. On the spatial spread of the grey squirrel in britain. Proceedings of the Royal Society of London B: Biological Sciences, 238(1291):113-125, 1989. [8] M. Rodrigo and M. Miura. Exact solutions of reaction-diffusion systems and nonlinear wave equations. Japan J. Indust. Appl. Math., 18(3):657-696,2001. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/3881 | - |
| dc.description.abstract | N型屏障最大值原理為一種估計一維擴散型競爭洛特卡-佛爾特拉方程組的行進波解之技術。這篇文章中,我們將[4]中考慮的雙物種之情況推廣到任意多物種。此外,我們將不再需要,為了得到更精細的估計,而在[4]中所考慮的切線法之限制條件。 | zh_TW |
| dc.description.abstract | The N-barrier maximum principle (NBMP) is a technique to estimate the total density of traveling wave solutions to one-dimensional diffusive competitive Lotka-Volterra systems. In this study, two-species cases, which are considered in [4], are generalized to multi-species cases. In addition, the constraints of the tangent line method proposed in [4] to obtain a refined estimate is released. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-13T08:37:58Z (GMT). No. of bitstreams: 1 ntu-105-R03221004-1.pdf: 613687 bytes, checksum: 990a3a929b88460f48d1126e67def588 (MD5) Previous issue date: 2016 | en |
| dc.description.tableofcontents | 1 Introduction ......................................................1
2 N-barrier Maximum Principle (NBMP) ..............4 2.1 NBMP for 2-speices ......................................4 2.2 Generalized NBMP .......................................11 2.3 NBMP for Multi-species ...............................13 3 Application: Nonexistence Results ..................18 4 Improved Tangent Line Method ......................20 5 Examples ........................................................26 5.1 An Example of NBMP for 3-species ..............27 5.2 An Example of Tangent Line Method ............29 6 Conclusion and Future Studies ......................31 7 Appendix: Minimal Wave Speed .....................31 | |
| dc.language.iso | en | |
| dc.subject | 最大值原理 | zh_TW |
| dc.subject | 行進波解 | zh_TW |
| dc.subject | 洛特卡-佛爾特拉 | zh_TW |
| dc.subject | traveling wave solutions | en |
| dc.subject | maximum principle | en |
| dc.subject | Lotka-Volterra | en |
| dc.title | 論擴散-競爭型洛特卡-佛爾特拉方程組的行進波解之N型屏障最大值原理 | zh_TW |
| dc.title | On the N-barrier maximum principle for traveling wave solutions of diffusive competitive Lotka-Volterra systems | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 洪盟凱,鄭經?,陳俊全 | |
| dc.subject.keyword | 行進波解,洛特卡-佛爾特拉,最大值原理, | zh_TW |
| dc.subject.keyword | traveling wave solutions,Lotka-Volterra,maximum principle, | en |
| dc.relation.page | 36 | |
| dc.identifier.doi | 10.6342/NTU201601053 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2016-07-20 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 數學研究所 | zh_TW |
| 顯示於系所單位: | 數學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-105-1.pdf | 599.3 kB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
