Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 食品科技研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38638
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor葉安義
dc.contributor.authorPei-Wen Wangen
dc.contributor.author王姵文zh_TW
dc.date.accessioned2021-06-13T16:40:07Z-
dc.date.available2005-07-08
dc.date.copyright2005-07-08
dc.date.issued2005
dc.date.submitted2005-07-04
dc.identifier.citation江伯源,柯文慶,1998,實用食品加工實習手冊,國立中興大學出版組
林嘉瑜,2002,反應曲面法之改良研究-權重平滑搜尋方向與實驗區域改變規則之探討,國立成功大學工業管理研究所碩士論文
高馥君,1992,反應曲面在食品開發上之應用,食品工業,24(3): 32-41
黃韋誠,2003,以反應曲面法探討鱈魚魚漿製品最適化之研究,國立屏東科技大學食品科學系碩士論文
黃榮茂、王禹文、林聖富、楊得仁,1989,化學化工百科辭典,曉園出版社
鄭維智,2002,食品中丙烯醯胺之認識,台灣公定化學家協會會員通訊,第1期,4-8頁
蕭舜文,2004,以氣相層析/離子阱質譜儀分析中式食品中丙烯醯胺之含量,國立台灣大學食品科技研究所碩士論文
Amrein TM, Schonbachler B, Escher F and Amado R. 2004. Acrylamide in gingerbread: critical factors for formation and possible ways for reduction. J. Agric. Food Chem. 52: 4282-4288.
Barber DS, Hunt JR, Ehrich MF, Lehning EJ and LoPachin RM. 2001. Metabolism, toxicokinetics and hemoglobin adduct formation in rats following subacute and subchronic acrylamide dosing. Neurotox. 22(1): 341-353.
Becalski A, Lau BP, Lewis D and Seaman SW. 2003. Acrylamide in foods: occurrence, sources, and modeling. J. Agric. Food Chem. 51: 802-808.
Becalski A, Lau BP, Lewis D, Seaman SW, Hayward S, Sahagian M, Ramesh M and Leclerc Y. 2004. Acrylamide in French fries: Influence of free amino acids and sugars. J. Agric. Food Chem. 52: 3801-3806.
Box GEP. 1963. The effects of errors in the factor levels and experimental design. Technometrics 5(2): 247-262.
Box GEP and Behnken DW. 1960. Some new three level designs for the study of quantitative vqriables. Technomertics 2: 455-475.
Box GEP and Wilson KB. 1951. On the experimental attainment of optimum conditions. Journal of the Royal Statistic Society: B13, 1-45.
Claey WL, Vleeschouwer KD and Hendrickx ME. 2005. Quantifying the formation of carcinogens during food processing: acrylamide. Trends in Food Science and Technology 16: 181-193.
Croll BT and Simkins GM. 1972. The determination of acrylamide in water by electron-capture gas chromatography. Analyst 97(1): 281-288
FAO/WHO Consultation on the health implications of acrylamide in food Geneva, 25-27 June 2002. Summary Report. p 1-12.
Henika RG. 1972. Simple and effective system for use with response surface methodology. Cereal Science Today 17(10): 309-312, 314, 334.
Hill WJ and Hunter WG. 1966. A review of response surface methodology: a literature survey. Technometrics 8: 571-590.
Hoenicke K, Gatermann R, Harder W and Hartig L. 2004. Analysis of acrylamide in different foodstuffs using liquid chromatography-tandem mass spectrometry and gas chromatography-tandem mass spectrometry. Analytica Chimica Acta 520: 207-215.
Hurst PL, Boulton G and Lill RE. 1998. Towards a freshness test for asparagus: spear tip asparagines content is strongly related to post-harvest accumulated heat-units. Food Chem. 61(1): 381-384.
IARC. 1994. Monographs on the evaluation of the carvinogenic risk of chemiscals to man. Vol 60: some industrial chemicals. p 389-433. IARC. Lyon.
Jang A. 1999. Robust tolerance design by response surface methodology. International Journal of advanced manufacturing technology 15(6): 399-403.
Joint FAO/WHO expert committee on food additives (summary and conclusions), sixty-fourth meeting, Rome, 8-17 February 2005: 1-45.
Khuri AJ and Cornell JA. 1996. Response surface: design and analysis. Marcel Dekker. New York.
Leung KS, Lin A, Tsang CK and Yeung ST. 2003. Acrylamide in Asian foods in Hong Kong. Food Addit. Contami. 20(12): 1105-1113.
Martin FL and Ames JM. 2001. Formation of Strecker Aldehydes and Pyrazines in a Fried Potato Model System J. Agric Food Chem. 49: 3885-3892.
Mlogkiewicz JA. 1998. The role of the maillard reaction in the food industry. The Royal Society of Chemistry: Cambridge, U.K. 19-27.
Mottram DS, Wedzichat BL and Dodson AT. 2002. Acrylamide is formed in the Maillard reaction. Nature 419(3): 448-449.
Murkovic M. 2004. Acrylamide in Austrain foods. J. Biochem. Biophys. Methods 61: 161-167.
Namiki M. 1988. Chemistry of maillard reaction: Recent studies on the browning reaction mechanism and the development of antioxidants and mutagens. Adv. Food Res. 32: 115-184.
Negro A, Garbisa S Gotte L and Spina M. 1987. The use of reverse-phase high-per-formance liquid chromatography and precolumn derivatization with dansyl chloride for quantitation of specific amino acid in collagen and elastin. Anal. Biochem. 160: 39-46.
Pedreschi F, Kaack K and Granby K. 2004. Reduction of acrylamide formation in potato slices during frying. Lebensm. –Wiss. u. –Technol. 37: 679-685.
Pedreschi F, Moyano P, Kaack K and Granby K. 2005. Color changes and acrylamide formation in fried potato slices. Food Res. Int. 38: 1-9.
Pollien P, Lindioger C, Yeretzian C and Blank I. 2003. Proton transfer reaction mass spectrometry, a tool for on-line monitoring of acrylamide formation in the headspace of maillard reaction systems and processed food. Anal. Chem. 75(20): 5488-5494.
Robyt JF and White BJ. 1990. Biochemical techniques theory and practice. Waveland Press, Inc., IIJinios.
Rydberg P, Eriksson S, Tareke E, Karlsson P, Ehrenberg L and Tornqvist M. 2003. Investigations of factors that influence the acrylamide content of heated foodstuffs. J. Agric. Food Chem. 51: 7012-7018.
Stadler RH, Blank I, Varga N, Robert F, Hau J, Guy PA, Robert MC and Riediker S. 2002. Acrylamide from Maillard reaction products. Nature 419(3): 449.
Surdyk N, Rosen J, Andersson R and Aman P. 2004. Effects of asparagines, fructose, and baking conditions on acrylamide content in yeast-leavened wheat bread. J. Agric. Food Chem. 52: 2047-2051.
Svensson K, Abramsson L, Becker W, Glynn A, Hellenas KE, Lind Y and Rosen J. 2003. Dietary intake of acrylamide in Sweden. Food Chem. Toxicol. 41: 1581-1586.
Taeymans D, Ashby P, Blank I, Studer A, Stadler RH, Gonde P, Eijck PV, Lalljie S, Lingnert H, Lindblom M, Matissek R, Muller D, Tallmadge D, O’Brien J, Thompson, Silvani D and Whitmore T. 2004. A review of acrylamide: An industry perspective on research, analysis, formation, and control. Critical Review in Food Science and Nutrition. 44: 323-347.
Taeymans D, Andersson A, Ashby P, Blank I, Gonde P, Eijck P, Faivre V, Lalljie S, Lingnert H, Lindblom M, Matissek R, Muller D, Stadler RH, Studer A, Silvani D, Tallmadge G, Whitmore T, Wood J and Zyzak. 2005. Acrylamide: update on selected research activities conducted by the European food and drink industry. J. AOAC Int. 88: 234-241.
Tareke E, Rydberg P, Karlsson P, Eriksson S and Tornqvist M. 2002. Analysis of acrylamide, a carcinogen formed in heated foodstuffs. J. Agric. Food Chem. 50: 4998-5006.
Taubert D, Harlfinger S, Henkes L, Berkels R and Schomig E. 2004. Influence of processing parameters on acrylamide formation during frying of potatoes. J. Agric. Food Chem. 52: 2735-2739.
Vattem DA and Shetty K. 2003. Acrylamide in food: a model for mechanism of formation and its reduction. Inn. Food Sci. and Emerging Technol. 4: 331-338.
Yasuhara A, Tanaka Y, Hengel M and Shibamoto T. 2003. Gas chromatographic investigation of acrylamide formation in browning model system. J. Agric. Food Chem. 51: 3999-4003.
Yaylayan VA and Stadler RH. 2005. Acrylamide formation in food: a mechanistic perspective. J. AOAC Int. 88: 262-267.
Yaylayan VA, Wnorowski A and Perez Locas C. 2003. J. Agric. Food Chem. 51: 1753-1757.
Zyzak DV, Sanders RA, Stojanovic M, Tallmadge DH, Eberhart BL, Ewald DK, Gruber DC, Morsch TR, Strothers MA, Rizzi GP and Villagran MD.2003. Acrylamide formation mechanism in heated foods. J. Agric. Food Chem. 51: 4782-4787.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38638-
dc.description.abstract澱粉類食品經過油炸或烘烤後會產生丙烯醯胺(已被介定為可能致癌物),其生成機制至今未能完全了解,目前的證據傾向天門冬醯胺與葡萄糖能產生多量丙烯醯胺,加工條件確實會影響丙烯醯胺的生成量。中式食品中丙烯醯胺的相關研究甚少,因此分析國人常消費之中式食品所含丙烯醯胺含量即為一重要課題。本研究以四因子三階層之反應曲面模式,探討秈米穀粉中丙烯醯胺之生成影響。結果顯示以加熱溫度與時間對於丙烯醯胺之生成有顯著性影響(p < 0.05),加熱溫度愈高,加熱時間愈長,則丙烯醯胺生成含量愈高。樣品色澤分析中,發現秈米穀粉L值(明亮度)愈大、a值(紅色度)愈小、W.I.(白度)愈小、ΔE*愈小時,丙烯醯胺含量愈少。抗壞血酸可抑制丙烯醯胺之生成,隨添加量的增加,丙烯醯胺生成呈逐漸減少的趨勢;檢測樣品殘餘天門冬醯胺與還原糖含量,發現此二者分別與丙烯醯胺生成呈負相關,而殘餘天門冬醯胺與還原糖含量兩者之乘積與丙烯醯胺含量有極佳的負相關(r2 = 0.9866)。zh_TW
dc.description.abstractAcrylamide, a probable carcinogen, has been formed in fried or baked starchy food. Although asparagine and glucose have been considered as major compounds to form acrylamide, the mechanism has not been well understood yet. The studies related with the distribution of acrylamide in Chinese food are deficient. This study was attempted in rice flour during processing by using response surface methodology. The data showed that both heating temperature and time affected significantly the formation of acrylamide. It appeared that the product with greater L value, and smaller a value, W.I., ΔE* yielded less acrylamide. Ascorbic acid was found to inhibit the formation of acrylamide. Increased the addition level of ascorbic acid reduced the formation of acrylamide. The residue quantity of asparagine and reducing sugar correlated well with the acrylamide content.en
dc.description.provenanceMade available in DSpace on 2021-06-13T16:40:07Z (GMT). No. of bitstreams: 1
ntu-94-R92641001-1.pdf: 1877597 bytes, checksum: 452ef16c57c59b4e8bc0770e63d0f8d1 (MD5)
Previous issue date: 2005
en
dc.description.tableofcontents壹、 前言 1
貳、 文獻回顧 3
一、 丙烯醯胺簡介 3
(一) 理化性質 3
(二) 用途 3
(三) 吸收與代謝 4
(四) 毒性 4
(五) 風險評估 8
(六) 分析方法 9
二、 食品中的丙烯醯胺 10
(一) 食品中的丙烯醯胺含量 10
(二) 食品中丙烯醯胺的穩定度 14
(三) 影響食品中丙烯醯胺生成之因子 14
(四) 降低食品丙烯醯胺含量之方法 17
(五) 食品色澤與丙烯醯胺之關係 20
(六) 丙烯醯胺之生成機制 20
三、 反應曲面法(Response surface methodology, RSM) 25
(一) 反應曲面法之簡介 25
(二) 反應曲面法之優點 25
(三) 反應曲面法實驗設計步驟 25
(四) 反應曲面法之數學模式 26
(五) 反應曲面法之執行步驟 27
參、 實驗方法 30
第一部分 探討加工條件對秈米穀粉中丙烯醯胺生成的影響 30
一、 實驗流程 30
二、 試驗材料 30
三、 樣品製備 30
四、 實驗方法 30
(一) 基本成分分析 30
(二) 丙烯醯胺含量之分析 33
(三) 還原糖分析 39
(四) 游離天門冬醯胺分析 41
(五) 色澤分析(color test) 43
(六) 統計分析(statistical analysis) 44
第二部分 探討添加抗壞血酸對秈米穀粉中丙烯醯胺生成的影響 48
一、 外添加劑試驗 48
二、 pH值測定 48
三、 數據處理 48
肆、 結果與討論 49
第一部分 探討加工條件對於秈米榖粉中丙烯醯胺生成的影響 49
一、 基本成份分析 49
二、 反應曲面模式分析 49
三、 丙烯醯胺之結果分析 53
(一) 加熱溫度與時間之交感作用 53
(二) 加熱溫度與水含量之交感作用 57
(三) 加熱溫度與油脂含量之交感作用 59
(四) 加熱時間與水含量之交感作用 61
(五) 加熱時間與油脂含量之交感作用 61
(六) 水含量與油脂含量之交感作用 61
四、 天門冬醯胺及還原糖殘存量與丙烯醯胺生成之關係 64
(一) 天門冬醯胺之殘存量 64
(二) 還原糖之殘存量 68
(三) 還原糖與天門冬醯胺之交感作用 68
五、 產品外觀與色澤與丙烯醯胺之關係 71
(一) 外觀觀察 71
(二) 色澤分析 75
第二部分 探討添加抗壞血酸對秈米榖粉中丙烯醯胺生成的影響 83
一、 添加抗壞血酸對丙烯醯胺生成的影響 83
二、 pH值對丙烯醯胺生成之影響 83
三、 還原糖與天門冬醯胺之影響 85
伍、 結論 91
陸、 參考文獻 92
dc.language.isozh-TW
dc.title加熱溫度與時間對於秈米穀粉形成丙烯醯胺之影響zh_TW
dc.titleThe influence of heating temperature and time on the acrylamide formation in rice flouren
dc.typeThesis
dc.date.schoolyear93-2
dc.description.degree碩士
dc.contributor.oralexamcommittee周薰修,孫璐西,呂廷璋,江伯源
dc.subject.keyword秈米穀粉,丙烯醯胺,抗壞血酸,zh_TW
dc.subject.keywordrice flour,acrylamide,ascorbic acid,en
dc.relation.page97
dc.rights.note有償授權
dc.date.accepted2005-07-04
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept食品科技研究所zh_TW
顯示於系所單位:食品科技研究所

文件中的檔案:
檔案 大小格式 
ntu-94-1.pdf
  目前未授權公開取用
1.83 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved