Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38541
Title: Khovanov同調群的研究
Some computations of Khovanov Homology
Authors: Chiun-Ming Liao
廖俊旻
Advisor: 楊樹文(Su-Win Yang)
Keyword: 同調群,
Khovanov,homology,knot,
Publication Year : 2005
Degree: 碩士
Abstract: Khovanov發現了一個神祕的環的不變量。大致的想法是造一個chain
complex,使它的尤拉特徵數和它的Jones多項式一樣,然後我們就計算這個chain complex的同調群。這是一個環的不變量,但它每一項所代表的意義尚未被發現。有一些專家們發現了許多它的特性。Dror Bar-Natan的論文裡記載一個特別令人驚奇的性質,它已經被Eun Soo
Lee證明了。這個性質是,對prime alternative的環來說,如果我們將它的同調群畫在方格紙上,那麼它將只出現在兩條平行線上。
在這篇文章裡,我想要找出結的connected sum和disjoint union之間的關係。在Knovanov的文章裡已經有了一個方法,是將兩者做成一個exact sequence,而我的方法就是引用這個。Dror Bar-Natan寫的程式也幫了我很大的忙。
A new link invariant found by Khovanov is a mysterious invariant. The brief idea is to build a chain complex for a knot so that its Euler characteristic is its Jones polynomial, and we can compute the Khovanov homology for this chain complex. It is a link invariant, but the meaning of the terms in it is not yet varified. Instead some masters drill out many properties inside this invariant. One amazing property of the Khovanov homology of prime alternative knots is stated in Dror Bar-Natan's paper and is proved by Eun Soo Lee. It says that the Khovanov homology of prime alternative knots appears only in two skew parallel lines if we draw them in a table.
In this article I want to find some relationship between connected sum and disjoint union of two knots. In Knovanov's paper he introduce a nice relation between connected sum and disjoint union of two knots. It is long exact sequences, and my computation is relied on it. The program released by Dror Bar-Natan really does great help to me.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38541
Fulltext Rights: 有償授權
Appears in Collections:數學系

Files in This Item:
File SizeFormat 
ntu-94-1.pdf
  Restricted Access
340.53 kBAdobe PDF
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved