Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科學研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38207
Title: 核醣核酸聚合酶第四次單元RPB4在轉錄及訊息核醣核酸降解過程之功能分析
Functional Characterization of RNA Polymerase II Subunit RPB4 in Transcription and mRNA Decay Machinery
Authors: Ju-Yi Chien
簡如一
Advisor: 張?仁
Keyword: 核醣核酸聚合&#37238,轉錄,處理體,核醣核酸降解,訊息核醣核酸代謝,
RNA polymerase II,transcription,P-body,mRNA decay,mRNA meatabolism,
Publication Year : 2011
Degree: 碩士
Abstract: Gene expression involves several distinct stages, which are tightly controlled and coordinated. Although the detailed mechanism of each stage is well established, we are still lacking the linkage of how different processes are connected. In Saccharomyces cerevisiae, Rpb4p, which was discovered as a RNA polymerase subunit, is reported to involve in mRNA processing, mRNA export, translation and mRNA degradation, suggesting a role of coordinator. In this study, we aimed to explore the functional characters of RPB4 in both transcription and mRNA degradation in mammalian system. We found that RPB4 located at P-bodies, which accommodate translationally repressed mRNPs and proteins involved in mRNA degradation. In addition, RPB4 interacted with DCP1a, DCP2, DDX6, EDC3 and CAF1a in RNA-independent manner. By tethering RPB4 to luciferase reporter mRNA, we further provided evidences that RPB4 is functionally related to mRNA decay machinery. Interestingly, we observed that RPB4 can translocate from cytoplasm to nucleus and associate with phosporylated RNA polymerase II in response to heat shock stress. Knockdown of RPB4 resulted in down-regulation of proteins involved in mRNA metabolism. Taken together, these findings imply that RPB4 might modulate specific class mRNAs’ turnover by coordinating their metabolic processes.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38207
Fulltext Rights: 有償授權
Appears in Collections:生化科學研究所

Files in This Item:
File SizeFormat 
ntu-100-1.pdf
  Restricted Access
1.57 MBAdobe PDF
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved