Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37528
Title: 數位彩色影像之量化與重建
Quantization and Dequantization of the
Digital Color Image
Authors: Meng-Ting Lin
林孟婷
Advisor: 貝蘇章
Keyword: 影像量化,影像重建,影像處理,
image quantization,dequantization,image process,
Publication Year : 2008
Degree: 碩士
Abstract: 彩色影像量化是期望在人眼沒有感受到差異的情況下,將彩色影像由較多的色彩數量簡化為較少的表示色彩數量。彩色影像量化對於輸出能顯示的色彩數量不足時,是一個很有用的方法。此外它也可以節省儲存空間和傳輸時間。因此,彩色影像量化在現在是一個很重要的議題。
在這篇論文中,我們將會介紹四種影像量化的演算法。前兩種是廣為人知的方法:中位數切割法和中心點切割法。這兩種方法的切割平面是由平衡數值總類的數量來決定。第三種方法藉由計算在像素數值鄰近點的距離的量化法,主要希望可以使量化誤差達到最小。第四種方法是藉由保持量化前後色彩分佈不變的量化法。藉由保持量化前後色彩分佈不變的特性,我們還可以做其他的應用。
最後會介紹一種不需要知道影像量化方法的重建方法。期望在視覺上可以將量化過後的影像重建回沒量化過,主要是可以消除量化時產生的影像輪廓。
The color image quantization expects that a color image can use less number of representative colors to represent it and the human eyes can not notice. It is helpful when the output do not have enough colors to display. Also, it can save storage memory and the transmit time. Thus the color image quantization is an important issue in nowadays.
In this thesis, we will introduce four kinds of image quantization algorithms. The pervious two are well-know: the median-cut and the center-cut algorithm. The cutting plane is decided by balancing populations. The third one is called quantization using distances between adjacent colors algorithm which wishes to minimal the total quantization errors. The Fourth one is quantization by preserving color distribution features, which want to keep the color distribution unchanged. By preserving the same color distributions, we also do some applications.
Last, we will illustrate a color image dequantization algorithm which is blind. It will improve the color contours and make the quantized color image looks like an original one.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37528
Fulltext Rights: 有償授權
Appears in Collections:電信工程學研究所

Files in This Item:
File SizeFormat 
ntu-97-1.pdf
  Restricted Access
8.4 MBAdobe PDF
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved