請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37179完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張耀文(Yao-Wen Chang) | |
| dc.contributor.author | Yu-Cheng Wang | en |
| dc.contributor.author | 王 有 成 | zh_TW |
| dc.date.accessioned | 2021-06-13T15:20:44Z | - |
| dc.date.available | 2008-08-01 | |
| dc.date.copyright | 2008-07-24 | |
| dc.date.issued | 2008 | |
| dc.date.submitted | 2008-07-23 | |
| dc.identifier.citation | [1] A. Abdollahi, F. Fallah, and M. Pedram, “A Robust Power Gating Structure and Power Mode Transition Strategy for MTCMOS Design,” IEEE Transactions on VLSI systems, pp.80-89, vol. 15, no. 1, Jan 2007.
[2] A. Abdollahi, F. Fallah, and M. Pedram, “An effective Power Mode Transition Technique in MTCMOS Circuits” Proceedings of IEEE/ACM Design Automation Conference, pp.37-42, June 2005 [3] M. H. Anis and M. I. Elmasry, “Power Reduction via an MTCMOS Implementation of MOS Current Mode Logic” Proceedings of IEEE ASIC/SOC Conference, pp.193-197, Sep 2002. [4] B. H. Calhoun, F. A. Honore, A. P. Chandrakasan, “A Leakage Reduction Methodology for Distributed MTCMOS” IEEE Journal of Solid-State Circuits, pp.818-826, Vol, 39, No. 5, May 2004 [5] Y.-T. Chen, D.-C. Juan, M.-C. Lee, S.-C. Chang, “An Efficient Wake-up Schedule during Power Mode Transition Considering Spurious Glitches Phenomenon.” Proceedings of IEEE/ACM International Conference on Computer-Aided Design, pp.779-782, 4-8, Nov 2007 [6] D. S. Chiou, D. C. Juan, Y. T. Chen, S. C. Chang, “Fine-Grained Sleep Transistor Sizing Algorithm for Leakage Power Minimization” Proceedings of IEEE/ACM Design Automation Conference, pp. 81-86, June 2007. [7] D. S. Chiou, S. H. Chen, S. C. Chang, and C. Yeh, “Timing Driven Power Gating,” Proceedings of IEEE/ACM Design Automation Conference, pp. 121-124, July 2006. [8] H. S. Deogun, R. Rao, D. Sylvester, K. Nowka, “Adaptive MTCMOS for Dynamic Leakage and Frequency Control Using Variable Footer Strength” Proceedings of IEE/ SOC Conference, pp.147-150, Sep 2005. [9] S. Kim, S. V. Kosonocky, and D. R. Knebel, “Understanding and Minimizing Ground Bounce during Mode Transition of Power Gating Structures,” Proceedings of IEEE Intel Symposium on Low Power Electronics and Design, pp.22-25, Aug, 2003. [10]D. Lee and D. Blaauw, “Static Leakage Reduction through Simultaneous Threshold Voltage and State Assignment” Proceedings of IEEE/ACM Design Automation Conference, pp.191-194, Jun 2003 [11] C. Long and L. He, “Distributed Sleep Transistor Network for Power Reduction” Proceedings of IEEE/ACM Design Automation Conference, pp.181-186 Jun 2003 [12] S. I. Mutoh, T. Douseki, Y. Matsuya, T. Aoki, S. Shigematsu, J. Yamada. “1-V Power Supply High-Speed Digital Circuit Technology with Multithreshold-Voltage CMOS” Proceedings of IEEE Solid-State Circuits, pp.847-854, vol. 30, no. 8, Aug 1995 [13] E.Pakbaznia, F. Fallah, M.Pedram, “Sizing and Placement of Charge Recycling Transistors in MTCMOS Circuits” “Proceedings of IEEE/ACM International Conference on Computer-Aided Design, pp.791-796, Nov 2007 [14] E.Pakbaznia, F. Fallah, M.Pedram, “Charge Recycling in MTCMOS Circuits: Concept and Analysis” Proceedings of ACM/IEE Design Automation Conference, pp.97-102, Jul 2006 [15] A. Sagahyroon, and F. Aloul, “Maximum Power-Up Current Estimation in Combinational CMOS Circuit,” Proceedings of the IEEE MELECON, pp.70-73, May 2006. [16] K. Shi, and D. Howard, “Challenges in Sleep Transistor Design and Implementation in Low-Power Designs” Proceedings of ACM/IEE Design Automation Conference, pp.113-116, Jul 2006. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37179 | - |
| dc.description.abstract | 在先進的深次微米 (deep sub-micron) 互補式金屬氧化物半導體設計製程中,漏電流 (leakage current) 以指數的速度在成長,在 65 奈米的製程上,漏電流在整個能量的消耗上更佔了幾乎接近50 %。由於奈米製程持續進化而且嵌入式系統待機時間往往較長,因此對於降低漏電的性能要求更加嚴苛,但目前在持續邁向更先進製程的發展下,漏電量將成為一大隱憂,所以如何防堵漏電問題成了一大關鍵。在許多提出減少能量消耗的理論中, 電源閘控制 (power gating) 算是最有效降低能量消耗的方法. 電源閘控制有很多種設計方式,在目前,分散式休眠電晶體系統 (Distributed Sleep Transistor Network)是最常被工業界採用的一種設計方式,在本論文中,我們提出一個方法來減少打開整體休眠電晶體的覺醒時間(Wake-up time),在所能容忍的急速電流(rush current)的限制下,並且可以降低能量的消耗。由實現結果顯示, 我們所提出的方法確實可以達到降低覺醒時間和減少電壓的壓降。以實驗數據的平均來說,覺醒時間有大約16.84%的降低;電壓的壓降則有20.25%的減少。 | zh_TW |
| dc.description.abstract | In the deep sub-micron CMOS technology, leakage current increases so exponentially that it becomes a significant drain on the total power consumption. In the 65 nanometer process, leakage current is expected to reach 50% of total power consumption. Due to the fact that the nanometer process changes rapidly and the embedded system has long active time, it is explicitly needed to reduce leakage power in a design. Currently, the biggest concern in the advanced technology is how to reduce the leakage power. Among various leakage reduction techniques, the power-gating technique has become one of the most effective methods in reducing leakage power in low-power designs. During the power mode transition, large rush currents may lead to malfunctions in a power gating design. Currently, many industrial power-gating designers adopt the Distributed Sleep Transistor Network (DSTN) structure to reduce rush currents. In our research, we propose an efficient method to reduce wake-up time and power consumption during the rush current constraint. Experiments show that the proposed method can effectively reduce wake-up time and improve IR drops, around 16.84% reduction in wake-up time and 20.25% reduction in IR drops on average. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T15:20:44Z (GMT). No. of bitstreams: 1 ntu-97-P94921005-1.pdf: 2038239 bytes, checksum: cb1144ddcdb1e5ebb23537d74dcfb976 (MD5) Previous issue date: 2008 | en |
| dc.description.tableofcontents | 論文口試委員審定書 II
論文口試委員審定書(English) III Acknowledgement IV Abstract (Chinese) V Abstract VI List of Figures VIII List of Tables X 1. Introduction 1 1.1 Distributed Sleep Transistor Network (DSTN) Structure 3 1.2 Sleep and Active Mode of Sleep Transistor 6 1.3 Previous Works 8 1.4 Our Contributions 10 1.5 Organization of the Thesis 11 2. Problem Description 12 2.1 Wake-Up Schedule 12 2.2 Rush Current 14 2.3 Wake- Up Time 15 2.4 Problem Formulation 16 3. Design Flow 21 3.1 The PrimeRail Power Management Flow 21 3.2 Our Proposed Flow 25 4. Experiment Results 27 4.1 Case 1 27 4.2 Case 2 30 4.3 Case 3 33 4.4 Results Analysis 36 5. Conclusion and Future Work 38 5.1 Conclusion 38 5.2 Future Work 38 Bibliography 39 | |
| dc.language.iso | zh-TW | |
| dc.subject | 急速電流 | zh_TW |
| dc.subject | 漏電流 | zh_TW |
| dc.subject | 電源閘控制 | zh_TW |
| dc.subject | 分散式休眠電晶體系統 | zh_TW |
| dc.subject | 覺醒時間 | zh_TW |
| dc.subject | DSTN | en |
| dc.subject | rush current | en |
| dc.subject | wake-up time | en |
| dc.subject | leakage current | en |
| dc.subject | power gating | en |
| dc.title | 在多閾值互補式金屬氧化物半導體設計中提供有效率的能量管理流程 | zh_TW |
| dc.title | An Effective Power Management Flow in
MTCMOS Design | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 96-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 阮聖彰(S.J Ruan),林榮彬(Rung-Bin Lin) | |
| dc.subject.keyword | 漏電流,電源閘控制,分散式休眠電晶體系統,覺醒時間,急速電流, | zh_TW |
| dc.subject.keyword | leakage current,power gating,DSTN,wake-up time,rush current, | en |
| dc.relation.page | 41 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2008-07-24 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電機工程學研究所 | zh_TW |
| 顯示於系所單位: | 電機工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-97-1.pdf 未授權公開取用 | 1.99 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
